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We consider a system of interacting spinless fermions on a two-leg triangular ladder with π/2 magnetic
flux per triangular plaquette. Microscopically, the system exhibits a U(1) symmetry corresponding to the
conservation of total fermionic charge and a discrete Z2 symmetry—a product of parity transformation and
chain permutation. Using bosonization, we show that, in the low-energy limit, the system is described by the
quantum double-frequency sine-Gordon model. On the basis of this correspondence, a rich phase diagram of
the system is obtained. It includes trivial and topological band insulators for weak interactions, separated by a
Gaussian critical line, whereas at larger interactions a strongly correlated phase with spontaneously broken Z2

symmetry sets in, exhibiting a net charge imbalance and nonzero total current. At the intersection of the three
phases, the system features a critical point with an emergent SU(2) symmetry. This non-Abelian symmetry,
absent in the microscopic description, is realized at low energies as a combined effect of the magnetic flux,
frustration, and many-body correlations. The criticality belongs to the SU(2)1 Wess-Zumino-Novikov-Witten
universality class. The critical point bifurcates into two Ising critical lines that separate the band insulators from
the strong-coupling symmetry broken phase. We establish an analytical connection between the low-energy
description of our model around the critical bifurcation point on one hand and the Ashkin-Teller model and a
weakly dimerized XXZ spin-1/2 chain on the other. We complement our field-theory understanding via tensor
network simulations, providing compelling quantitative evidences of all bosonization predictions. Our findings
are of interest to up-to-date cold atom experiments utilizing Rydberg dressing that have already demonstrated
correlated ladder dynamics.

DOI: 10.1103/PhysRevB.108.075146

I. INTRODUCTION

Experimental setups involving ultracold atoms, trapped in
optical tweezer arrays and laser coupled to highly excited
Rydberg states, have demonstrated, in recent years, the re-
markable potential for simulating strongly correlated quantum
phases of many-body systems under controllable experimen-
tal conditions [1–7]. Rydberg atom platforms, where large and
long-lived van der Waals–type interactions between Rydberg
states can extend over relatively long distances (tunable even
up to a few microns), provide unique opportunities to probe
the many-body system at single-site levels with high experi-
mental precision and control [8]—a feat that is unattainable
in conventional cold atoms in optical lattices governed by
Hubbard-like physics (see, e.g., Ref. [9]).

In a typical experimental scenario of optical tweezer ar-
rays, Rydberg states are populated with the dynamics between
the Rydberg states being much faster compared to the respec-
tive atomic motion. Such a setup of Rydberg arrays is often
described by interacting spin-1/2 models [10,11] paving the
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way to study frustrated magnetism in a controllable laboratory
setting [12–15] and offers various fascinating phenomena both
in one- (1D) and two- (2D) dimensional settings (see, e.g.,
Refs. [1,7,13–20]).

In an alternative experimental scenario, the ground states of
trapped ultracold atoms in optical lattices are weakly coupled
to virtually populated Rydberg states—the so-called Rydberg
dressing—resulting in generalized Hubbard-like systems with
tunable long-range interactions [21–24]. The dynamics of
such Rydberg dressed systems lies in the intermediate regime
between the conventional Hubbard models describing ultra-
cold atoms on optical lattices and the frozen Rydberg gases
trapped in optical tweezers. In 1D with a single bosonic field,
Rydberg dressed systems show exotic critical behavior like
cluster Luttinger liquids [25] and emergent supersymmetric
critical transition [26]. In 2D settings, these systems are asso-
ciated with anomalous dynamics and glassy behavior [27,28].
Along with these theoretical endeavors, the many-body
dynamics of Hubbard models with long-range Rydberg-
dressed interactions in 2D has been realized in a recent
experiment [29].

While the aforementioned cases are mostly focused on
either 1D or 2D geometries, in this work, we consider the
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intermediate regime between these two—a ladder geometry
that can accommodate interactions and magnetic terms pos-
sible in 2D geometries, while simultaneously being tractable
by analytical and numerical methods that are suitable for
1D systems. In recent years, ladder systems with Rydberg
dynamics have been subjected to various theoretical works,
which includes coupled-cluster Luttinger liquids and coupled
supersymmetric critical transitions [30–32], Ising criticality
by order-by-disorder mechanism [33], chiral three-state Potts
criticality [34], among many others. Another interesting sce-
nario that is being explored over the years in the ladder
systems involves the effect of external (synthetic) magnetic
flux [35–50], where vortex phases, topological properties,
chiral boundary currents, topological Lifshitz transitions, etc.,
have been investigated.

In the present work, we consider the scenario of an
optical lattice system on a two-leg triangular ladder geometry
where ultracold spinless fermions are trapped and subjected
to a synthetic magnetic flux by means of Raman-assisted
tunneling [51–54]. Moreover, the fermions can be coupled
to Rydberg states (i.e., the Rydberg dressing) by off-resonant
laser driving that can trigger controllable interactions
between the fermions. The system exhibits a U(1) symmetry
corresponding to the conservation of total fermion number
and a discrete Z2 symmetry coming from the joint operation
of parity transformation and chain inversion. This minimal
setting beyond 1D allows for the exploration of the interplay
between the magnetic flux, interactions, and the geometrical
frustrations and the associated emerging phenomena that
can be investigated using well-established analytical and
numerical techniques.

In a recent paper [55], by considering the triangular ladder
system with an asymmetric single-particle hopping across
zigzaglike interchain links in the noninteracting limit, the
effect of the interplay between geometric frustration and mag-
netic flux has been thoroughly investigated focusing on the
single-particle band structures. Due to the breakdown of k →
π − k particle-hole symmetry, two isolated low-energy Dirac-
like excitations with different masses emerge. This leads to a
sequence of Lifshitz transitions on the variation of magnetic
flux in the vicinity of the critical flux value of π/2 per triangu-
lar plaquette. The Lifshitz points for fixed chemical potential
and fixed particle density belong to different universality
classes. In the maximally frustrated case (i.e., the scenario of
symmetric hopping across zigzag interchain links), the Dirac-
like excitations at the boundary of the Brillouin zone become
gapless, rendering the system very susceptible to possible
many-body interactions.

In this work, by utilizing a combination of field-theoretical
approaches based on bosonization [56,57] and numerical
simulations based on tensor networks (TN) [58–60], we ex-
tend this exploration by introducing many-body correlations
among the fermions in the form of interchain nearest-neighbor
interactions. Our particular interest is in the understanding
of the interplay between geometrical frustration, an external
synthetic flux of π/2 per triangular plaquette, and many-body
correlations.

We find that the system is described by the double-
frequency sine-Gordon (DSG) model at low energies. This
enables us to predict a rich phase diagram that consists of triv-

FIG. 1. Spinless fermions on a two-leg triangular ladder. The
integer j labels the diatomic unit cells. t0, t1, and t2 denote the
amplitudes of single-particle nearest-neighbor hopping along the
chains and between them. We consider f = 1/2 flux per triangular
plaquettes (in units of π ) and interchain nearest-neighbor interaction
of strength V .

ial and topological band insulators at weak interactions and
an insulating phase with spontaneously broken Z2 symmetry
at strong couplings. The analytical predictions coming from
the phenomenological analysis of the DSG model are vali-
dated by large-scale TN simulations: Crucially, we combine
both matrix-product-state and tree tensor network simulations
[58–60], that, as we detail below, demonstrate complementary
capabilities in probing different parts of the phase diagram.
We show that the trivial and topological band insulators
are separated by a Gaussian critical line, that terminates
with a Berezinskii-Kosterlitz-Thouless (BKT) transition to the
strong-coupling symmetry-broken phase. This critical end-
point bifurcates into two Ising critical lines that separate the
band insulator phases from the strong-coupling Z2 symmetry-
broken insulator phase.

The most exciting physics lies in the low-energy descrip-
tion of the critical endpoint of the Gaussian critical line
that bifurcates into two Ising critical lines. At this critical
endpoint, the system exhibits enlarged non-Abelian SU(2)
symmetry that is entirely absent in the microscopic descrip-
tion of the system, which only respects Abelian Z2 × U(1)
symmetry. Indeed, starting with our model of interacting
spinless fermions on a flux-ladder and applying the usual
Jordan-Wigner (JW) transformation along the zigzag path (see
Fig. 1), one would arrive at a lattice spin model which is
not SU(2) invariant. The emergence of non-Abelian SU(2)
symmetry arises due to the combined effects of the synthetic
magnetic flux, interactions, and the geometrical frustrations,
taking place only in the low-energy limit. At this limit, opera-
tors that explicitly violate this non-Abelian symmetry become
irrelevant in the renormalization group sense as their scaling
dimensions are greater than the space-time dimension of 2. We
show that this critical endpoint belongs to the SU(2)1 Wess-
Zumino-Novikov-Witten (WZNW) universality class [56,61].
Furthermore, we draw an analytical connection of the low-
energy description around this critical bifurcation point to the
Ashkin-Teller model [62–65] and a weakly dimerized XXZ
spin-1/2 chain.

