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The two-particle self-consistent approach (TPSC) is a method for the one-band Hubbard model that can be
both numerically efficient and reliable. However, TPSC fails to yield physical results deep in the renormalized
classical regime of the bidimensional Hubbard model where the spin correlation length becomes exponentially
large. We address the limitations of TPSC with improved approaches that we call TPSC+ and TPSC+SFM
(spin fluctuation mediated). In this work, we show that these improved methods satisfy the Mermin-Wagner
theorem and the Pauli principle. We also show that they are valid in the renormalized classical regime of the
two-dimensional Hubbard model, where they recover a generalized Stoner criterion at zero temperature in the
antiferromagnetic phase. We discuss some limitations of the TPSC+ approach with regards to the violation of the
f -sum rule and conservation laws, which are solved within the TPSC+SFM framework. Finally, we benchmark
the TPSC+ and TPSC+SFM approaches for the one-band Hubbard model in two dimensions and show how
they have an overall better agreement with available diagrammatic Monte Carlo results than the original TPSC
approach.
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I. INTRODUCTION

As one of the simplest models to encapsulate the effect of
strong correlations in electronic systems, the Hubbard model
has been used to study quantum materials such as the cuprates
[1] and the newly discovered nickelate superconductors [2].
The accurate description of realistic systems often requires the
use of extensions of the Hubbard model to the multiorbital
case. For instance, the cuprates seem to be described more
accurately by the three-band Varma Schmitt-Rink Abrahams
(VSA) [3] Emery-Hubbard model [4], strontium ruthenate by
a three-band Hund’s metal with strong spin-orbit coupling [5],
and the nickelates by a model that takes into account at least
one correlated band and a charge reservoir [6].

One of the challenges in studying strongly correlated elec-
tron systems is that even the simpler one-band Hubbard
model has no exact analytical solution for dimensions other
than 1 [7] and infinity [8]. The numerical solution of the
model in finite dimensions d > 1 can be achieved through
approximate methods such as dynamical mean-field theory
(DMFT) [8–10], its cluster extensions [11–13] and diagram-
matic extensions [14], or through numerically exact quantum
or diagrammatic Monte Carlo simulations [15–17]. Many of
the methods for the one-band Hubbard model have recently
been reviewed and benchmarked extensively for the two-
dimensional (2D) weak coupling case at half-filling [18]. At
low temperatures, multiple methods face challenges even in
the weak coupling regime. For instance, finite cluster sizes
limit the use of determinantal quantum Monte Carlo (DQMC)
and cluster extensions of DMFT when the correlation length
becomes large, while diagrammatic Monte Carlo (DiagMC)
becomes limited by convergence issues. In the case of the 2D
Hubbard model in the weak coupling regime, it was shown

that diagrammatic extensions of DMFT such as the dynamical
vertex approximation (D�A) also face convergence issues at
low temperatures, but that they can be used in a wider range
of low temperatures [18].

The two-particle self-consistent approximation (TPSC) is
a nonperturbative method for the Hubbard model [19,20]. At
the first level of this approximation, the double occupancy
is calculated self-consistently from the local spin and charge
sum rules. The TPSC approximation introduces random phase
approximation (RPA) like spin and charge susceptibilities
with renormalized vertices Usp and Uch. At this level of
approximation, the self-energy is a constant and spin and
charge susceptibilities satisfy conservation laws. In the same
spirit as the electron gas, the self-energy is improved by
using susceptibilities and vertices obtained at the first level
of approximation to compute a frequency- and momentum-
dependent self-energy obtained from the equation of
motion.

The TPSC approximation is the first method that predicted
the opening of an antiferromagnetic pseudogap in the 2D
Hubbard model at weak coupling, and that quantitatively as-
sociated the phenomenon with the Vilk criterion [18,19,21].
That criterion states that an antiferromagnetic pseudogap
opens up when the spin correlation length exceeds the thermal
de Broglie wavelength.

Although the TPSC approximation was first formulated in
the context of the one-band Hubbard model, it has since been
extended to the multiorbital case [22,23]. The flexibility of
this method, its low computational cost, as well as the fact that
it respects the Mermin-Wagner theorem, the Pauli principle,
and conservation laws, make it attractive for applications to
real materials and for extensions such as out-of-equilibrium
calculations [24].
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However, the TPSC approximation has many limitations,
such as the fact that it is only valid in the weak to inter-
mediate interaction regime of the Hubbard model. It is also
not valid deep in the renormalized classical regime in 2D.
Although it agrees quantitatively with benchmarks at high
temperatures [19,20,25] and can give a qualitative descrip-
tion of the crossover to the renormalized classical regime, it
overestimates spin fluctuations at low temperatures, leading
some of its predictions such as the self-energy and the double
occupancy to deviate significantly from the benchmarks [18].

Recently, an improved TPSC+DMFT approach has been
introduced for the one-band [26] and multiorbital [27] Hub-
bard models. In the one-band case, this hybrid approach
has been benchmarked against quantum Monte Carlo simu-
lations. The TPSC+DMFT approach has been shown to yield
improved susceptibilities and self-energies in the regime of
validity of the TPSC approach. However, it does not extend
the validity of the method deep in the renormalized classical
regime of the 2D Hubbard model.

In this work, we introduce an improved version of TPSC,
which we call TPSC+. In addition to better agreement with
benchmarks, TPSC+ has the advantage that in two dimen-
sions it is valid deep in the pseudogap regime, all the
way to the zero-temperature long-range-ordered antiferro-
magnet. Very few approximations [28–30] can achieve this.
The TPSC+ approximation, that includes some level of self-
consistency, was first discussed in Ref. [18], but we provide
here an extended discussion of its properties. In Sec. II, we
discuss the model and obtain equations for the self-energy
and generalized susceptibilities using the functional derivative
approach. Next, we review the TPSC equations in Sec. III
and give an overview of its main properties. We introduce
the TPSC+ approximation formalism in Sec. IV. We also
discuss the limitations of the method, more precisely how
it violates spin and charge conservation laws and the f -sum
rule. We show that a variant of the TPSC+ approximation, the
TPSC+SFM method, can mitigate these limitations. Finally,
we show the application of the TPSC+ and TPSC+SFM
approximations to the 2D Hubbard model in Sec. V, where
we provide comparisons to DiagMC [18,31] and CDet [32]
benchmarks. We show that the TPSC+ and the TPSC+SFM
approximations are valid in the weak to intermediate regime
of the 2D Hubbard model and that they outperform the origi-
nal TPSC approximation at low temperatures, while maintain-
ing low computational costs. The raw data and citations for all
the figures are provided in the Supplemental Material [33].

II. MODEL AND EXACT RESULTS

We start with the definition of the Hubbard model in
Sec. II A. In Secs. II B and II C, we recall the general func-
tional derivative approach of Martin and Schwinger [34,35]
that allows us to find exact results and to set up the TPSC
approach in the following section (Sec. III).

A. Hubbard model

We study the one-band Hubbard model in dimension two
or more

H =
∑
k,σ

εkc†
kσ ckσ + U

∑
i

ni↑ni↓, (1)

where c(†)
kσ

annihilates (creates) an electron of spin σ and wave
vector k, niσ counts the number of electrons of spin σ at site
i, U is the onsite repulsive interaction, and εk is the bare band
dispersion with wave vector k. Working in units where h̄ =
kB = 1, this dispersion is defined as

∑
k,σ

εkc†
kσ ckσ =

∑
i, j,σ

ti jc
†
iσ c jσ , (2)

where ti j is the hopping amplitude between sites i and j.
Throughout this paper, we focus on the 2D square lattice with
first-neighbor hopping t only and set the lattice spacing to
a = 1, corresponding to the dispersion εk = −2t[cos(kx ) +
cos(ky)]. Although most of the results shown are at half-filling
(n = 1), we also show some benchmarks away from half-
filling in Sec. V B. We set t = 1 as the unit of energy. The
benchmarks in Sec. V B are provided in two dimensions.

B. Self-energy in the Hubbard model

In this section, we derive an expression for the self-energy
of the Hubbard model using the source field approach [34,35].
We start by defining a partition function Z in the presence of
a source field φ:

Z[φ] = 〈Tτ e−c†
σ̄ (1̄)φσ (1̄,2̄)cσ (2̄)〉, (3)

where Tτ is the time-ordering operator and 〈O〉 =
Tr[Oe−β(H−μN )]/Tr[e−β(H−μN )] is the thermodynamic
average of the operator O in the the grand-canonical ensemble.
Moreover, we introduce the notation (r1, τ1) ≡ (1). The bar
denotes a sum over the associated variables. For instance we
have, explicitly,

c†
σ̄ (1̄)φσ̄ (1̄, 2)

=
∫ β

0
dτ1

∑
r1

∑
σ

c†
σ (r1, τ1)φσ (r1, τ1, r2, τ2). (4)

We use the partition function (3) to define the Green’s function
in the presence of a source field

Gσ (1, 2)φ = − δ lnZ[φ]

δφσ (2, 1)
,

= −〈cσ (1)c†
σ (2)〉φ, (5)

where the symbol δ denotes a functional derivative. Higher-
order correlation functions are obtained from additional
functional derivatives. Also, the thermodynamic average of an
operator O in the presence of the source field φ is defined as

〈O〉φ = 〈Tτ e−c†
σ̄ (1̄)φσ̄ (1̄,2̄)cσ̄ (2̄)O〉

Z[φ]
. (6)

The Green’s function of Eq. (5) is related to the usual Green’s
function by setting the source field φ to 0.