The paper is organized as follows. In Sec. II we in-
troduce the fermionic system on two-leg triangular ladder
geometry and state its symmetry properties, and give a brief
overview of the results of this work. In Sec. III, we provide
the analytical low-energy description of the system using
bosonization in terms of the DSG model, and predict the phase
diagram, including SU(2)1 WZNW bifurcation criticality, by
phenomenological analysis of the DSG model. Section IV
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discusses the connection between the low-energy description
of the SU(2)1 WZNW criticality in this frustrated fermionic
ladder with the Ashkin-Teller model and a weakly dimer-
ized XXZ spin-1/2 chain. We validate the predictions of
field-theoretical analytical treatments by performing numeri-
cal simulations based on tensor-network algorithms in Sec. V.
Finally, we conclude with Sec. VI.

II. THE SYSTEM

We consider a paradigmatic spinless fermionic system on a
two-leg triangular ladder in the presence of external magnetic
flux as shown in Fig. 1. Its Hamiltonian is given by

H = H0 + Hint,

H0 = −t0
∑

j,σ=±
(e−iπσ f c†

j,σ c j+1,σ + H.c.)

−
∑

j

(t1c†
j,+c j,− + t2c†

j,+c j−1,− + H.c.),

Hint = V
∑

j

n̂ j,+(n̂ j,− + n̂ j−1,−). (1)

Here c j,σ and c†
j,σ are annihilation and creation operators for a

spinless fermion on the chain σ = ± with j labeling diatomic
unit cells, n̂ j,σ = c†

j,σ c j,σ are occupation number operators, t0
and t1,2 are the intra- and interchain tunneling amplitudes, and
f = ��/φ0 is the magnetic flux per triangular plaquette mea-
sured in units of the flux quantum φ0 = hc/e. Hint stands for
the nearest-neighbor density-density interaction of amplitude
V between fermions residing on top and bottom chains. We
work at the regime of half-filling.

The dynamics we are interested in is relevant to cold
atom gases in optical lattices, in the presence of off-resonant
laser drive to Rydberg states (the Rydberg dressing) [21–24].
In particular, laser-dressing to p states generated a strong
anisotropic interaction: The latter can be made very strong
vertically, and very weak horizontally, realizing the interac-
tion pattern described by Hint [12,26]. Such couplings have
been recently realized experimentally in Ref. [29], while dis-
tance selection (which could also be utilized for our case
here) has also been demonstrated in Ref. [66]. The tunneling
dynamics can instead be engineered utilizing laser-assisted
tunneling [51]. We note that the system is also relevant for
experiments with trapped ions [67].

The properties of the noninteracting flux-ladder model H0

have been recently studied in detail in Ref. [55]. It has been
shown that in the regime of weak interchain hopping, 0 <

t1,2 � t0, the effect of the geometric frustration is most pro-
nounced in the limit |t1 − t2| � t1 + t2 and f → 1

2 . At f = 1
2

the low-energy excitations, as described by the dispersion
relations

ω(k)± = ±
√

4t2
0 sin2 k + t2

1 + t2
2 + 2t1t2 cos k, (2)

are represented by two branches of massive Dirac fermions,
with momenta close to k = 0 and k = π in the Brillouin zone,
and with masses M = t1 + t2 and m = t1 − t2, respectively.
We will be referring to them as heavy (M) and light (m)
fermionic sectors. The degree of frustration in the noninter-

acting case can be quantified by the ratio δ = t2/t1 = (M −
m)/(M + m). The model is maximally frustrated in the m →
0 limit. At f = 1/2 the ground state of a half-filled ladder with
m �= 0 is insulating. Under the same conditions with m = 0,
the presence of a Dirac node at k = π renders the spectrum
of the ladder gapless. Such a system is very susceptible to
correlations between the particles. Consequently, we will be
considering f = 1

2 regime only.
The Hamiltonian Eq. (1) possesses a Z2 symmetry which

we label by P: It is a product of parity transformation ( j →
− j) and permutation of the chains (σ → −σ ). Obviously, H
has a global U(1) symmetry related to the conservation of the
total particle number. However, except for the limit of two
decoupled chains (t1 = t2 = 0, f = 0), the total fermionic
Hamiltonian H does not display an apparent SU(2) symmetry
for any values of the parameters of the model. One of the
main results of this paper is the demonstration that, in fact,
in the massless case (m = t1 − t2 = 0) at a certain value of
the coupling constant V the system occurs in a critical state
with central charge c = 1, where it is characterized by the
non-Abelian SU(2) symmetry.

In a symmetric flux ladder (m = 0) at f = 1/2, at some
critical value Vc of the interaction constant, the system un-
dergoes a transition from a Tomonaga-Luttinger (TL) liquid
phase (V < Vc) to a long-range ordered phase (V > Vc) with
a spontaneously broken discrete P symmetry. The ordered
phase is characterized by a finite interchain charge transfer
and a nonzero spontaneous current along the ladder. Starting
from the broken-symmetry phase and increasing the zigzag
asymmetry m or decreasing V , one observes two Ising critical
lines (with central charge c = 1/2), signifying transitions to
two band insulator phases, one of them being topological
(m < 0) while the other nontopological (m > 0). We show,
both analytically and numerically, that the two Ising critical
lines merge at an Ashkin-Teller (AT) bifurcation point V =
Vc, m = 0, as shown in Fig. 2. We show, both analytically and
numerically, that at this point the symmetry of the underlying
criticality is promoted to SU(2)1 WZNW universality class.
The emergence of this SU(2) criticality is a remarkable prop-
erty of the originally Abelian model of spinless fermions on
a triangular ladder, emerging at low energies as a combined
effect of frustration, flux, and correlations.

III. ANALYTICAL APPROACH TO A WEAKLY COUPLED
FLUX LADDER: EFFECTIVE BOSONIZED MODEL

In our analytical treatment of the interacting model, we
concentrate on the limit of weak repulsive interaction, V �
W , with W = 2t0 being the ultraviolet energy cutoff. In the
low-energy range, i.e., E ∼ |m| � M � W , the most impor-
tant states reside in the light sector. Interaction Hint induces
scattering processes within and between the light and heavy
sectors. In the low-energy range under consideration, the in-
teraction in the heavy sector is of minor importance, because
the finite mass M cuts off infrared divergences of the scat-
tering amplitudes. Integrating out the heavy modes reduces to
renormalization of the parameters of the effective Hamiltonian
of the light sector. Assuming that all these renormalizations
are taken into account, in what follows we will concentrate
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FIG. 2. (a) The phase diagram of the DSG model [Eq. (13)]
that dictates that low-energy description of the lattice Hamiltonian
(1). The blue line corresponds to U(1) Gaussian criticality with
c = 1. The black dot at the origin is the SU(2)1 critical point with
c = 1. Two red lines are the Ising criticalities with m = ±m∗ critical
lines and c = 1/2. In the band insulator phases, shaded in orange
and green, the dimerization is nonzero along t1 and t2 links. The
orange and green regions correspond to trivial and topological (see
Appendix B) band insulator phases, respectively. The region shaded
in blue corresponds to the phase with spontaneously broken P
symmetry—a combination of parity and chain interchange opera-
tions. This phase is characterized by the nonzero total current along
the chains, which is proportional to the charge imbalance between
the chains. (b) The phase diagram of the lattice Hamiltonian (1)
obtained by iDMRG simulations. We plot the correlation length ξχ

for the iMPS bond dimension χ = 256 in the (m,V/t0) plane (see
Sec. V for details). Diverging values of the correlation length clearly
indicate that the critical line at m = 0 bifurcates into two critical
lines at around V/t0 � 2.45 akin to the DSG model. Apart from these
critical lines, all the phases are gapped, and these phases are trivial
and topological band insulators, and twofold degenerate spontaneous
symmetry-broken (SSB) phase.

on the fermionic modes with momenta k ∼ π and small mass
gap m.

We define the continuum limit for the lattice fermionic
operators by using the correspondence

c jσ → √
a0(−1) j
σ (x), (σ = ±), (3)

where 
σ (x) are slowly varying fermionic fields describing
single-particle excitations with momenta close to the zone
boundary k = π , and a0 is the lattice constant along the chain
which we set to 1. Accordingly, in the light sector, the unper-
turbed Hamiltonian density of the light fermionic modes takes
the following continuum form:

H0(x) = 
†(x)[−ivF (σ̂3 + τ σ̂2) + mσ̂1]
(x),

with 
 =
(


+

−

)
, (4)

where τ = t2/W = (M − m)/2W is proportional to the frus-
tration parameter δ. The kinetic energy in Eq. (4) is brought
to a canonical Dirac form by an SU(2) rotation of the spinor

 around the σ̂1 axis,


(x) = Uχ (x), χ =
(

R
L

)
, U = u + ivσ̂1

u2 − v2 ≡ cos γ = 1√
1 + τ 2

, (5)

2uv ≡ sin γ = τ√
1 + τ 2

,

with u2 + v2 = 1. As a consequence, in the rotated (band)
basis the Hamiltonian H0 becomes

H0(x) = χ†(x)(−iṽσ̂3∂x − mσ̂1)χ (x), (6)

where ṽ = vF

√
1 + τ 2 is the renormalized velocity. It is im-

portant to realize that the role of the frustration parameter τ

is not exhausted by the above velocity renormalization of the
single-particle excitations. As we show below, in the contin-
uum limit, frustration in the τ 2V -order generates pair-hopping
scattering processes which, in the rotated basis, are responsi-
ble for the onset of a strong-coupling phase with broken P
symmetry.

In Appendix A, we provide the expressions for the particle
densities on each chain valid in the continuum limit in both
chain and band representations. Using this expression and ne-
glecting perturbative corrections to the frustration parameter
τ (being of the order gnτ , n � 1), we obtain the continuum
version of Hint:

Hint =
∫

dx
{
λ
(
: J2

R : + : J2
L :

) + 2gJRJL + λOph
}
. (7)

Here

Oph(x) =: (R†L)x(R†L)x+a : +H.c. (8)

is the interband pair-hopping operator, JR,L (x) are the chiral
(right and left) components of the particle density—the U(1)
chiral currents—see Appendix A,

λ = τ 2g

2(1 + τ 2)
, (9)

and g = Va0 is a coupling constant (a0 being the lattice con-
stant along the chains). Recasting the kinetic energy of the
fermions as a quadratic form of the chiral currents [56], we
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arrive at the following effective continuum model describing
interacting fermions in the rotated basis of states:

H(x) = H0(x) + Hint(x)

= πv∗[: J2
R (x) : + : J2

L (x) :
]

− mB(x) + 2gJR(x)JL(x) + λOph(x), (10)

where the Dirac-mass operator B(x) is defined in Eq. (A4)
and Eq. (A9) and v∗ = ṽ + λ/π is the Fermi velocity with an
extra renormalization caused by interactions. Using the trans-
formation properties of the fermionic fields, chiral currents,
and mass bilinears under P [see Appendix A, Eqs. (A12)], we
find that [H,P] = 0.

Bosonization of the model Eq. (10) is based on the well-
know Fermi-Bose correspondence [56,57]:

JR,L (x) = 1√
π

∂xϕR,L(x), ϕR,L(x) = 1

2
[±�(x) + �(x)],

R†(x)L(x) = − i

2πα
e−i

√
4π�(x), (11)

where ϕR,L are chiral bosonic fields, �(x) and �(x) are the
scalar field and its dual counterpart, and α ∼ a0 is the short-
distance cutoff of the bosonic theory. The fields � and � can
be conveniently rescaled, � → √

K�, � → �/
√

K, where

K = 1 − g

2πv∗ + O(g2) (12)

is the so-called Luttinger-liquid interaction parameter. It de-
creases on increasing the interchain repulsion g; however, its
parametrization Eq. (12) is only universal at small values of g.
Since the model at hand is not integrable, the exact analytical
expression of K = K (g) beyond the weak-coupling limit is
not known. We need to rely on numerical tools to get the
dependence of K at large values of g (see Sec. V C). Neverthe-
less, below we treat K as an independent phenomenological
parameter of the model. Collecting all the terms we arrive
at the fully bosonized effective Hamiltonian which has the
structure of the DSG model [62,63]:

H(x) = vc

2
[: �2(x) : + : [∂x�(x)]2 :]

+
( m

πα

)
: sin

√
4πK�(x) :

− λ

2(πα)2
: cos

√
16πK�(x) :, (13)

where �(x) = ∂x�(x) is the momentum canonically conju-
gate to the field �(x), and vc = v∗[1 + O(g2)]. The first two
terms in Eq. (13) represent the Gaussian part of the Hamil-
tonian, while the remaining nonlinear terms contribute to
the potential U [�] whose profile is determined by the rel-
ative strength and signs of the λ and m perturbations. In a
strong-coupling regime, the field � gets localized in one of
the infinitely degenerate vacua of U [�] thus determining the
phase of the system. It is to be noted that when, in addition
to V , the interaction also includes nearest-neighbor coupling
along the chain—V0n̂ j,σ n̂ j+1,σ —the DSG model (13) main-
tains its structure with a slightly modified velocity vc and
the parameter λ replaced by λ = τ 2(g − g0)/2(1 + τ 2), where
g0 = V0a0.

Using Eqs. (A6)–(A9) and the rules Eq. (11), we derive the
bosonized expressions of the local physical operators which
will be used when discussing the correlation effects:

ρtot (x) =
∑

σ

ρσ (x) =
√

K

π
∂x�(x), (14)

ρrel(x) =
∑

σ

σρσ (x) = 1

vF
j0(x),

= − 1√
1 + τ 2

[
1√
πK

∂x�(x)

−
(

τ

πα

)
: cos

√
4πK�(x) :

]
, (15)

jz(x) = − vF√
1 + τ 2

[
τ 2

√
πK

∂x�(x)

+
(

τ

πα

)
: cos

√
4πK�(x) :

]
, (16)

B(x) = − 1

πα
: sin

√
4πK�(x) : . (17)

A. Correlation effects

The relevance of the two operators entering the nonlinear
potential U (�) of the DSG model (13) is determined by their
scaling dimensions: dm = K and dλ = 4K . We will be mainly
concerned with the case of a repulsive interchain interaction,
g > 0, K < 1, and briefly comment on the attractive case
g < 0, K > 1. At K > 1/2 the λ term in (13), which describes
interband pair-hopping processes, is irrelevant, and the prop-
erties of the model are determined by the single-particle mass
perturbation. It is well known [57] that, in one-dimensional
models with short-range repulsive interactions, increasing lo-
cal repulsion between the particles to push K to small-enough
values may not be enough; longer-range interaction should
be also invoked. Therefore, we will phenomenologically as-
sume that interaction in the model is generalized in such a
way that the regime with K < 1/2, where the λ perturbation
becomes relevant, is feasible. In this case, the DSG model
(13) describes the interplay of correlations and single-particle
perturbations. Below we discuss the possible realization of
different ground-state phases of the system.

1. m = 0 regime

This is the case of a symmetric triangular flux ladder (t1 =
t2, i.e., m = 0) in which bare fermions with momenta k ∼ π

are massless. The effective Hamiltonian Eq. (13) reduces to a
standard sine-Gordon (SG) model:

H(x) = vc

2
{�2(x) + [∂x�(x)]2}

− λ

2(πα)2
: cos

√
16πK�(x) : . (18)

When interchain repulsion V is not strong enough and K >

1/2, the λ perturbation is irrelevant, and in the infrared limit
the Hamiltonian Eq. (18) flows to a Gaussian model. The latter
describes a Tomonaga-Luttinger liquid phase with a gapless
spectrum of collective excitations and power-law correlations
with K-dependent critical exponents. As follows from the
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definitions Eqs. (14)–(17), strong quantum fluctuations sup-
press any kind of ordering in the system, including charge
imbalance between the legs of the ladder, dimerization along
the zigzag links, and net current in the ground state. Within
the range 1/2 < K < 1, the τ -proportional part of the relative
density Eq. (15) contributes to dominant correlations in the
model: At distances |x| > α(K|τ |)− 1

2(1−K ) the corresponding
correlation function follows the power law

〈ρrel(x)ρrel(0)〉 � 1

2(πα)2

τ 2

1 + τ 2

(
α

|x|
)2K

. (19)

At K < 1/2, the λ perturbation in Eq. (18) becomes rel-
evant and the model flows towards strong-coupling with a
dynamical generation of a mass gap

mλ ∼ vc

α

( |λ|
vc

)1/2(1−2K )

, (K < 1/2). (20)

Since λ > 0, the field � is locked in one of the infinitely
degenerate vacuum values

(�)l = 1

2

√
π

K
l, l ∈ Z. (21)

Therefore 〈B1〉 = 〈B2〉 = 0, but the average relative density
turns out to be nonzero,

〈ρrel〉λ = ±ρ0, ρ0 ∼ |τ | 1−K
1−2K . (22)

According to Eqs. (15) and (16), the population imbalance be-
tween the chains is accompanied by a spontaneous generation
of a net current,

〈 j0〉λ = 〈 jz〉λ = vF

πα

τ

1 + τ 2
〈: cos

√
4πK�(x) :〉λ. (23)

The spontaneous relative density, and hence the current, are
nonanalytic functions of the frustration parameter τ . Being
zero at K > 1/2, they exponentially increase on decreasing
K in the region K < 1/2 following the law Eq. (22). The
quantum phase transition taking place at K = 1/2 belongs to
the BKT universality class [56,57].