From the equations of motion for the Green’s function in
the presence of a source field, we obtain the Green’s func-
tion through the Dyson equation and an exact expression
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(Schwinger-Dyson) for the self-energy [35]

G−1
σ (1, 2) = G0−1

σ (1, 2) − φσ (1, 2) − 	σ (1, 2)φ, (7)

	σ (1, 2̄)φGσ (2̄, 2)φ = U 〈Tτ c†
σ (2)c†

−σ (1+)c−σ (1)cσ (1)〉φ.

(8)

We use the notation (1+) = (r1, τ1 + 0+).

C. Spin and charge irreducible vertices

In the source field approach, the generalized susceptibili-
ties are

χ+(1, 3; 2, 4) = lim
φ→0

∑
σ,σ ′

−δGσ (1, 3)φ
δφσ ′ (4, 2)

, (9)

χ−(1, 3; 2, 4) = lim
φ→0

∑
σ,σ ′

−σσ ′ δGσ (1, 3)φ
δφσ ′ (4, 2)

, (10)

where the spin index σ is equal to ±1 when used as a variable
in the sum. The previous equations are obtained directly from
the definition of Gσ (1, 2)φ given in Eq. (5), which indeed leads
to

δGσ (1, 3)φ
δφσ ′ (4, 2)

= Gσ (1, 3)φGσ ′ (2, 4)φ

− 〈Tτ cσ (1)c†
σ (3)cσ ′ (2)c†

σ ′ (4)〉φ. (11)

From spin rotational invariance, Eqs. (9) and (10) can be
written as

χ+(1, 3; 2, 4) = lim
φ→0

−2

[
δG↑(1, 3)φ
δφ↑(4, 2)

+ δG↑(1, 3)φ
δφ↓(4, 2)

]
, (12)

χ−(1, 3; 2, 4) = lim
φ→0

−2

[
δG↑(1, 3)φ
δφ↑(4, 2)

− δG↑(1, 3)φ
δφ↓(4, 2)

]
. (13)

The relationship between the generalized susceptibilities
defined in Eqs. (10) and (9) and the spin and charge suscepti-
bilities is

χch,sp(1, 2) = χ+,−(1, 1+; 2, 2+). (14)

Expanding the equations for the generalized susceptibili-
ties using spin rotational invariance and the definition of the
Green’s function in the presence of a source field (7), we
obtain

χch(1, 2) = −2Gσ (1, 2)Gσ (2, 1) + Gσ (1, 3̄)Uch(3̄, 4̄; 5̄, 6̄)

× χch(5̄, 6̄; 2+, 2)Gσ (4̄, 1+), (15)

χsp(1, 2) = −2Gσ (1, 2)Gσ (2, 1) − Gσ (1, 3̄)Usp(3̄, 4̄; 5̄, 6̄)

× χsp(5̄, 6̄; 2+, 2)Gσ (4̄, 1+), (16)

where the irreducible spin and charge vertices are defined as

Usp(3̄, 4̄; 5̄, 6̄) = δ	↑(3̄, 4̄)

δG↓(5̄, 6̄)
− δ	↑(3̄, 4̄)

δG↑(5̄, 6̄)
, (17)

Uch(3̄, 4̄; 5̄, 6̄) = δ	↑(3̄, 4̄)

δG↑(5̄, 6̄)
+ δ	↑(3̄, 4̄)

δG↓(5̄, 6̄)
. (18)

Once we set the source field to zero, these expressions for
Usp and Uch can, in general, be functions of three imaginary-
time differences (frequency) and of three position differences

(wave vector). Assuming that they are local (in the next sec-
tion), i.e., delta functions in all time and position differences,
we need to determine only two scalars Usp and Uch.

Finally, we note that in the time- and space-invariant cases,
the spin and charge susceptibilities obey the exact local sum
rules

χsp(r = 0, τ = 0) = T

N

∑
q,iqn

χsp(q, iqn) (19)

= n − 2〈n↑n↓〉, (20)

χch(r = 0, τ = 0) = T

N

∑
q,iqn

χch(q, iqn) (21)

= n + 2〈n↑n↓〉 − n2, (22)

where we use the Fourier transforms with qn = 2nπT as
bosonic Matsubara frequencies, with q as wave vectors in
the Brillouin zone, with N as the total number of sites in the
system and T the temperature. These expressions for the local
spin and charge susceptibilities are obtained by enforcing the
Pauli principle through 〈n2

σ 〉 = 〈nσ 〉.

III. TPSC

In this section, we recall some of the main properties of the
TPSC approach. This method, which was first developed for
the one-band Hubbard model, is valid in the weak to interme-
diate coupling regime. It respects both the Mermin-Wagner
theorem and the Pauli principle [19]. The starting point of
the TPSC approach for the Hubbard model is the Schwinger-
Dyson self-energy defined in Eq. (8). We first impose that
Eq. (8) is satisfied exactly at equal time and position, namely,

	σ (1, 2̄)φGσ (2̄, 1+)φ = U 〈n↑(1)n↓(1)〉φ. (23)

Next, we consider a Hartree-Fock–type factorization of
Eq. (8) when the point 2 is different from the point 1. We
perform the factorization by introducing a functional Aφ :

	(1)
σ (1, 2̄)φG (1)

σ (2̄, 2)φ = AφG (1)
−σ (1, 1+)φG (1)

σ (1, 2)φ. (24)

The superscript (1) denotes the first level of approximation.
The TPSC ansatz postulates that Eqs. (23) and (24) must
be satisfied simultaneously, in the spirit of Singwi [36] and
Hedeyati-Vignale [37]. This means that the functional Aφ

must be defined as

Aφ = U
〈n↑(1)n↓(1)〉φ

〈n↑(1)〉φ〈n↓(1)〉φ . (25)

We now compute the irreducible spin vertex defined in
Eq. (17) using the first level of approximation for the self-
energy. Setting the source field to zero after functional
differentiation, we find

Usp(3̄, 4̄; 5̄, 6̄) = Aφ=0δ(3̄ − 5̄)δ(3̄ − 6̄)δ(3̄ − 4̄). (26)

This leads to the following expression for the vertex Usp,
which is local in space and time:

Usp = U
〈n↑n↓〉

〈n↑〉〈n↓〉 . (27)
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Assuming that Uch is also local, we obtain RPA-like expres-
sions for the spin and charge susceptibilities from Eqs. (15)
and (16)

χsp(q, iqn) = χ (1)(q, iqn)

1 − Usp

2 χ (1)(q, iqn)
, (28)

χch(q, iqn) = χ (1)(q, iqn)

1 + Uch
2 χ (1)(q, iqn)

. (29)

The bubble χ (1), evaluated at the first level of approximation,
is

χ (1)(q, iqn) = −T

N

∑
σ,k,ikn

G (1)
σ (k, ikn)G (1)

σ (k + q, ikn + iqn),

(30)

where kn = (2n + 1)πT are fermionic Matsubara frequencies
and k are wave vectors in the first Brillouin zone.

The TPSC approach solves the Hubbard model through
the self-consistency of the ansatz that leads to the definition
of Usp [Eq. (27)] and the sum rules for the spin and charge
susceptibilities. Indeed, comparing the spin susceptibility sum
rule (20) and the TPSC equation for the spin susceptibility
(28), we find

T

N

∑
q,iqn

χ (1)(q, iqn)

1 − Usp

2 χ (1)(q, iqn)
= n − 2〈n↑n↓〉 (31)

= n − 2
Usp

U
〈n↑〉〈n↓〉, (32)

where the second line comes from Eq. (27), which defines Usp

from the double occupancy 〈n↑n↓〉.
We first solve Eq. (32) self-consistently for Usp and the

double occupancy. Then, given the double occupancy, the sum
rule on the charge susceptibility

T

N

∑
q,iqn

χ (1)(q, iqn)

1 + Uch
2 χ (1)(q, iqn)

= n + 2〈n↑n↓〉 − n2 (33)

gives us the value of Uch. Since the expressions for the local
spin and charge sum rules used within TPSC enforce the Pauli
principle, the method itself respects it. Since the self-energy
in the first level of approximation 	(1)

σ (1, 2) = Uspn−σ δ(r1 −
r2)δ(τ1 − τ2) is a constant, we use the noninteracting Lind-
hard function χ (0) in the TPSC equations and absorb 	(1) in
the definition of the chemical potential. The TPSC approxima-
tion is conserving in its first level of approximation, meaning
that the spin and charge susceptibilities calculated from the
susceptibility χ (1) respect conservation laws.

Within TPSC, in analogy with what is done for the electron
gas, at the second level of approximation the self-energy is
influenced by the spin and charge fluctuations. It enters the
interacting Green’s function through G (2) = (G (1)−1 − 	(2) )−1

and is given by

	(2)
σ (k, ikn) =Un−σ + T

N

U

8

∑
q,iqn

[3Uspχsp(q, iqn)

+ Uchχch(q, iqn)]G (1)
σ (k + q, ikn + iqn).

(34)

This expression for the self-energy (34) contains the contribu-
tion from the longitudinal [19] and transverse [38] channels.