Elementary excitations of the charge-transfer phase are
topological quantum solitons of the SG model Eq. (18). They
carry the mass given by Eq. (20) and a fractional fermionic
number Qs = 1/2. This number is identified with the topo-
logical charge of the soliton which interpolates between
neighboring vacua of the cosine potential cos

√
16πK�:

Qs =
√

K

π

∫ ∞

−∞
dx ∂x�(x) = 1

2
. (24)

2. m �= 0 regime with K > 1
2

At K > 1/2 and m �= 0 the interband pair-hopping pro-
cesses are irrelevant, and the effective theory is given by the
SG model,

H(x) = vc

2
[�2(x) + (∂x�(x))2]

+
(

m

πα

)
: sin

√
4πK�(x) : . (25)

It describes a bosonized version of the theory of marginally
perturbed massive fermions—the so-called massive Thirring

model [68]. The scalar field � is locked in one of the infinitely
degenerate vacua,

(�)vac
l =

√
π

K

[
−1

4
sgn(m) + l

]
, l ∈ Z. (26)

Equation (26) displays two subsets of the vacua corresponding
to different signs of m, each subset describing a band insulator.
The excitation spectrum has a mass gap ms:

ms = C(K )

(
vc

α

)( |m|α
vc

)1/(2−K )

sgn(m), (27)

where C(K ) is a dimensionless constant tending to 1 as K →
1. The mass term in Eq. (25) explicitly breaks parity and,
according to Eqs. (A9) and (17), leads to a finite dimerization
〈B〉 of the zigzag bonds of the ladder,

〈B〉 ∼ |ms|K sgn(m) ∼ |m|K/(2−K )sgn(m). (28)

The quantum soliton of the SG model Eq. (25) carries the
mass ms and topological charge QF = 1 and thus is identified
as the fundamental fermion of the related massive Thirring
model [68]. In the ground state 〈∂x�〉 = 〈∂x�〉 = 0. More-
over, for the vacuum values of the field � given by Eq. (26)
the average 〈cos

√
4πK�〉 vanishes. So at ρ = 1 and m �= 0

the total and relative densities remain unaffected by the flux.
Correlations of the relative density are short ranged.

Thus, at m �= 0 the SG model Eq. (25) describes band insu-
lator phases. Their thermodynamic properties depend only on
the magnitude of the spectral gap |ms|, while their topological
properties are determined by the sign of the bare mass m.
With the sign of the “heavy” mass fixed (M > 0), the band
insulator phase at m > 0 is topologically trivial, whereas the
corresponding phase at m < 0 is topologically nontrivial. This
conclusion has been reached in Ref. [55] by inspecting the
2 × 2 matrix structure of the Bloch Hamiltonian describing
bulk properties of the noninteracting model. In the present
paper, we provide extra support to this conclusion by study-
ing boundary zero-energy states of a semi-infinite triangular
asymmetric flux ladder. The corresponding calculations are
given in Appendix B.

A more complete characterization of the two band in-
sulating phases described by the SG model in Eq. (25) is
extracted from the mass dependence of nonlocal order param-
eters [69]—the parity (ÔP ) and string-order (ÔS ) operators:

ÔP( j) = exp

⎛
⎝iπ

∑
k� j

δn̂k

⎞
⎠, ÔS ( j) = ÔP( j)δn̂ j . (29)

Here j labels the diatomic unit cells of the ladder, and δn̂ j =∑
σ : c†

jσ c jσ : is the density fluctuation on the zigzag rung
j. Nonlocal string and parity orders have been considered
earlier for interacting bosons [70–73] to specify the differ-
ences between the Mott and Haldane insulator gapped phases.
It was shown that the two nonlocal order parameters are
dual to each other [71]: 〈ÔP〉 �= 0, 〈ÔS〉 = 0 for the Mott
insulator, and 〈ÔP〉 = 0, 〈ÔS〉 �= 0 for the Haldane insula-
tor. Nonlocal parity and string order have been shown to
characterize strongly correlated states of interacting fermions
in strictly one-dimensional systems [74,75], as well as in
fermionic ladder models [76–78]. Significant progress in the
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direct measurement of nonlocal parity and string correlations
in low-dimensional ultracold Fermi and Bose systems has
recently been reported [17,79–82].

The string and parity order parameters, Eqs. (29), being
nonlocal in terms of the densities n̂k , admit a local representa-
tion in terms of vertex operators of the effective SG model.
In both Bose [71] and Fermi [78] cases, the perturbation
to the Gaussian Hamiltonian for the field � was defined as
m cos

√
4πK�, with the Luttinger-liquid constant K being

close to 1. Using Abelian bosonization, with such a definition,
one shows that in the continuum limit

ÔP(x) ∼ sin
√

πK�(x), ÔS (x) ∼ cos
√

πK�(x). (30)

However, in the SG model of Eq. (25) the perturbation is of
the form m sin

√
4πK�. Therefore the bosonic representa-

tion of the operators ÔP and ÔS must be modified. The sine
transforms to a cosine under the shift � → � − (1/4)

√
π/K ,

implying the following the redefinition of the nonlocal order
parameters,

ÔP → 1√
2

(sin
√

πK� − cos
√

πK�),

ÔS → 1√
2

(cos
√

πK� + sin
√

πK�). (31)

Using the fact that in the ground state of the SG model (25)
the vacuum values of the field � are given by Eq. (26),
we conclude that the expectation values of ÔP and ÔS are
given by

〈ÔP(m; l )〉 = (−1)l−1F (m)θ (m),

〈ÔS (m; l )〉 = (−1)lF (m)θ (−m),
l ∈ Z, (32)

where at |m|α/v � 1 (i.e., in the vicinity of the Gaussian line
m = 0) and

F (m) ∼
( |m|α

v

) K
4(2−K )

.

Thus, the band insulator phase with m > 0 (t1 > t2) is topo-
logically trivial (〈ÔS〉 = 0) and characterized by a nonzero
nonlocal parity order (〈ÔP〉 �= 0), whereas the phase with m <

0 (t1 < t2) represents a topological insulator with a nonzero
string order (〈ÔS〉 �= 0) but lacks parity order (〈ÔP〉 = 0).
Below, in Sec. V B, we provide numerical evidence for this
conclusion.

3. m �= 0 regime with K < 1
2

The most interesting situation arises when both pertur-
bations of the DSG model in Eq. (13) are relevant. This
case can be realized when the interchain repulsion satisfies
the condition g � gc, where gc is a nonuniversal value of
the coupling constant such that K (gc) = 1/2. At λ > 0 the
DSG potential of Eq. (13) is shown in Fig. 3. It represents
a sequence of double-well potentials of the Z2-symmetric
Ginzburg-Landau theory with the minima merging into φ4

local wells at 2παm/λ = 4. These semiclassical considera-
tions lead to the conclusion that at λ > 0 the interplay of
the two perturbations of the DSG model is resolved as the
appearance of quantum criticalities belonging to the Ising
universality class with central charge c = 1/2 [62]. In the

FIG. 3. A pictorial representation of the potential U (φ) =
a sin φ − cos 2φ, φ = √

4πK�, a = (2πα)m/λ.

following Sec. V, we confirm the existence of c = 1/2 crit-
icalities for m �= 0 at critical interaction strengths V = Vc(m).

As pointed out in Ref. [62], at a quantum level, the infrared
behavior of the DSG model is determined by the ratio of the
mass gaps separately generated by each of the two perturba-
tions in the absence of the other. The parameter � ∼ |ms/mλ|
controls the two perturbative regimes of the DSG model (13):
� → 0 and � → ∞. The Ising transitions occur in a nonper-
turbative region where the two masses are of the same order.
The condition � ∼ 1 gives an order-of-magnitude estimate of
the critical curves on the plane (λ, m):

m = ±m∗(λ), m∗(λ) ∼ vc

α

(
λ

vc

) 2−K
2(1−2K )

. (33)

The two critical lines Eq. (33) separate the band-insulator
phases, |m| > m∗(λ), from the mixed phase occupying the
region −m∗(λ) < m < m∗(λ), in which charge imbalance co-
exists with dimerization of the zigzag bonds. As shown in
Fig. 3, in the mixed phase the minima of the DSG potential
decouple into two subsets,

(�)odd
k = 1

2

√
π

K

(
2k + 1 + η

π

)

(�)even
k = 1

2

√
π

K

(
2k − η

π

)
,

(34)

where k = 0,±1,±2, . . . and η = a/4 = 2παm/4λ. Ac-
cordingly, there are two types of massive topological exci-
tations carrying η-dependent fractional charge. These kinks
are associated with the vacuum-vacuum interset transitions
(�)odd

k ↔ (�)even
k,k+1. The long kinks carry the charge Q+ =

1/2 + |η|/π and interpolate between the solitons of the m = 0
phase with spontaneously broken P symmetry (Q = 1/2) and
single-fermion excitations of the band-insulator phase (Q =
1). On the other hand, on approaching the Ising criticality,
the short kinks with the topological quantum number Q− =
1/2 − |η|/π lose their charge and mass and transform to a
neutral collective excitonic mode.

According to the analysis done in Ref. [63], in the vicinity
of the critical lines Eq. (33) the gapped phases in the regions
|m| > m∗ and |m| < m∗ are identified as Ising ordered and
disordered phases, respectively. Near the transition the aver-
age relative density : ρrel(x) : behaves as the disorder operator
μ(x) of the underlying quantum Ising model [63]. Therefore,
the phases realized at |m| > m∗ are the already discussed
zigzag-dimerized insulating phases with equally populated
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chains: 〈: ρrel :〉 = 0. At |m| < |m∗| the relative density ac-
quires a finite expectation value which vanishes as

〈: ρrel :〉 ∼ (|m∗| − |m|)1/8 (35)

on approaching the critical point from below: |m| →
|m∗| − 0.

The two Ising critical lines merge at the point m = 0, K =
1/2 and, as shown in Fig. 2, transform to a Gaussian critical
line m = 0, K > 1/2 which describes a Tomonaga-Luttinger
liquid phase. In the next section, we show that the merging
point of the Ising critical lines represents a bifurcation point
of the AT model where the symmetry is enlarged to SU(2).

IV. ASHKIN-TELLER AND DOUBLE-FREQUENCY
SINE-GORDON MODELS: EQUIVALENCE TO A WEAKLY

DIMERIZED XXZ SPIN-1/2 CHAIN

In this section, we elaborate on the relationship between
the quantum 1D version of the AT model, staggered XXZ
spin-1/2 chain, and the DSG model of Eq. (13) at K close
to 1/2. The relation between the AT model, considered in the
scaling limit, and the DSG model of a scalar field has been
anticipated in earlier studies [62–65]. Here we focus on the
connection between the above two models on one hand, and
an effective isotropic S = 1/2 Heisenberg chain, weakly per-
turbed by an explicit dimerization and exchange anisotropy,
on the other.

The classical AT model describes two identical 2D Ising
models coupled by a four-spin interaction. As is well known
[83], by virtue of transfer matrix formalism, two-dimensional
classical statistics can be viewed as an imaginary-time (i.e.,
Euclidean) version of quantum mechanics in 1 + 1 dimen-
sions. The quantum lattice version of the AT model was
derived in [84]:

HQAT = − 1

4

N∑
j=1

[(
J+σ z

1, jσ
z
1, j+1 + J−σ x

1, j

)
+ (

J+σ z
2, jσ

z
2, j+1 + J−σ x

2, j

)
+ q

(
J+σ z

1, jσ
z
1, j+1σ

z
2, jσ

z
2, j+1 + J−σ x

1, jσ
x
2, j

)]
. (36)

The Hamiltonian (36) describes two coupled quantum Ising
chains. The relationship between the constants J±, q and main
parameters of the 2D AT model can be found in Ref. [84].
At q = 1, HQAT possesses a hidden SU(2) symmetry. Indeed,
using a specially designed nonlocal unitary transformation
it has been shown [84] that the quantum AT model (36) is
exactly equivalent to a model of a staggered XXZ spin-1/2
chain:

HS =
2N∑

n=1

[J0 + (−1)nJ1]
(
Sn · Sn+1 + ρSz

nSz
n+1

)
, (37)

where J0,1 = (J+ ± J−)/2, ρ = q − 1.
At |J1|, |ρ| � J , the model in Eq. (37) occurs in the vicin-

ity of the isotropic Heisenberg point, J1 = ρ = 0, where it is
critical with the central charge c = 1 and whose properties in
the scaling limit are described by the critical SU(2)1 WZNW

model with a marginally irrelevant perturbation [85]:

H0 = 2πvs

3

(
: J2

R : + : J2
L :

) − g0JR · JL, (38)

with g0 ∼ vs ∼ J0a0 > 0. Here JR,L are the generators of the
chiral, level-1 SU(2) Kac-Moody algebra (see for details the
textbooks [61,86]). A finite ρ term in (37) introduces ex-
change anisotropy. The translationally invariant chain (J1 =
0) with ρ < 0 occurs in a Tomonaga-Luttinger liquid phase
with ρ-dependent critical exponents [87], whereas at ρ > 0
the system enters a gapped Neel phase with a doubly de-
generate ground state [88]. The Neel ordering is site-parity
(PS) symmetric but breaks spontaneously link parity (PL). At
ρ = 0, J1 �= 0 the chain maintains spin-rotational symmetry
but is explicitly dimerized. Its spectrum is massive. The J1

perturbation breaks PS but preserves PL.
So there are two, mutually incompatible by symmetry,

“massive” directions at the SU(2) critical point parametrized
by the couplings J1 and ρ. Their competition gives rise to
the splitting of the SU(2)1 WZNW criticality into two Ising
criticalities. For small values of J1 and ρ the low-energy
properties of the model in Eq. (37) with both perturbations
present can be adequately described in terms of a perturbed
Gaussian theory with the structure of the DSG model [84]:

HDSG = us

2
[(∂x�)2 + (∂x�)2]

+ h

πα
sin

√
2πKs� − g⊥

(2πα)2
cos

√
8πKs�. (39)

This mapping is valid up to irrelevant corrections. In Eq. (39)
us is a renormalized velocity, h ∼ J1,

Ks =
(

1 − g‖/4πvs

1 + g‖/4πvs

)1/2

� 1 − g‖/4πvs + . . . , (40)

where g‖ = g0 − C1αρ, C1 > 0 being a nonuniversal numer-
ical constant, and the coupling constant g⊥ = g0 + C2αρ,
C2 > 0 being another constant.

We observe that, even though there is no direct mapping of
the spin models (37) or (36) onto the original fermionic model
(1), or vice versa, under the identifications

h = m, g⊥ = 2λ, Ks = 2K (41)

the DSG models in Eq. (39) and Eq. (13) coincide. Thus
we conclude that at K ∼ 1/2 and small m, the DSG model
(13), being derived as a field-theoretical limit of the orig-
inal flux-ladder model, at the same time describes scaling
properties a weakly dimerized spin-1/2 chain with a small
exchange anisotropy. Let us stress again that while the QAT
and spin-chain lattice Hamiltonians, Eqs. (36) and (37), are
unitarily equivalent, the correspondence between the spin-
chain Hamiltonian HS and the field-theoretical model HDSG in
(39) only holds in the scaling limit. This fact renders the SU(2)
symmetry of our fermionic ladder model at the bifurcation
point an emergent phenomenon.

Although the above discussion of model Eq. (39) con-
cerned the vicinity of the XXX point, this model maintains
its applicability to a broader region of the parameter space
where Ks < 1. In particular, there exists a “decoupling” point
Ks = 1/2 where the DSG model can be mapped onto two
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Matrix-product states (MPS)

Tree tensor network (TTN)

Physical legs, dimension 4
Global U(1)

conservation

(a)

(b)

FIG. 4. TN ansatzes used in our numerical simulations. We use
two different TN ansatzes, namely (a) the matrix-product state (MPS)
and (b) the tree tensor network (TTN), for our analysis. In each
case, the physical dimension is four, and we employ U(1) symmetric
tensors [91,92] to conserve the total particle number. In our simula-
tions, we group two sites along the rungs of the ladder (following the
labeling in Fig. 1) to define the physical sites of the TN states.

noncritical (disordered) Ising models coupled by an interac-
tion hσ1σ2 [62,63]. However, in that region, the two mutually
dual Ising critical lines are well separated and their merging
point is not accessible. On the contrary, the present discussion,
relying on the equivalence with the staggered XXZ spin chain,
treats the DSG model as a weakly perturbed SU(2)1 WZNW
model. In such an approach, the SU(2) symmetry emerging
at the bifurcation point Ks = 2K = 1 of Gaussian line m = 0
into two Ising critical lines finds its natural explanation.

Thus, as follows from the above discussion, mapping of
the original spinless fermionic flux-ladder model to the DSG
field theory plays a central role in the present paper. While we
are not in a position to determine the (nonlocal) generators
of the hidden symmetry emerging at the critical point, the
field theory analogy is fully consistent with all other our field
theory predictions: We will then proceed in the next sec-
tion with a numerical verification of our findings. We note that
our case differs substantially from cases with emergent con-
tinuous Abelian symmetries that are already relatively well
understood (for some recent examples, see Refs. [20,89,90]).

V. NUMERICAL TREATMENT

To validate the analytical approaches and extend the
prediction to larger coupling strengths, we now employ
state-of-the-art TN simulations, see Fig. 4. To mitigate any
finite-size boundary effects, we evaluate the system either
at the thermodynamic limit or at finite sizes with periodic
boundary conditions (PBC), unless stated otherwise.