This form satisfies exactly the equation

Tr[	(2)G (1)] = U 〈n↑n↓〉, (35)

demonstrating consistency between one- and two-particle
quantities. However, within TPSC, the equality in Eq. (35)
is not satisfied if, following the Migdal-Galitskii equation,
one uses the interacting Green’s function G (2) instead of the
noninteracting one G (1). The deviation between the trace of
	(2)G (i) with the noninteracting (i = 1) and the interacting
(i = 2) Green’s functions can be used as an internal consis-
tency check of the approach [19].

IV. TPSC+
The main aim of the TPSC+ approach is to improve the

results deep in the renormalized classical regime where, as
will be shown in Sec. IV C, the TPSC approach fails. We start
by introducing the formulation of two variants of the TPSC+
approach in Sec. IV A, called TPSC+ and TPSC+SFM. Then,
we show that the methods respect the Mermin-Wagner the-
orem in Sec. IV B, that they are valid in the renormalized
classical regime in Sec. IV C, and that they recover a gener-
alized Stoner criterion with a renormalized interaction in the
antiferromagnetic phase in Sec. IV D. Moreover, we show that
the TPSC+ approach is consistent with respect to one- and
two-particle quantities in Sec. IV E. In Sec. IV F, we show that
the methods predict an antiferromagnetic pseudogap in the 2D
Hubbard model. Finally, we comment on the limitations of the
TPSC+ approach in Sec. IV G, where we show that it violates
spin and charge conservation laws as well as the f -sum rule,
whereas its variant TPSC+SFM does not.

A. Formulation of the approach

The two TPSC+ approaches introduced here are based
on the same considerations we introduced for the TPSC ap-
proach. In the TPSC+ approach, the self-energy 	(2) that
enters G (2) is defined as in Eq. (34). However, the spin and
charge susceptibilities are no longer defined with the nonin-
teracting susceptibility χ (1), but instead as

χsp(q, iqn) = χ (2)(q, iqn)

1 − Usp

2 χ (2)(q, iqn)
, (36)

χch(q, iqn) = χ (2)(q, iqn)

1 + Uch
2 χ (2)(q, iqn)

. (37)

The spin and charge irreducible vertices are computed in the
same way as in the TPSC approach, namely, through the
self-consistency with the local sum rules and the TPSC ansatz
Usp = U 〈n↑n↓〉/〈n↑〉〈n↓〉. The distinction between TPSC,
TPSC+, and TPSC+SFM comes from the asymmetric form
of the partially dressed susceptibility χ (2) that we consider
here. In TPSC+, it is defined as

χ
(2)
TPSC+(q, iqn)

= −1

2

T

N

∑
σ,k,ikn

(
G (2)

σ (k, ikn)G (1)
σ (k + q, ikn + iqn)

+ G (2)
σ (k, ikn)G (1)

σ (k − q, ikn − iqn)
)
. (38)

075144-4



IMPROVED TWO-PARTICLE SELF-CONSISTENT … PHYSICAL REVIEW B 108, 075144 (2023)

As we will show in detail in Sec. IV G, the TPSC+ form of the
partially dressed susceptibility leads to a violation of total spin
and total charge conservation laws. We hence introduce the
TPSC+SFM approach as a hybrid method between TPSC and

TPSC+ that satisfies these conservation laws while still pre-
serving some of the benefits introduced in TPSC+. In TPSC+
SFM, where SFM stands for “spin fluctuation mediated,” the
partially dressed susceptibility takes a different form:

χ
(2)
TPSC+SFM(q, iqn) =

{
− 1

2
T
N

∑
σ,k,ikn

(
G̃ (2)

σ (k − q, ikn)G (1)
σ (k, ikn) + G̃ (2)

σ (k + q, ikn)G (1)
σ (k, ikn)

)
, qn = 0

χ (1)(q, iqn) qn 	= 0.
(39)

In Eqs. (38) and (39), the Green’s function G (1) is the noninteracting Green’s function, and the Green’s function G (2) is the
interacting Green’s function that includes the complete TPSC self-energy defined previously in Eq. (34). Since the qn 	= 0
Matsubara frequencies are those of TPSC, they vanish at zero wave vector, as required by spin and charge conservation.
The Green’s function G̃ (2) is an interacting Green’s function in which the self-energy only contains the contribution from the
longitudinal spin fluctuations. Hence, the distinction between the interacting Green’s functions G (2) and G̃ (2) is

G (2) ⇒ 	(2)
σ (k, ikn) = T

N

U

8

∑
q,iqn

[3Uspχsp(q, iqn) + Uchχch(q, iqn)]G (1)
σ (k + q, ikn + iqn). (40)

G̃ (2) ⇒ 	̃(2)
σ (k, ikn) = T

N

U

4

∑
q,iqn

Uspχsp(q, iqn)G (1)
σ (k + q, ikn + iqn). (41)

In the Green’s functions G (2) and G̃ (2), the chemical potential
is chosen so that the total density n is kept constant. This
means that the partially dressed susceptibilities χ (2) calculated
from TPSC+ and TPSC+SFM obey the same sum rule as the
noninteracting correlation function χ (1):

χ (1)(r = 0, τ = 0) = χ (2)(r = 0, τ = 0)

= n − n2

2
. (42)

We note that the final Green’s function obtained in the
TPSC+SFM approach is still the one that includes both spin
and charge fluctuations, as defined in Eq. (34). Only the
self-energy used in the calculation of the partially dressed
susceptibility takes the form defined in Eq. (41). We also
remark that the discontinuity in the partially dressed suscepti-
bility introduced in Eq. (39) could be an issue for the analytic
continuation to real frequencies.

Both TPSC+ approaches are self-consistent in two ways:
(a) The self-consistency between Usp and the double occu-
pancy through the sum rule and the TPSC ansatz is still
present in the extended approaches, and (b) the self-energy
	(2)

σ , the Green’s function G (2)
σ , and the partially dressed sus-

ceptibility χ (2) all depend self-consistently on each other and
can be calculated through an iterative process.

This approach is analogous to the pairing approxima-
tion (GG0 theory) for the pair susceptibility introduced by
Kadanoff and Martin [39–41]. Although we will rigorously
justify the approach in the following sections, we now provide
a phenomenological justification for the use of a partially
dressed susceptibility χ (2), which was also introduced in
Appendix D7 of Ref. [18]. As detailed in Sec. II C, in the
source field approach the susceptibilities are obtained from
functional derivatives of the Green’s function. Using the iden-
tity G(1, 3̄)G−1(3̄, 2) = δ(1 − 2), these susceptibilities can be
written as

δG

δφ
= −G

δG−1

δφ
G, (43)

where δG−1

δφ
is the vertex. Assuming a quasiparticle picture,

the Green’s function can be expressed as a function of the
quasiparticle weight Z and the noninteracting Green’s func-
tion G0, namely, G = ZG0. Hence, in this approximation, the
functional derivative of the Green’s function becomes analo-
gous to susceptibilities introduced in Eqs. (36)–(38),

δG

δφ
= −G0

δG−1
0

δφ
G. (44)

This is reminiscent of the cancellation between quasiparticle
renormalization in the Green function and in the vertex that
occurs in Landau Fermi-liquid theory.

B. Mermin-Wagner theorem

Here, we show that the TPSC+ approach and the
TPSC+SFM variant respect the Mermin-Wagner theorem and
more specifically that it prevents antiferromagnetic phase
transitions at finite temperatures in two dimensions. The proof
is the same as in the case of the TPSC approach detailed in
Ref. [19]. We consider a regime where the spin correlation
length is large. In this regime, the spin susceptibility can be
expanded in an Ornstein-Zernicke form at zero frequency and
for wave vectors near the antiferromagnetic wave vector Q,

χsp(q � Q, 0) � 2

Uspξ
2
0

1

q2 + ξ−2
sp

, (45)

where the bare particle-hole correlation length is defined as

ξ 2
0 = −1

2χ (2)(Q, 0)

∂2χ (2)(q, 0)

∂q2
x

∣∣∣∣
q=Q

, (46)

and the spin correlation length is

ξsp = ξ0

√
Usp

2
χ (2) (Q,0) − Usp

. (47)
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The sum rule for the spin susceptibility can be rewritten as

n − 2〈n↑n↓〉 − C = 2

Uspξ
2
0

∑
q

1

q2 + ξ−2
sp

, (48)

where the constant C contains all the nonzero Matsubara
frequency contributions to the sum rule. Hence, the left-hand
side of the previous equation is finite. We now focus on the
right-hand side and transform the sum to an integral

∑
q

χsp(q � Q, 0) � 2

Uspξ
2
0

∫
dd q

(2π )d

1

q2 + ξ−2
sp

, (49)

where d is the spatial dimension. A more detailed analysis
with power-law corrections can be found in Ref. [42].

We first consider the d = 3 case, where d3q =
q2 sin θ dq dθ dφ. Assuming that an antiferromagnetic order
is possible, we take the spin correlation length ξsp to infinity.
We obtain ∫

d3q
1

q2 + ξ−2
sp

∝
∫ �

0
dq, (50)

where � is a finite cutoff to take into account the regime of
validity of the Ornstein-Zernicke form of the spin susceptibil-
ity. Hence, in d = 3, both sides of Eq. (48) take finite values
even in the limit where ξsp → ∞, which means that an antifer-
romagnetic phase transition is possible at finite temperature.
The same is true for d > 3.