For infinite lattices, we employ the infinite density-matrix
renormalization group (iDMRG) technique [93–98] based on
the matrix-product state (MPS) ansatz [58,59] [Fig. 4(a)].
Specifically, we use the infinite variation of MPS known as
the iMPS [99,100]. For the finite system sizes with PBC,
we apply tree tensor network (TTN) methods [60,101,102]
[Fig. 4(b)], which can, unlike MPS, handle PBC with similar
computational cost and accuracy as open boundary conditions

(OBC) [102]. In the following, unless otherwise stated, we fix
t0 = 1 to set the energy unit of the system and consider M =
t1 + t2 = 0.2 < t0. We also consider the situation of repulsive
interchain interaction, i.e., V � 0, and we analyze the phase
diagram in the (m/t0,V/t0) parameter space. The regime of
repulsive interaction corresponds to λ > 0, via Eq. (9). For
the scenario of attractive interactions, see Appendix C.

A. Phase diagram

To determine different phase transitions and differentiate
different phases, we perform our numerical simulations over
the (m/t0,V/t0) plane and first consider the system correlation
length ξ . The correlation length ξO corresponding to any local
operator Oj is defined by the length scale associated with the
correlation function:

〈OjOj+R〉 − 〈Oj〉 〈Oj+R〉 ∼ exp(−R/ξO). (42)

Then the system correlation length ξ of the quantum state is
given by the maximum of these length scales as

ξ = max(ξO1 , ξO2 , · · · ). (43)

For an iMPS ground state with bond dimension χ , the correla-
tion length is ξχ = −1/ ln |ε2|, where ε2 is the second largest
eigenvalue of the iMPS transfer matrix [100]. It is to be noted
that in case of critical systems where the system correlation
length diverges, ξχ is the length-scale artificially introduced
by the finite iMPS bond dimension χ and usually ξχ ∼ χβ ,
with β being a scaling exponent.

In Fig. 2(b), we show the phase diagram of the system in
the (m/t0,V/t0) plane through the lens of correlation length
for iMPS bond dimension χ = 256. Clearly, we see a bifurca-
tion of critical line at m = 0 into two critical lines at around
V/t0 � 2.45 similarly to what has been seen in the Ashkin-
Teller (AT) model, see Secs. III A 3 and IV. Although the
bosonization approach is controlled only for weak-coupling
regime V/t0 � 1, it predicted, from the phenomenological
treatment of the DSG model, the existence of the bifurcation
point (Sec. IV) that appeared at relatively strong-coupling
regime V/t0 � 2.45. Below we show that this bifurcation is
indeed of the SU(2)1 WZNW type, where a Gaussian critical
line with central charge c = 1 (at m = 0 and V/t0 � 2.45)
bifurcates into two Ising transitions with c = 1/2 (for m �= 0
and V/t0 � 2.45). Moreover, Fig. 2(b) also suggest that apart
from the critical lines, all the three phases are gapped as they
possess finite correlation lengths.

B. Characterization of different phases

The band insulator phases at lower values of V/t0 un-
dergo distinct types of zigzag dimerization as explained in
Sec. III A 2. For m > 0, the dimerization occurs along t1
links and the phase is a trivial band insulator. For m < 0
regime, the dimerization is along t2 links, where the phase is
a topological band insulator. To distinguish these two kinds
of dimerization, we consider two rung tunneling amplitudes,

D1 = 〈c†
j,+c j,− + H.c.〉 and D2 = 〈c†

j,+c j−1,− + H.c.〉, aver-
aged over the site index j. The difference D1 − D2, as seen
in Fig. 5(a), can indeed characterize these two band insulator
phases.
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FIG. 5. The characterization of different phases of the repulsive triangular ladder in the (m/t0,V/t0 > 0) plane. (a) We consider the

difference between two different rung tunneling amplitudes D1 = 〈c†
j,+c j,− + H.c.〉 and D2 = 〈c†

j,+c j−1,− + H.c.〉, respectively. This difference
highlights the different types of zigzag dimerization in the band insulator phases. [(b) and (c)] The nonlocal string (OS) and parity (OP)
correlation functions as defined in Eqs. (44). OS is zero (nonzero) while OP is nonzero (zero) in the trivial (topological) band insulator phase.
Both become nonvanishing in the large-V/t0 symmetry-broken phase. (d) The entanglement gap �ε = ε1 − ε0, where ε0 and ε1 are the ground-
and first-excited-state energies of the entanglement Hamiltonian HE

l = − ln ρl , respectively, is plotted in the parameter space. Vanishing
values �ε in the band insulator phase for m < 0 dictates the topological nature of this phase. (e) The relative density ρrel = 〈n̂ j,+ − n̂ j,−〉
between the legs serves as a order parameter for the Z2 symmetry-breaking associated with P symmetry. The order parameter ρrel be-
comes nonvanishing in the twofold degenerate Z2-broken phase for V > Vc. Here we have used iDMRG simulations with bond dimension
χ = 256.

In Sec. III A 2, we have shown by analyzing the nonlocal
string and parity order parameters that the band insulator
phase for m < 0 has a topological nature, while the same for
m > 0 is trivial. Here we numerically verify this analytical
result by examining string (OS) and parity (OP) correlation
functions defined as [69–73]:

OS = lim
|i− j|→∞

〈ÔS (i)ÔS ( j)〉 = lim
|i− j|→∞

〈
δn̂ie

iπ
∑ j

l=i δn̂l δn̂ j
〉
,

OP = lim
|i− j|→∞

〈ÔP(i)ÔP( j)〉 = lim
|i− j|→∞

〈
eiπ

∑ j
l=i δn̂l

〉
, (44)

where the operators ÔS and ÔP are defined in Eqs. (29), with
δn̂ j being the density fluctuation across the zigzag rung j.
It is to be noted that these nonlocal order parameters can
be measured experimentally in cold atomic setups [17,79–
82]. In Figs. 5(b) and 5(c), we show that for the topological
band insulator (m < 0) the string correlation is nonzero, while
the parity correlation vanishes [see also Fig. 6(a)]—indicating
hidden nonlocal order similar to topological Haldane insula-
tors [70–73]. The opposite is true for the trivial band insulator,
i.e., OS = 0,OP �= 0.

For further verification of the topological nature of the band
insulator phases, we consider the entanglement gap �ε =
ε1 − ε0, where ε0 and ε1 are the ground- and first-excited-state
energies of the entanglement Hamiltonian HE

l , respectively.
The entanglement Hamiltonian is defined as HE

l = − ln ρl ,
where ρl is the l-site reduced density matrix. It has been
established that the entanglement Hamiltonian possesses de-
generate spectra for phases with topological properties in one
dimension [103]. In Fig. 5(d) we plot the the entanglement
gap �ε in the (m/t0,V/t0) plane. Clearly, vanishing �ε in the
band insulator phase for m < 0 dictates the topological nature
of this phase [see also Fig. 6(b)].

For large values of V/t0, we end up with a SSB phase where
the Z2 symmetry corresponding to P gets spontaneously
broken. As a result, the relative density ρrel = 〈n̂ j,+ − n̂ j,−〉
between two legs becomes nonzero [see Fig. 5(e)] and
serves as an order parameter to detect this SSB phase, see
Sec. III A 3. As discussed in Sec. III A 1, the transition from
the Gaussian criticality to this SSB phase along m = 0 line
is BKT type. This is why the order parameter ρrel varies
very smoothly along the m = 0 line, as opposed to the case
of m �= 0 [Fig. 6(b)] where the transitions from the band
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FIG. 6. (a) The string OS and parity OP correlations for varying
m/t0 and fixed V/t0 = 2. (b) The variations of the order parameter
ρrel and the entanglement gap �ε with varying V/t0 for fixed values
of m/t0 as indicated in the figure. All other details are the same as in
the Fig. 5.

insulator phases to the SSB phase are of second order Ising
type.

C. Bifurcation of the criticality

Now we move to carefully analyze the splitting of the
critical line at m = 0 into two other critical lines at around
V/t0 � 2.45 as seen in Fig. 2(b).

For this purpose, first, we determine the central charges c of
the underlying conformal field theory (CFT) for these critical
lines using the finite-bipartition scaling of von Neumann en-
tanglement entropy. The von Neumann entanglement entropy
of a block of l sites is defined as

S(l ) = −Tr[ρl ln(ρl )], (45)

where ρl = Trl+1,l+2,··· ,L |ψ〉 〈ψ | is the l-site reduced density
matrix after tracing out rest of the system. In a CFT, the finite-
size scaling of the entanglement entropy of a bipartition of
size l in a system of length L with PBC is [104–106]

S(l, L) = c

3
ln

[
L

π
sin(π l/L)

]
+ b′, (46)

where b′ is a nonuniversal constant. In Fig. 4, we show the
variations of the fitted values of the central charge, accord-
ing to Eq. (46), as functions of V/t0 for m = 0 [Fig. 7(a)]
and m = 0.1 [Fig. 7(b)]. The figure clearly indicates that the
critical line at m = 0 has central charge c = 1 and therefore
describes U (1) Gaussian criticality. On the other hand, two
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FIG. 7. The extracted values of the central charge for different
system sizes using the scaling function of Eq. (46) for (a) m = 0 and
(b) m = 0.1t0. The critical line at m = 0 has central charge c = 1,
i.e., a U(1) Gaussian criticality, while the bifurcated critical lines at
m �= 0 belong to the Ising universality class having the central charge
c = 1/2. The shaded regions mark the errors in the fitting procedure.
Insets: The fitting of the entanglement entropy according to Eq. (46)
for (a) m = 0 and V/t0 = 2.3 resulting in c = 1.00(2), and (b) m =
0.1t0 and V/t0 = 2.89 resulting in c = 0.50(1). For the insets, we
have chosen the data for L = 128.

bifurcated critical lines at m �= 0 has c = 1/2 and thereby
describes the Ising criticality. This scenario matches that of
the AT model and our analytical prediction from the phe-
nomenological analysis of the DSG model.

However, the scaling of entanglement entropy does not
shed much lights on the bifurcation point, and it is unable
to tell us whether this is a SU(2)1 critical point. To confirm
that this bifurcation point is indeed a SU(2)1 critical point, we
determine the Luttinger parameter K numerically and show
that it tends to 1/2 at the bifurcation point (see Sec. IV).

In this analysis, we extract the Luttinger parameter K from
the scaling of the bipartite fluctuations [107–109]. In a Lut-
tinger liquid with a global U(1) conserve quantity O and with
PBC, the local fluctuations

Fl (O) =
〈(∑

n�l

On

)2〉
−

〈∑
n�l

On

〉2

(47)
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FIG. 8. The extracted values of the Luttinger parameter K for
different system sizes using the scaling form of Eq. (48) along the
m = 0 line. The shaded regions denote the error bars. The estimated
values of K in the thermodynamic limit has been extracted by us-
ing a linear function f1(1/L) = K∞ + b/L and a quadratic function
f2(1/L) = K∞ + b/L + d/L2 in 1/L (see inset).

obey the scaling of the form [107–109]:

Fl (O) = K

π2
ln

[
L

π
sin(π l/L)

]
+ const. (48)

For our system, the global U(1) conservation corresponds to
the fermionic charge On = n̂n,+ + n̂n,−. In Fig. 8, we show
the extracted Luttinger parameter for several system sizes
L ∈ [16, 128] with PBC across the m = 0 line. Interestingly,
as we increase the system size L, the point in V/t0, where
the fitted K crosses the value 1/2, approaches towards the
expected bifurcation point V/t0 � 2.45. We extrapolate the
Luttinger parameter K in the thermodynamic limit by using
both a linear function and a quadratic function in 1/L (see
the inset of Fig. 8). By this extrapolation, we find that the
Luttinger parameter K becomes 1/2 at V/t0 = 2.43(4). This
K = 1/2 value of the Luttinger parameter confirms the nature
of the bifurcation point as the SU(2)1 WZNW critical point in
correspondence with the discussions of Sec. IV.

VI. CONCLUSION

In this work, we studied the phase diagram of a system of
interacting spinless fermions on a two-leg triangular ladder
at half-filling, with uniform t0 intrachain and alternating t1,2

interchain nearest-neighbor tunneling amplitudes, f = 1/2
magnetic flux per triangular plaquette (in units of π ), and
V nearest-neighbor density-density interchain interaction. At
the microscopic level, the model exhibits a U(1) symmetry
pertained to the conservation of total fermion number and a Z2

symmetry—a combined parity transformation and the chain
exchange operation. The model is based on experimental se-
tups with cold atom gases in optical lattices, in the presence
of off-resonant laser driving to Rydberg states. The regime
of parameters under consideration is in principle accessible
experimentally [12,26,29,51].

To obtain the phase diagram, we use the bosonization ap-
proach in the weakly interacting regime (|V | � t0), with 0 <

t1,2 � t0 and |t1 − t2| � t1 + t2, and map the model onto the
double-frequency sine-Gordon model. We analytically predict

various properties of the system, by utilizing the symmetries
of the original lattice model, and renormalization group anal-
ysis for the bosonized version. Specifically, for t1 �= t2 and
sufficiently weak repulsive interaction V � Vc, the system is
a band insulator. If additionally t1 > t2 is the case, then the
phase is a trivial band insulator with nonzero dimerization
along t1 links. If t1 < t2 holds, then the phase is instead a
topological band insulator, with nonzero dimerization along t2
links, and displays edge states for open boundary conditions.
For t1 = t2, the system is described by a Gaussian model with
central charge c = 1, separating two band insulator phases.

The Gaussian critical line for t1 = t2 terminates at V =
Vc, where the symmetry of the system is enlarged from
Z2 × U(1) to SU(2), with the underlying field theory of
the model corresponding to the SU(2)1 WZNW model. This
emergent non-Abelian SU(2) invariance, that is absent in the
microscopic description of the system, is a remarkable effect
coming from the interplay between the geometric frustration,
magnetic flux, and many-body correlations.

At this t1 = t2 regime, when crossing V = Vc critical point,
the system undergoes a Berezinskii-Kosterlitz-Thouless tran-
sition to a gapped phase, with spontaneously broken Z2

symmetry. In this phase, we observe nonzero charge imbal-
ance (i.e., a net relative density between the two chains) and
total current along the chains. Additionally, the Gaussian crit-
ical line, terminated at SU(2)1 point, bifurcates into two Ising
critical lines, with central charge c = 1/2, similar to what is
seen in the Ashkin-Teller model. These Ising critical lines
separate the strong-coupling symmetry-broken phase from the
band insulators.

Since the bosonization approach is valid for weak-coupling
regimes, we have used numerical simulations based on ten-
sor network states to corroborate the analytical predictions.
Specifically, using iDMRG method, we characterize the phase
diagram and different phases of the lattice Hamiltonian di-
rectly at the thermodynamic limit in the enlarged range
of interaction strength V and confirm the predictions of
bosonization approach. By applying TTN-based calculations
for finite systems with periodic boundary conditions, we
characterize both the Gaussian c = 1 and Ising c = 1/2 crit-
ical lines by using the scaling of entanglement entropies.
Furthermore, from the numerical scaling of bipartite fluctu-
ations corresponding to the global U(1) conserve quantity,
we confirm the existence of SU(2)1 WZNW bifurcation point
similarly to what is observed in the Ashkin-Teller model.

Our work, therefore, provides a unique example where
non-Abelian SU(2) symmetry emerges in a fundamentally
Abelian system.
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APPENDIX A: CONTINUUM FORM OF LOCAL
PHYSICAL OPERATORS IN THE CHAIN

AND BAND REPRESENTATIONS

In the continuum limit, after projecting onto the low-energy
sector, the fluctuation parts of local physical fields, defined in
the chain representation, take the following form:

Local densities on each chain:

n̂nσ : ≡: c†
n,σ cn,σ : → a0ρσ (x),

ρσ (x) =: 
†
σ (x)
σ (x) : . (A1)

Longitudinal currents on each chain at f = 1/2:

: Jσ
n,n+1 := − it0(: c†

n,σ cn+1,σ : e−iπσ f − H.c.)| f =1/2

= − t0σ (: c†
n,σ cn+1,σ : +H.c.)

→σvF : 
†
σ (x)
σ (x) : + O(vF a0) ≡ j0

σ (x),

implying that, due to their chiral nature, in the leading order
at a0 → 0, local densities and longitudinal currents coincide
up to a prefactor vF :

j0
σ (x) = σvF ρσ (x). (A2)

Interchain currents on t1 and t2 zigzag links:

: J+−
nn : ≡ −it1 : (c†

n,+cn,− − H.c.) :

→ t1a0

†(x)σ̂2
(x),

: J−+
n,n+1 : ≡ −it2 : (c†

n,−cn+1,+ − H.c.) :

→ t2a0

†(x)σ̂2
(x).

At t1 = t2 (m = 0) and a0 → 0 with vF = 2t0a0 = const, the
currents along the oriented t1 and t2 links coincide:

: J+−
nn : → jz(x), : J−+

n,n+1 :→ jz(x),

jz(x) = vF τ : 
†(x)σ̂2
(x) : . (A3)

Bond-density fields:

Bnn =: c†
n,+cn,− : +H.c. → a0B(x),

Bn,n+1 =: c†
n,+cn−1,− : +H.c. → −a0B(x),

B(x) =: 
†(x)σ̂1
(x) : . (A4)

In formulas (A1)–(A4), normal ordering prescription is de-
fined as : Â := Â − 〈Â〉0, where averaging is done over the
vacuum of the noninteracting model at f = 1/2 and m = 0.
From formulas (A1) and (A2) it follows that the total current
j0 = ∑

σ jσ0 of the zigzag ladder at f = 1/2 is proportional to
the relative particle density

j0(x) = vF ρrel(x). (A5)

Using the transformations (5) and passing to the rotated
basis, we obtain the expressions for all above operators in the
band representation:

ρ+(x) = 1

vF
j+0 (x)

= u2JR(x) + v2JL(x) − uvN2(x), (A6)

ρ−(x) = − 1

vF
j−0 (x)