The d = 2 case, for which d2q = q dq dφ, is different.
Indeed, taking ξsp → ∞ in d = 2 yields

∫
d2q

1

q2 + ξ−2
sp

∝
∫ �

0

dq

q
, (51)

which diverges logarithmically at q → 0 and leads to a con-
tradiction in Eq. (48) because its left-hand side remains finite.
Hence, in d = 2, the spin correlation length obtained from
the TPSC+ approach never reaches an infinite value at finite
temperature, in agreement with the Mermin-Wagner theorem.

C. Validity in the renormalized classical regime

The onset of the renormalized-classical regime is signaled
by the characteristic spin fluctuation frequency ωSF ∝ ξ−2

sp be-
coming smaller than the temperature T [19,43]. In this regime
the spin correlation length grows exponentially. At lower tem-
perature, the Vilk criterion becomes satisfied. The various
crossovers associated with these phenomena have been thor-
oughly discussed in Ref. [18]. One of the main limitations of
the TPSC approach reviewed in Sec. III is that it is not valid
deep in the renormalized classical regime of the 2D Hubbard
model. In this section, we discuss how the TPSC+ methods
are valid in this regime whereas TPSC is not.

We consider the half-filled case of the 2D Hubbard model
with nearest-neighbor hopping only. As shown in Sec. IV B,
the TPSC and the TPSC+ approaches satisfy the Mermin-
Wagner theorem, constraining the spin susceptibility at Q =
(π, π ) to finite values at finite temperature in 2D. With
the RPA-like spin susceptibilities of TPSC and TPSC+, this

FIG. 1. Lindhard functions χ (1)(Q, 0) (in red) and χ (2)(Q, 0) (in
blue and green) as a function of the temperature T . Lines in (a) are
obtained from the numerical integration of Eq. (53) for i = 1, � = 0
and of Eq. (64) for i = 2, � > 0. Dots in (b) and (c) are obtained
from the numerical calculation of (b) Eq. (38) for TPSC+ and
(c) Eq. (39) for TPSC+SFM. The dashed lines are an interpolation.
The calculations are done for the 2D square lattice, at half-filling,
with nearest-neighbor hopping only.

imposes a condition on the value of Usp,

Usp <
2

χ (i)(Q, 0)
, (52)

where i = 1 (i = 2) in the case of the TPSC (TPSC+) ap-
proach.

We first consider the TPSC case. In the specific example
mentioned earlier, the zero-frequency Lindhard function at
Q = (π, π ) is

χ (1)(Q, 0) =
∫

dε ρ(ε)
tanh(ε/2T )

ε
, (53)

where the density of states ρ(ε) is

ρ(ε) = 1

2π2t
K

[√
1 −

(
ε

4t

)2]
, (54)

with K the complete elliptic integral of the first kind [44]. The
integral (53) can be solved numerically as a function of the
temperature T . In Fig. 1, we show that there is a divergence in
χ (1)(Q, 0) as T goes to 0 both from the numerical integration
of Eq. (53) [Fig. 1(a), red curve) and from the numerical
evaluation of Eq. (30) [Figs. 1(b) and 1(c), red dots]. This
divergence can also be shown from an analytic evaluation of
Eq. (53). Indeed, in the specific case we study, there is a van
Hove singularity in the density of states at the Fermi level
(εF = 0). More specifically, the dominant contribution to K is

K[
√

1 − x2] → − ln x, x → 0. (55)

The integral (53) can then be written, with u = ε/2T ,

χ (1)(Q, 0) ∼
[
−

∫ �/2T

1
du

ln u

u
+ C

]

∼ − ln2 �

2T
, (56)

where C includes the less singular terms that contribute to the
integral, and � is a high-energy cutoff. Hence, the Lindhard
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FIG. 2. Irreducible spin vertex Usp obtained from (a) the TPSC,
(b) TPSC+, and (c) the TPSC+SFM calculations, for U = 1, 2, 3,
and 4. The TPSC approach predicts an unphysical drop of Usp as
the temperature goes to zero. In contrast, the values of Usp obtained
with TPSC+ and TPSC+SFM show no significant decrease at low
temperatures in the domain of convergence of the methods. See
Appendix A for more details. The calculations are done for the 2D
square lattice, at half-filling, with nearest-neighbor hopping only.

function diverges as the square of a logarithm at T → 0 for
this model.

From the bound on Usp emerging due to the Mermin-
Wagner theorem (52), we conclude that, in the TPSC
approach, the spin vertex Usp must go to 0 as T goes to 0
in order to respect the Mermin-Wagner theorem. In Fig. 2(a),
we show Usp as a function of the temperature for U = 1, 2, 3,
and 4 obtained from the TPSC calculation for the 2D Hubbard
model with nearest-neighbor hopping only. All cases show a
drop in the value of Usp as the temperature goes to zero. This
drop signals the entry in the renormalized classical regime.
Moreover, since the value of Usp is then limited by the value
of the noninteracting Lindhard function, the spin vertex in this
regime becomes independent of U .

We now show that the TPSC+ approach does not en-
counter this issue. We first need to evaluate χ (2)(Q, 0) in
the renormalized classical regime where spin fluctuations are
strong, starting with the computation of the self-energy that
enters the interacting Green’s function G (2). We only consider
the contributions from spin fluctuations and use the Ornstein-
Zernicke form of the spin susceptibility. This approximation
is valid for both the TPSC+ and the TPSC+SFM methods. In
two dimensions, we find

	(k, ikn) � 3UT

4ξ 2
0

∫
d2q

(2π )2

1

q2 + ξ−2
sp

1

ikn − εk+Q+q + μ(1)
.

(57)

Since the spin correlation length ξsp is very large in this
regime, the term 1/(q2 + ξ−2

sp ) is non-negligible only in the
limit where q is small. We also note that, for values of the
wave vector that lie outside of the Fermi surface, the term
εk+Q+q + μ(1) is nonzero. To compute χ (2), we must perform
a sum over the whole Brillouin zone. For all these reasons,
we can neglect the q dependence of εk+Q+q in the above
expression. This leads to

	(k, ikn) = �2

ikn − εk+Q + μ(1)
, (58)

where �2 is defined as the temperature-dependent quantity

�2 = 3UT

4ξ 2
0

∫
d2q

(2π )2

1

q2 + ξ−2
sp

. (59)

We now obtain an expression for χ (2) in the limit T → 0 in
the renormalized classical regime

χ (2)(Q, 0) = −T

N

∑
k,ikn

[G (2)(k, ikn)G (1)(k + Q, ikn)

+G (2)(k, ikn)G (1)(k − Q, ikn)] (60)

= −T

N

∑
k,ikn

2(
ikn − ε

(1)
k+Q

)(
ikn − ε

(2)
k

) − �2
, (61)

where we used the equality εq+Q = εq−Q, and defined ε
(i)
k =

εk − μ(i). The sum over discrete Matsubara frequencies can
be performed analytically. We find

χ (2)(Q, 0) = − 2

N

∑
k

f (E+
k ) − f (E−

k )

E+
k − E−

k

, (62)

where f (ε) is the Fermi-Dirac distribution. The energies E±
k

are defined as

E±
k = 1

2

(
ε

(2)
k + ε

(1)
k+Q ±

√(
ε

(2)
k − ε

(1)
k+Q

)2 + 4�2
)
. (63)

So far, this is a general result that can be applied to cases
outside of perfect nesting. We transform the sum over k into
an integral and obtain, for the case of perfect nesting where
μ(1) = μ(2) = 0,

χ (2)(Q, 0) =
∫

dε ρ(ε)
tanh(

√
ε2 + �2/2T )√
ε2 + �2

, (64)

which is the analog of Eq. (53). Like for χ (1)(Q, 0), we solve
Eq. (64) for χ (2)(Q, 0) through a numerical integration and
vary the value of �. Since we only want to assess its qualita-
tive effect, we do not include a temperature dependence in the
parameter � in our numerical integration. Figure 1(a) com-
pares our results for χ (1)(Q, 0) and χ (2)(Q, 0) from numerical
integration. The presence of the self-energy through �2 sup-
presses the divergence at low temperature progressively as we
increase �. As T decreases, χ (2)(Q, 0) saturates at a finite
value instead of diverging as χ (1) does. Consequently, the
criterion (52) can be satisfied with a finite, nonzero value of
Usp in the TPSC+ approach since the correlation function χ (2)

remains finite.
In Fig. 1(b), we show our results for χ (1)(Q, 0), and also for

χ (2)(Q, 0) obtained with TPSC+ calculations. Figure 1(c) of
the same figure shows the results obtained with TPSC+SFM
calculations. Although we were not able to obtain converged
results at very low temperatures, we see that both the TPSC+
and the TPSC+SFM forms of χ (2)(Q, 0) are suppressed in-
creasingly as U increases. This is consistent with the behavior
seen in Fig. 1(a) from the analytic, approximate expression of
χ (2), even though we neglected the temperature dependence
of the parameter �.