= v2JR(x) + u2JL(x) + uvN2(x), (A7)

jz(x) = vF τ {2uv[JR(x) − JL(x)],

+ (u2 − v2)N2(x)}, (A8)

B(x) = N1(x). (A9)

Here JR(x) =: R†(x)R(x) : and JL(x) =: L†(x)L(x) : are U(1)
chiral fermionic currents defined in the band basis (see, e.g.,
Ref. [56]), and N1,2 are Dirac mass bilinears:

N1(x) = χ†(x)σ̂1χ (x)

=: R†(x)L(x) : + : L†(x)R(x) :, (A10)

N2(x) = χ†(x)σ̂2χ (x)

= −i[: R†(x)L(x) : − : L†(x)R(x) :]. (A11)

The expressions (A8) and (A9) are the leading terms of the
expansion in small a0. Under the P transformation

R(x) → L(−x), L(x) → R(−x),

JR(x) → JL(−x), JL(x) → JP(−x),

N1(x) → N1(−x), N2(x) → −N2(−x). (A12)

Here a comment is in order. In models of 1D lat-
tice fermions with a half-filled band, operators with the
structure (A10) and (A11) are associated with spatially mod-
ulated (staggered) order parameter fields. In those cases, the
fermionic bilinears R†L, L†R emerge due to hybridization of
single-particle states near two opposite Fermi points, with the
momentum transfer close to 2kF = π . In the present model,
there is only one Dirac point in the low-energy spectrum,
and the particle-hole fields with momentum transfer π are all
short-ranged. In fact, the appearance of the fermionic bilinear
N2 in the asymptotic expressions (A6)–(A8) is entirely due to
the τ deformation of the kinetic energy (4) that is geometrical
frustration of the zigzag ladder.
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APPENDIX B: BOUNDARY MODES IN THE
TOPOLOGICAL PHASE OF BAND INSULATOR

In Sec. III A 2 of the main text we have shown that, under
the conditions K > 1/2 and m �= 0, for both signs of the
“light” mass m the ladder displays a band insulator phase with
massive Dirac fermions being elementary low-energy excita-
tions. In this Appendix, we address the topological properties
of these phases by studying zero-energy boundary states in
a semi-infinite sample of a triangular 1/2-filled flux ladder
at f = 1/2. Since (apart from a possible formation of exci-
tonic states) at K > 1/2 interaction effects basically reduce to
renormalization of the single-particle mass gap, Eq. (27), it is
sufficient to do the calculation for a noninteracting model.

Consider a semi-infinite sample, in which the diatomic
unit cells are labeled as n = 1, 2, . . . ,∞. Let us adopt the
continuum limit of this model by taking into account both
Dirac-like low-energy modes with masses M = t1 + t2 and
m = t1 − t2, |M|, |m| � t0. Then we can write

cn,σ → √
a0[(−1)nψσ (x) + ψ̄−σ (x)], (σ = ±), (B1)

where ψσ (x) and ψ̄σ (x) are fermionic fields describing
single-particle excitations with momenta close to π and 0,
respectively. Adding an additional rung n = 0 to the open end
of the ladder we impose boundary conditions

c0,σ = 0 → ψσ (0) + ψ̄−σ (0) = 0, (σ = ±). (B2)

Denoting by {u(x), v(x)} and {ũ(x), ṽ(x)} the components of
the 2-spinor wave functions w(x) and w̃(x) associated with
the field operators ψ (x) and ψ̄ (x), from (B2) we obtain

u(0) + ṽ(0) = 0, v(0) + ũ(0) = 0.

This leads to the following constraint imposed on the bound-
ary spinors:

w(0) =
[

u(0)
v(0)

]
, w̃(0) =

[
ũ(0)
ṽ(0)

]
= −σ̂1w(0). (B3)

The boundary zero modes corresponding to these functions
satisfy the equations[ − ivF (σ3 + τσ2) − mσ1

]
w(x) = 0, (B4)

[−ivF (σ3 + τσ2) − Mσ1]w̃(x) = 0, x � 0. (B5)

The kinetic energy in Eqs. (B4) and (B5) is diagonalized by
an SU(2) transformation of the spinors

ψ = Uζ , ψ̄ = U ζ̃ , (B6)

where

ζ =
(

z1

z2

)
, ζ̃ =

(
z̃1

z̃2

)
, (B7)

and the unitary matrix U is defined in (5). The spinors ζ and
ζ̃ satisfy canonical Dirac equations for zero modes:

(−iṽσ3∂x − mσ1)ζ (x) = 0,

(−iṽσ3∂x − Mσ1)ζ̃ (x) = 0.

On the semiaxis x � 0 their solution reads

ζ (x) = ζ0

(
1

ism

)
exp (−|m|x/ṽ),

ζ̃ (x) = ζ̃0

(
1

isM

)
exp (−|M|x/ṽ), (B8)

where ζ0 and ζ̃0 are normalization coefficients and sm =
sgn m, sM = sgn M.

Using the transformations (B6) we obtain

w(x) = χ0

[
u − vsm

i(v + usm)

]
exp (−|m|x/ṽ), (B9)

w̃(x) = χ̃0

[
u − vsM

i(v + usM )

]
exp (−|M|x/ṽ). (B10)

On the other hand, according to the boundary condition (B3),

w̃(x) = −χ0

[
i(v + usm)

u − vsm

]
exp (−|M|x/ṽ). (B11)

Then we obtain

ζ̃0(u − vsM ) = −iζ0(v + usm),

iζ̃0(v + usM ) = −ζ0(u − vsm),

implying that

ζ̃0

ζ0
= −i(v + usm)

u − vsM
= i(u − vsm)

v + usM
. (B12)

From the last equation in follows that

(u − vsm)(u − vsM ) + (v + usm)(v + usM ) = 1 + smsM = 0,

(B13)

which leads to the conclusion that a normalizable bound-
ary zero mode only exists—and hence, according to the
bulk-boundary theorem, the ground state is topologically
nontrivial—if the masses m and M have different signs:

smsM = −1 → Mm < 0. (B14)

With the convention M > 0 adopted in the main text, the
ground state at K > 1/2 represents a topological insulator if
m < 0 and is topologically trivial at m > 0.

The total wave function for the boundary zero mode has
the structure

ϒ(x) = (−1)x/a0w(x) + w̃(x), x � 0, (B15)

where w(x) and w̃(x) are given by expressions (B9) and
(B10), respectively, in which the condition (B14) has to be
taken into account. If |M| � |m|, then w̃(x) exponentially
decays at short distances, x ∼ ṽ/|M|. At longer distances,
x � ṽ/|m|, there exists an exponential tail of the boundary
wave function contributed by the light fermions.

APPENDIX C: NUMERICAL RESULTS FOR THE
ATTRACTIVE INTERCHAIN INTERACTION

For the sake of completeness, we consider the attractive
interaction, i.e., V < 0 [thus λ < 0 from Eq. (9)], between the
chains.

From our analysis using bosonization, we have predicted
that the scenario of attractive interaction is less interesting
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FIG. 9. The phase diagram for an attractive triangular ladder in the (m,V/t0 < 0) plane. (a) We plot half-system entanglement entropy for
a finite ladder of linear size L = 60 with OBC using fDMRG. (b) The correlation length ξχ extracted from iDMRG simulations with iMPS
bond dimension χ = 256.

compared to the repulsive case. For the attractive regime,
we have λ < 0 and thus K > 1. In this case, the λ term in
Eq. (13), which describes interband pair-hopping processes,
is irrelevant. This way the properties of the model are deter-
mined only by the single-particle mass perturbation. As long
as the attractive interaction is weak, where the mass term
is relevant, we remain in either trivial or topological band
insulator phases, depending on the sign of m. For very strong
interaction |V |/t0 � 1, the mass term becomes irrelevant, and
the system phase separates between density ρ = 1 Mott phase
and density ρ = 0 vacuum state. Since these phase separation

states break the transnational invariance over macroscopic dis-
tances, iDMRG is not suitable for these states and randomly
gets stuck to higher energy states. That is why we also employ
finite DMRG with OBC along with iDMRG simulations to
confirm our results.

In Figs. 9(a) and 9(b), we show the half-system entangle-
ment entropy for finite ladder with OBC and the correlation
length ξχ extracted from iDMRG simulations, respectively.
Clearly, apart from the appearance of the phase separation
region, the situation here is not that interesting unlike the
situation of repulsive interactions.

[1] P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild,
A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Nature
(London) 491, 87 (2012).

[2] Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W.
Biedermann, Nat. Phys. 12, 71 (2016).

[3] R. Faoro, C. Simonelli, M. Archimi, G. Masella, M. M.
Valado, E. Arimondo, R. Mannella, D. Ciampini, and O.
Morsch, Phys. Rev. A 93, 030701(R) (2016).

[4] J. Zeiher, R. van Bijnen, P. Schauß, S. Hild, J. yoon Choi, T.
Pohl, I. Bloch, and C. Gross, Nat. Phys. 12, 1095 (2016).

[5] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V.
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