We show our calculated values of Usp with TPSC+ in
Fig. 2(b), as a function of the temperature for U = 1, 2, 3,
and 4 for the 2D Hubbard model with nearest-neighbor hop-
ping only. Figure 2(c) shows the results from TPSC+SFM
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FIG. 3. Double occupancy D = 〈n↑n↓〉 obtained (a) from the
TPSC, (b) TPSC+, and (c) TPSC+SFM (c) calculations, for U =
1, 2, 3, and 4. The TPSC approach predicts an unphysical drop
of D as the temperature goes to zero. In contrast, the double occu-
pancy computed with TPSC+ and TPSC+SFM does not decrease
significantly with the temperature in the domain of convergence of
the methods. See Appendix A for more details. The calculations are
done for the 2D square lattice, at half-filling, with nearest-neighbor
hopping only.

calculations. In contrast to the TPSC case, no sharp decrease
of the value of Usp obtained with TPSC+ and TPSC+SFM
can be seen at low temperatures. Usp remains strongly U
dependent. The slight downturn observed for all values of U
at low temperatures can be understood through the propor-
tionality between the spin vertex and the double occupancy
due to the TPSC ansatz. In the weak correlation regime of
the 2D Hubbard model, a decrease in the double occupancy
is observed as the temperature goes down towards zero due
to an increase in antiferromagnetic correlations which in turn
lead to an increase of the local moment and a corresponding
decrease in double occupancy [18,19,45,46].

A comparison of the double occupancies obtained with
the TPSC, TPSC+, and TPSC+SFM approaches is shown
in Fig. 3. In Fig. 3(a), the double occupancy calculated with
TPSC drops sharply towards zero for all values of U consid-
ered. The drop occurs at higher temperature when U increases
since the entry in the renormalized classical regime has the
same behavior. Comparison [47] with DCA calculations [48]
confirms this. However, the drop towards zero is unphysical.
In contrast, the double occupancy computed with TPSC+
and TPSC+SFM shown in Figs. 3(b) and 3(c) exhibits the
expected physical decrease as the temperature decreases, and
in a less pronounced way than the TPSC case.

D. Renormalized Stoner criterion

One of the main advantages of the TPSC+ methods is
that in two dimensions they give results for the paramagnetic
pseudogap phase all the way to, and including, the zero-
temperature long-range antiferromagnetic phase.

In this section then, we focus on the generalized Stoner
criterion that leads to the AFM phase transition in the TPSC
approach. At the Néel temperature, which is TN = 0 in d = 2
but might be finite in higher dimensions, the spin susceptibil-
ity diverges according to the criterion

2

Usp
= χ (2)(Q, 0). (65)

Substituting the criterion (65) in the expression we obtained
for χ (2)(Q, 0) in the previous section, Eq. (62), we find the
generalized Stoner criterion obtained from the TPSC+ and
TPSC+SFM approaches at TN

1

Usp
= − 1

N

∑
k

f (E+
k ) − f (E−

k )

E+
k − E−

k

(66)

with E± given by Eq. (63).
In the specific case of two dimensions, where TN = 0, this

becomes

1

Usp
= − 1

N

∑
k

θ (−E+
k ) − θ (−E−

k )

E+
k − E−

k

, (67)

where θ (x) is the Heaviside function. Both results are anal-
ogous to the mean-field Hartree-Fock gap equation in the
antiferromagnetic state [49], but with the renormalized spin
vertex Usp instead of the bare U . From the definition of the
energies E±

k in Eq. (63), the antiferromagnetic gap is 2� in
specific cases where μ(1) = μ(2) = εkF = 0, such as the 2D
square lattice at half-filling with first-neighbor hopping only.

E. Consistency between one- and two-particle properties

Consistency between one- and two-particle properties can
be verified through the Galitski-Migdal equation (23) which
relates the trace of 	G, one-particle quantities, to the double
occupancy. We consider this in the Matsubara frequency and
wave-vector domain at the second level of approximation of
the TPSC+ approach:

	(2)
σ (1, 2̄)G (2)

σ (2̄, 1+) = T

N

∑
k,ikn

	(2)
σ (k, ikn)G (2)

σ (k, ikn).

(68)

Inserting the equation for the self-energy and using
χsp,ch(q, iqn) = χsp,ch(−q,−iqn), we obtain

	(2)
σ (1, 2̄)G (2)

σ (2̄, 1+) = Un2

4
− UT

16N

∑
q,iqn

[3Uspχsp(q, iqn)

+ Uchχch(q, iqn)]χ (2)(q, iqn), (69)

which can be solved using the relations

χsp(q, iqn) − χ (2)(q, iqn) = Usp

2
χsp(q, iqn)χ (2)(q, iqn),

(70)

χ (2)(q, iqn) − χch(q, iqn) = Uch

2
χch(q, iqn)χ (2)(q, iqn).

(71)

Substituting these relations in Eq. (69) and using the sum rules
for χsp,ch and χ (2), we find that

	(2)
σ (1, 2̄)G (2)

σ (2̄, 1+) = U 〈n↑n↓〉, (72)

which is the exact result expected from Eq. (23). Hence, at the
second level of approximation, the TPSC+ approach shows
consistency between single-particle properties such as the
self-energy and the Green’s function and two-particle prop-
erties like the double occupancy. This is another improvement
over the original TPSC approach, in which this consistency
exists with the trace of 	(2)G (1) instead of that of 	(2)G (2).
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FIG. 4. Relative deviation between the traces Tr	(2)G (i) and the
expected exact result of Eq. (23) from the TPSC+SFM approach.
On the left, the trace is computed with the noninteracting Green’s
function G (1), whereas on the right, it is computed with the interacting
Green’s function G (2). The calculations are done for the 2D square
lattice, at half-filling, with nearest-neighbor hopping only.

This is not true for the case of the TPSC+SFM approach:
the traces of the product of the self-energy and the Green’s
function, both the noninteracting G (1) and interacting G (2), are
not expected to yield the exact expected result (23). However,
we show in Fig. 4 that the deviation between the expected
result and the trace with the interacting Green’s function re-
mains of the order of a few percent, and that the deviation is
smaller for the trace with the interacting Green’s function than
with the noninteracting one.

F. Pseudogap in the 2D Hubbard model

The pseudogap from antiferromagnetic fluctuations in the
weak correlation regime of the Hubbard model has been ob-
served with multiple numerical methods [18], though it was
first predicted by the TPSC approach [19]. Here, we show
that the same phenomenology is obtained with the TPSC+
approach.

The antiferromagnetic pseudogap appears in the renor-
malized classical regime, where the spin fluctuations are
dominant. In this regime, we once again use the Ornstein-
Zernicke of Eq. (45) for the spin susceptibility and, therefore,
the self-energy of Eq. (57).

As described in Refs. [50,51], we evaluate the self-energy
at the hot spots kF and at zero frequency ω = i0+. To do so,
we change the variables from q − Q → q and approximate
εkF +q by vkF · q with the Fermi velocity at the hot spots
connected by Q to the Fermi wave vector we are interested
in. We obtain

	R
cl (kF , 0) = 3UT

4ξ 2
0

∫
d2q

(2π )2

1

q2
⊥ + q2

‖ + ξ−2
sp

1

i0+ − q‖vF
,

(73)

where the wave vector q is separated in components parallel
(q‖) and perpendicular (q⊥) to the Fermi velocity. The inte-
gration can then be performed in the complex plane [19,50]
leading to the following imaginary part of the self-energy:

Im	cl (kF , 0) = −3UT

16ξ 2
0

ξsp

ξth
, (74)

with ξth = vF
πT the thermal de Broglie wavelength. As a re-

minder, the spectral weight A(k, ω) is written as a function of
the self-energy

A(k, ω) = −2
Im	(k, ω)

[ω − εk + μ − Re	(k, ω)]2 + [Im	(k, ω)]2
.

(75)

At the Fermi level, if the absolute value of the imaginary part
of the self-energy is large, the spectral weight is suppressed.
Conversely, a small imaginary part of the self-energy leads to
a large value of the spectral weight. Hence, from Eq. (74), the
TPSC+ approach predicts a suppression of the spectral weight
A(kF , 0) when the antiferromagnetic spin correlation length
ξsp becomes larger than the thermal de Broglie wavelength ξth,
which is known as the Vilk criterion. This phenomenology
corresponds to the appearance of a pseudogap from antifer-
romagnetic spin fluctuations. Moreover, the same arguments
detailed in Ref. [19] can be used to show that two peaks
appear at finite frequency in the spectral weight when the Vilk
criterion is satisfied.

In Fig. 5, we show the imaginary part of the self-energy
evaluated at the antinodal point k = (π, 0) as a function of the
Matsubara frequency for different temperatures, at half-filling
and U = 2. The calculations were performed on the square
lattice with nearest-neighbor hopping only. This figure shows
numerically that all three TPSC methods can indeed show the
opening of a pseudogap at weak coupling in the 2D Hubbard
model, though at different temperatures. Appendix C gives
additional results from analytic continuation for the Fermi
surface and antinodal spectral weight.

G. Limitations: Conservation laws and f -sum rule

We now turn to some of the limitations of the TPSC+
approach. More specifically, we show that this method does
not respect conservation laws and the f -sum rule.

In the Hubbard model, the f -sum rule for the spin and
charge susceptibilities is [19]∫

dω

π
ωχ ′′

sp,ch(q, ω) = 1

N

∑
k,σ

(εk+q + εk−q − 2εk )n(2)
k,σ

,

(76)

where n(2)
k,σ

is the spin- and momentum-resolved distribution
function (the Fermi function in the noninteracting case) com-
puted from the interacting Green’s function. We now show
that this sum rule is satisfied to some level within the original
TPSC approach [19] and the TPSC+SFM modification, but is
violated within the TPSC+ approach.

We start from the spectral representation of the susceptibil-
ities

χsp,ch(q, iqn) =
∫

dω

π

χ ′′
sp,ch(q, ω)

ω − iqn

= 1

q2
n

∫
dω

π

ωχ ′′
sp,ch(q, ω)

1 + (ω/qn)2
, (77)

which, at high frequency, reduces to

χsp,ch(q, iqn) � 1

q2
n

∫
dω

π
ωχ ′′

sp,ch(q, ω). (78)
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FIG. 5. Imaginary part of the self-energy computed with
(a) TPSC, (b) TPSC+, and (c) TPSC+SFM at the antinodal point
k = (π, 0). The calculations are done for the 2D square lattice, at
half-filling, with nearest-neighbor hopping only, with U = 2. All
three methods predict the opening of a pseudogap as the temperature
decreases, as shown by the value of the imaginary part of the self-
energy at ω0 that becomes more negative than the value at ω1.

Hence, to determine if the TPSC approaches satisfy the f -sum
rule, we calculate the coefficients of the 1/q2

n term of the high-
frequency expansion of the spin (or charge) susceptibility.
Indeed, as seen from Eq. (78), these coefficients correspond
to the left-hand side of the f -sum rule (76). We denote the
coefficients with α(i), where i stands for TPSC, TPSC+, or
TPSC+SFM, first recalling that

χsp,ch(q, iqn) = χ (i)(q, iqn)

1 ∓ Usp,ch

2 χ (i)(q, iqn)
. (79)

Since the noninteracting and partially dressed suscepti-
bilities χ (i) also behave like 1/q2

n at high frequency, only

the numerators of the spin and charge susceptibilities (79)
contribute to the coefficients α(i). We now compute the high-
frequency expansion of χ (i) from the spectral representation
of the Green’s functions. With A(i)

σ the spectral weight and
i = 1, 2 denoting the noninteracting and interacting cases,
respectively, we find

χ (i)(q, iqn) = − T

2N

∑
k,σ

G (1)
σ (k)G (i)

σ (k + q) + [q ↔ −q]

= − T

2N

∑
k,σ

∫
dω dω′

(2π )2

A(1)
σ (k, ω)A(i)

σ (k+q, ω′)
(ikn−ω)(ikn+iqn−ω′)

+ [q ↔ −q]

= − 1

N

∑
k,σ

∫
dω dω′

(2π )2

A(1)
σ (k, ω)A(i)

σ (k + q, ω′)
q2

n + (ω − ω′)2

× [ f (ω) − f (ω′)](ω − ω′) + [q ↔ −q]. (80)

From this, we obtain the coefficients α(i):

α(i) = − 1

2N

∑
k,σ

∫
dω dω′

(2π )2
A(1)

σ (k, ω)A(i)
σ (k + q, ω′)

× [ f (ω) − f (ω′)](ω − ω′) + [q ↔ −q]. (81)

The following identities allow us to simplify these results
[19,52,53]: ∫

dω

2π
A(i)

σ (k, ω) = 1, (82)

∫
dω

2π
A(i)

σ (k, ω) f (ω) = n(i)
k,σ

, (83)

∫
dω

2π
A(i)

σ (k, ω)ω = εk − μ(i) + U
n

2
δi,2, (84)

1

N

∑
k

∫
dω

2π
A(i)

σ (k, ω)ω f (ω)

= U 〈n↑n↓〉δi,2 + 1

N

∑
k

(εk − μ(i) )n(i)
k,σ . (85)

Here, μ(i) is the chemical potential, and n(i)
k,σ is the spin- and

momentum-resolved particle distribution function computed
with the noninteracting (i = 1) or interacting (i = 2) Green’s
function. We also note that Eq. (85) is only valid at level i =
2 when Tr[	(2)G (2)] = U 〈n↑n↓〉, which is true in the case of
TPSC+. From this, we find that the coefficient of the 1/q2

n
term is

α(i) = 1

2N

∑
k,σ

(εk+q + εk−q − 2εk )
(
n(1)

k,σ
+ n(i)

k,σ

)

+ U
n2

2
δi,2 − 2U 〈n↑n↓〉δi,2. (86)

For TPSC, with i = 1, we obtain

α(TPSC) = 1

N

∑
k,σ

(εk+q + εk−q − 2εk )n(1)
k,σ . (87)

The coefficient for TPSC+SFM is identical to that of TPSC
since, at high frequency, the spin and charge susceptibilities
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are calculated from the noninteracting Lindhard function χ (1)

[see Eq. (39)]. This term differs from the right-hand side of
the f -sum rule (76) in the particle distribution function: TPSC
and TPSC+SFM satisfy the f -sum rule at the noninteracting
level, but not at the interacting level.

For TPSC+, where i = 2, we find instead

α(TPSC+) = 1

2N

∑
k,σ

(εk+q + εk−q − 2εk )
(
n(1)

k,σ
+ n(2)

k,σ

)

+ U
n2

2
− 2U 〈n↑n↓〉. (88)

Compared with the right-hand side of Eq. (76), the coefficient
for TPSC+ deviates from the expected value of the f -sum rule
by the term U n2

2 − 2U 〈n↑n↓〉 at q = 0. It is important to note
that the f -sum rule is satisfied exactly at q = 0 by both TPSC
and TPSC+SFM.

We now assess the deviation of the coefficients (87) and
(88) from the f -sum rule numerically. In practice, we eval-
uate (a) the coefficients Eqs. (87) and (88), (b) the expected
value of the f -sum rule from the right-hand side of Eq. (76),
and (c) the left-hand side of Eq. (76). This last result is
obtained from a derivative in imaginary time of the spin
susceptibility,∫

dω

π
ωχ ′′

sp,ch(q, ω)

= lim
η→0

T
∑
iqn

(e−iqnη − eiqnη )iqnχsp,ch(q, iqn) (89)

= −2
∂χsp,ch(q, τ )

∂τ

∣∣∣∣
τ=0+

, (90)

which we compute numerically using finite differences.
In Fig. 6, we show the relative deviation between the co-

efficients computed with Eq. (90) and the expected value of
the f -sum rule [right-hand side of Eq. (76)]. More specifi-
cally, we evaluate this deviation at q = (2π/N, 0) with N =
256 the number of sites in the x direction since we ex-
pect it to be largest at small values of q where the f -sum
rule should be zero. The small relative deviations shown in
Figs. 6(a) and 6(b) for TPSC and TPSC+SFM are due to
the fact that both approaches satisfy the f -sum rule at the
noninteracting level. In contrast, the large deviation seen in
Fig. 6(c) for TPSC+ comes from the absolute value of the
coefficient at q = 0 for this method, U n2

2 − 2U 〈n↑n↓〉, which
becomes more important as U increases.

Despite this bad result for the f -sum rule, it is still
possible to obtain a gauge-invariant response for the current-
current correlation function by using for the diamagnetic
contribution the zero-Matsubara frequency current-current
correlation function instead of the value calculated above in
Eq. (88).

Another property that follows from spin and charge con-
servation is that the spin and charge susceptibilities evaluated
at zero wave vector and finite Matsubara frequency should
be zero: χsp,ch(q = 0, iqn 	= 0) = 0. In TPSC, this is achieved
because the Lindhard susceptibility is zero at wave vector
q = 0 for all nonzero Matsubara frequencies. This is also
true in TPSC+SFM. However, it is not the case in TPSC+,

FIG. 6. Violation of the f -sum rule evaluated at q = (2π/N, 0)
with N = 256 sites in the x direction and density n = 1 by (a) TPSC,
(b) TPSC+SFM, and (c) TPSC+ approaches for various values of U
as a function of the temperature T . More specifically, the plots show
the relative deviation between the coefficient computed with the
derivatives (90) and the f -sum rule 1

N

∑
k,σ (εk+q + εk−q − 2εk )n(2)

k,σ .

where the partially dressed susceptibility χ (2) remains finite
at q = 0 for nonzero Matsubara frequencies. We expect the
largest deviation to occur at the n = 1 Matsubara frequency
q1. Hence, in Fig. 7, we show for TPSC+ the value of the
partially dressed susceptibility χ (2)(q = 0, iq1) divided by
χ (2)(q = 0, iq0), the value at the Matsubara frequency q0 = 0,

 0
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 0  0.25  0.5  0.75  1

χ(2
) (0

, 
iq
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, 
iq
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FIG. 7. Ratio of χ (2)(q = 0, iq1)/χ (2)(q = 0, iq0 ) as a function
of the temperature T obtained from TPSC+ calculations. The
TPSC+ approach violates conservation laws, as shown by this
nonzero ratio. The calculations are done for the 2D square lattice,
at half-filling, with nearest-neighbor hopping only.
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FIG. 8. Spin correlation length from TPSC (red squares),
TPSC+ (blue triangles), and TPSC+SFM (green circles) calcula-
tions, compared to the DiagMC benchmark (black triangles) from
Ref. [18]. The results are obtained as a function of the inverse temper-
ature β for the half-filled 2D Hubbard model on a square lattice with
U = 2. (a) Shows the absolute value of the spin correlation length,
while (b) shows the relative deviation between the data from all three
TPSC methods and the DiagMC benchmark. The relative deviation
is calculated as � = (ξsp, TPSC − ξsp, DiagMC)/ξsp, DiagMC.

as a function of the temperature for U = 1, 2, 3, and 4, once
again for the 2D square lattice at half-filling with nearest-
neighbor hopping only. The violation of the conservation laws
increases as the temperature decreases and as U increases.
Although the value at the n = 1 Matsubara frequency remains
small for U � 2 (one order of magnitude smaller than the
value at zero Matsubara frequency), it reaches almost 20%
of the value at the n = 0 Matsubara frequency at low temper-
atures for U = 3 and 4.

V. RESULTS FOR THE 2D HUBBARD MODEL

Now that we have introduced the TPSC+ and the
TPSC+SFM approaches and their theoretical basis, we apply
them to the 2D Hubbard model. The aim of this section is to
benchmark the methods by comparing their results to avail-
able exact diagrammatic Monte Carlo results and to assess
their regime of validity. We first benchmark the spin corre-
lation length in the weak interaction regime at half-filling in
Sec. V A. In Sec. V B, we benchmark the spin and charge sus-
ceptibilities away from half-filling. We end this section with
the benchmark of the self-energy in Sec. V C, where we add
a comparison to the self-energy obtained by second-order
perturbation theory. All benchmarks provided here are for
the 2D Hubbard model with nearest-neighbor hopping only.
Our energy units are t = 1, lattice spacing a = 1, Planck’s
constant h̄ = 1, and Boltzmann’s constant kB = 1. We do not
put the factor 1

2 for the spin. Details of the implementation
may be found in Appendix A.

A. Spin correlation length at half-filling

In Fig. 8, we show the spin correlation length obtained for
the 2D Hubbard at half-filling with an interaction strength
U = 2 as a function of the inverse temperature β = 1/T .
Results from all three TPSC methods are compared to the
DiagMC benchmark data obtained from Ref. [18]. Figure 8(a)

FIG. 9. Top panel: Double occupancy as a function of T and U
at fixed density n = 0.875. Full lines are obtained with (a) TPSC,
(b) TPSC+, and (c) TPSC+SFM calculations. CDet data, shown as
dashed lines, come from Ref. [32]. Bottom panel: Relative deviation
between the CDet benchmark data and (d) TPSC, (e) TPSC+, and
(f) TPSC+SFM data, shown as � = (DTPSC − DCDet )/DCDet.

shows the absolute value of the spin correlation length, while
Fig. 8(b) shows the relative deviation between the three TPSC
methods and the DiagMC data. The relative deviation is calcu-
lated as � = (ξsp, TPSC − ξsp, DiagMC)/ξsp, DiagMC. We first note
that all three TPSC methods yield accurate results at high tem-
peratures (β � 7), at a much lower computational cost than
DiagMC calculations. As was shown in Ref. [18], the spin
correlation length obtained from the original TPSC approach
deviates strongly from the benchmark data as the temperature
decreases. In TPSC, this large deviation is due to the entry
in the renormalized classical regime around T = 0.1, below
which the method is not valid anymore. Both the TPSC+ and
TPSC+SFM approaches offer a quantitative and qualitative
improvement over the TPSC approach in the low-temperature
regime of the weakly interacting 2D Hubbard model. Quanti-
tatively, the relative deviations with DiagMC reach 1165% for
TPSC, 33% for TPSC+, and 82% for TPSC+SFM at β = 10.

B. Weak to intermediate interaction regimes
away from half-filling

1. Double occupancy

Figure 9 shows the temperature and U dependence of the
double occupancy computed with (a) TPSC, (b) TPSC+, and
(c) TPSC+SFM at fixed density n = 0.875. We compare our
results with CDet benchmark data [32]. The bottom panel of
Fig. 9 shows the relative deviation between (d) TPSC, (e)
TPSC+, and (f) TPSC+SFM with respect to the CDet bench-
mark. The relative deviation is calculated as � = (DTPSC −
DCDet )/DCDet. In the weak interaction regime (U � 3), all
three TPSC methods yield quantitatively accurate double oc-
cupancies: the relative deviations with respect to the CDet
benchmark reach at most 5% (in absolute value) at all tem-
peratures. For the higher values of U considered (U = 4 and
5), the TPSC results are more accurate than the TPSC+ and
TPSC+SFM ones. The deviations obtained from TPSC do not
exceed 15%, while they reach almost 35% for TPSC+ and
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FIG. 10. Top panel: Semilogarithmic plots of the maximal value
of the spin susceptibility as a function of U for five tempera-
tures at fixed density n = 0.875. Results are shown for (a) TPSC,
(b) TPSC+, and (c) TPSC+SFM calculations in full lines. The
dotted-dashed lines are the CDet data from Ref. [32]. Bottom panel:
Relative deviation between the CDet benchmark data and (d) TPSC,
(e) TPSC+, and (f) TPSC+SFM results.

TPSC+SFM for U = 5. Qualitatively, the double occupancy
should decrease slightly as the temperature is lowered, as seen
from the CDet data. This behavior is captured qualitatively at
U = 4 and 5 by TPSC+SFM, but not by TPSC+.

2. Spin susceptibility

We now study the spin susceptibility away from half-
filling. We first illustrate the maximal value of the spin
susceptibility at fixed density n = 0.875 as a function of U
in the weak to intermediate interaction regime (U � 5) in
Fig. 10 from (a) TPSC, (b) TPSC+, and (c) TPSC+SFM,
compared with the CDet benchmark data [32]. In Appendix B,
we show extended results in the strong interaction regime
(up to U = 8), above the validity regime of all three TPSC
approaches.

In the bottom panel of Fig. 10, we show the relative de-
viation between (d) TPSC, (e) TPSC+, and (f) TPSC+SFM
and the CDet benchmark data, calculated as � = (χmax

sp, TPSC −
χmax

sp, CDet )/χ
max
sp, CDet.

The results of all three TPSC variations are in qualita-
tive and quantitative agreement with the exact CDet results
in the weakly interacting regime (U � 2), where the rel-
ative deviations with respect to the benchmark are below
10% (in absolute value). The deviations increase with the
interaction U for all three TPSC methods. The TPSC+ and
TPSC+SFM approaches offer a significant qualitative and
quantitative improvement over the original TPSC approach
at low temperatures (T � 0.2). In this temperature regime,
the deviations between the TPSC+ and TPSC+SFM data and
the CDet benchmark is at most 25%, whereas it exceeds 50%
with TPSC. While TPSC+ is accurate at low temperatures, its
deviation with the benchmark increases with temperature. The
results from TPSC+SFM have the best overall qualitative and
quantitative agreement with the benchmark data. In contrast,

FIG. 11. Top panel: Semilogarithmic plots of the maximal value
of the spin susceptibility as a function of U for five different values
of filling n at fixed temperature T = 0.2. Results are shown from
(a) TPSC, (b) TPSC+, and (c) TPSC+SFM calculations in full lines.
The dotted-dashed lines are the CDet data from Ref. [32]. Bottom
panel: Relative deviation between the CDet benchmark data and
(d) TPSC, (e) TPSC+, and (f) TPSC+SFM results.

the maximal value of the spin susceptibility is systematically
overestimated by TPSC and underestimated by TPSC+.

In Fig. 11, we show the maximal value of the spin sus-
ceptibility as a function of the density n and of U at fixed
temperature T = 0.2. We first discuss the absolute TPSC re-
sults shown in Fig. 11(a) as well as their relative deviations
with respect to the CDet benchmark shown in Fig. 11(d).
The TPSC results for the maximal value of the spin sus-
ceptibility become more accurate as the density decreases,
moving away from half-filling. More specifically, the relative
deviation is below 5% at n = 0.8. This better agreement at
low density is due to the the Hartree decoupling used for the
TPSC ansatz, which works best in the dilute limit. In con-
trast, when the density is closer to half-filling (n = 1), TPSC
shows deviations that can exceed 25% even in the weakly
interacting regime (U = 2). We now turn to the TPSC+ and
TPSC+SFM approach results shown in Figs. 11(b) and 11(c),
respectively, while Figs. 11(d) and 11(e) show their deviations
to the benchmark data. Both TPSC+ and TPSC+SFM tend to
underestimate the maximal value of the spin susceptibility for
these model parameters. Overall, TPSC+SFM offers the best
improvement over the original TPSC approach. TPSC+SFM
yields accurate results for low values of U (U � 3), with
deviations to the CDet data that are below 10% in absolute
value. The same is true of the TPSC+ results at slightly lower
values of U (U � 2).

In summary, we conclude from both Figs. 10 and 11 that
the maximal value of the spin susceptibility obtained from the
TPSC+SFM approach is qualitatively and reasonably quanti-
tatively accurate in the weak to intermediate coupling regime
of the 2D Hubbard model, away from half-filling. In contrast,
the TPSC results are accurate in the dilute limit and at high
temperatures, while the TPSC+ results are accurate at low
temperatures, away from half-filling.

075144-13



GAUVIN-NDIAYE, LAHAIE, VILK, AND TREMBLAY PHYSICAL REVIEW B 108, 075144 (2023)

FIG. 12. Top panel: Plots of the maximal value of the charge
susceptibility as a function of U for five different temperatures at
fixed filling n = 0.875. Results are shown for (a) TPSC, (b) TPSC+,
and (c) TPSC+SFM calculations in full lines. The dashed lines
are the CDet data from Ref. [32]. Bottom panel: Relative de-
viation between the CDet benchmark data and the (d) TPSC,
(e) TPSC+, and (f) TPSC+SFM results.

3. Charge susceptibility

In Fig. 12, we show the maximal value of the charge sus-
ceptibility as a function of the temperature and of U at fixed
density n = 0.875. The results from all three TPSC methods
are in qualitative agreement with the CDet benchmark data.
We have also looked at the values of Uch(U ) for those cal-
culations and the three methods lead to the same qualitative
behavior, Uch(U ) increasing with U and with temperature.
The temperature dependence is larger in TPSC+SFM, but
still very small. The maximal relative deviation between the
three methods for the whole domain was of 15% between
TPSC+ and TPSC+SFM at U = 4 and T = 0.25. Quantita-
tively, the charge susceptibility is underestimated by all three
TPSC approaches for all the parameters considered here. The
deviations with respect to the CDet benchmark increase with
U and as the temperature decreases for the three methods. The
TPSC results have the strongest deviations (about 30% at the
lowest temperature considered, T = 0.067, and U = 5), while
the TPSC+SFM results have the best overall agreement with
the benchmark (about 20% at most).

C. Benchmark of the self-energy

In Fig. 13, we show the imaginary part of the local self-
energy as a function of the Matsubara frequencies for T = 0.1
in the dilute limit (n = 0.4 and 0.8), and for the Hubbard in-
teraction strengths U = 2 and 4. The results are obtained from
TPSC, TPSC+, and TPSC+SFM calculations. We compare
them to DiagMC benchmark data [31] and to the self-energy
	2PT obtained from second-order perturbation theory (2PT)

	2PT(r, τ ) = U 2G (0)(r, τ )G (0)(r, τ )G (0)(−r,−τ ). (91)

For these model parameters, there is no significant differ-
ence between the TPSC, TPSC+, and TPSC+SFM results.
However, they differ significantly from the 2PT self-energy

FIG. 13. Imaginary part of the local self-energy as a function
of the Matsubara frequencies at fixed temperature T = 0.1, away
from half-filling. Calculations are done for (a) U = 2 and n = 0.8,
(b) U = 4 and n = 0.8, (c) U = 2 and n = 0.4, and (d) U = 4 and
n = 0.4. Results are shown for TPSC (red squares), TPSC+ (blue
circles), TPSC+SFM (green triangles), and 2PT (purple pentagons)
calculations. The benchmark data, in black dashed lines, are from
Ref. [31].

even in the low interaction case with density n = 0.4 and
interaction U = 2. This highlights that the three TPSC ap-
proaches are nontrivial in their construction. The results
obtained by the three TPSC approaches are accurate at low
Matsubara frequencies. These methods can hence properly
describe the Fermi-liquid properties of the quasiparticles for
these model parameters. This is in contrast with 2PT, which is
inaccurate at low frequencies even in the dilute limit n = 0.4.
In the latter case it reaches the correct high-frequency tail of
the benchmark [31] at much higher frequency than the range
shown in Fig. 13. The high-frequency tail of the local part of
the self-energy of all three TPSC methods deviates from the
benchmark data. This is more pronounced in the U = 4 case
than for U = 2. The reasons for the behavior of TPSC at high
frequencies are discussed in Appendix E of Ref. [19]. Similar
considerations apply to the other versions of TPSC.

In Figs. 14(a) and 14(b), we show the imaginary part
of the local self-energy as a function of the Matsubara
frequencies at half-filling and with a Hubbard interaction
strength of U = 2, for T = 0.1 and 1. We once again compare
the three TPSC methods to the 2PT and benchmark [18] self-
energies. Figures 14(c) and 14(d) show the relative deviation
between all TPSC results and the DiagMC benchmark data.

All the TPSC methods have a good global behavior. Their
results at T = 1 are accurate, with a deviation to the Di-
agMC benchmark of at most 2%. Whereas the TPSC+SFM
approach yields the most accurate results for the spin and
charge susceptibilities, as shown in Secs. V B 2 and V B 3,
the T = 0.1 results shown Figs. 14(a) and 14(c) show that
the TPSC+ results for the local self-energy are the most
accurate ones. Similar to the dilute case presented in Fig. 13,
the high-frequency tail of the self-energy computed with
all three TPSC methods is less accurate than that obtained
with the second-order perturbation theory. Both TPSC+ and
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FIG. 14. Top panel: Imaginary part of the local self-energy as a
function of the Matsubara frequencies at half-filling n = 1 and U =
2. Calculations are done for temperatures (a) T = 0.1 and (b) T =
1.0. The plots show the data from TPSC (red squares), TPSC+ (blue
circles), TPSC+SFM (green triangles), and 2PT (purple pentagons)
calculations. The benchmark data, in dashed black lines, are obtained
from Ref. [18]. Bottom panel: Relative deviation between the TPSC,
TPSC+, TPSC+SFM, and 2PT calculations and the benchmark at
temperatures (c) T = 0.1 and (d) T = 1.0.

TPSC+SFM offer improved results over the original TPSC
method at T = 0.1, with deviations to the DiagMC bench-
mark of the order of 20% at the lowest Matsubara frequency.
In contrast, this deviation reaches about 50% with TPSC.
In Fig. 15, we focus on the low-temperature T = 0.1 case
and show the imaginary part of the self-energy as a func-
tion of the Matsubara frequencies at two different wave
vectors: the nodal point k = (π/2, π/2) and the antinodal
point k = (π, 0). These results are obtained at half-filling and
with a Hubbard interaction strength U = 2. In this model,
DiagMC calculations show that the antiferromagnetic pseu-
dogap should open at the antinode at the temperature T ∗

AN =
0.065, and at the node at the temperature T ∗

N = 0.0625 [18].
We first note that the 2PT self-energy is closer to that of
Fermi-liquid quasiparticles than the DiagMC exact results at
both k points. The absolute value of the resulting deviation
between the 2PT and DiagMC self-energies is of the order
of 20%–30% for the first Matsubara frequency. In contrast,
all three TPSC approaches’ self-energy with a smaller quasi-
particle weight than the DiagMC results for both k points.
The TPSC approach overestimates the temperatures T ∗

AN and
T ∗

N at which the pseudogap opens at the antinode and at the
node, respectively. This is seen in Figs. 15(a) and 15(b) by
the value of the imaginary part of the self-energy at the first
Matsubara self-energy ω0, which is more negative than that at
the second Matsubara frequency ω1. This leads to deviations
between TPSC and DiagMC that exceed 60% at the first
Matsubara frequency. As was anticipated in Fig. 5, TPSC+
and TPSC+SFM also overestimate the pseudogap tempera-
tures, but in a less pronounced way than TPSC. At T = 0.1,
the deviations between the TPSC+(SFM) and DiagMC self-
energies are of the order of 20% (35%). This is a significant
improvement over the original TPSC approach. From this,

FIG. 15. Top panel: Imaginary part of the self-energy as a func-
tion of the Matsubara frequencies at half-filling n = 1, at temperature
T = 0.1, and interaction U = 2, evaluated at (a) the antinode k =
(π, 0) and (b) the node k = (π/2, π/2). The plots show the data
from TPSC (red squares), TPSC+ (blue circles), TPSC+SFM (green
triangles), and 2PT (purple pentagons) calculations. DiagMC data,
in dashed black lines, are obtained from Ref. [18]. Bottom panel:
Relative deviation between the TPSC, TPSC+ TPSC+SFM, and
2PT calculations and the DiagMC benchmark for (c) the antinode
and (d) the node.

we conclude that TPSC+ is better suited at describing the
self-energy than TPSC+SFM, but TPSC+SFM gives a more
accurate description of the spin and charge susceptibilities.

D. Summary

In this section, we benchmarked the TPSC, TPSC+,
and TPSC+SFM methods against available exact diagram-
matic Monte Carlo results for the 2D Hubbard model. We
showed that, out of the three TPSC methods, the TPSC+
approach yields the most accurate self-energy results, while
the TPSC+SFM approach is the best at describing the spin
and charge susceptibilities. By construction, the TPSC+ and
TPSC+SFM approaches are not valid in the strongly inter-
acting Hubbard model, just like TPSC. However, they extend
the domain of validity of TPSC in the weak to intermediate
correlation regime since they are valid at low temperatures in
the renormalized classical regime of the 2D Hubbard model.
Future work will quantify this statement.

From our benchmark work, we conclude that all three
TPSC approaches can be reliably used at high temperatures
and low densities. At low temperatures and near half-filling,
the TPSC+ and TPSC+SFM approaches are more accurate
than the original TPSC approach.

VI. CONCLUSION

In this work, we introduced two improved versions of the
TPSC approximation for the one-band Hubbard model. We
showed that both the TPSC+ and the TPSC+SFM approxi-
mations maintain some fundamental properties of TPSC: they
satisfy the Pauli principle and the Mermin-Wagner theorem,
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they predict the pseudogap from antiferromagnetic fluctua-
tions in the weak interaction regime of the 2D Hubbard model.
The improvements brought by TPSC+ and TPSC+SFM do
not come at a significant computational cost. Moreover, these
approximations are valid deep in the renormalized classical
regime of the 2D Hubbard model where TPSC fails. Both
TPSC+ and TPSC+SFM hence extend the domain of valid-
ity of TPSC. From a quantitative point of view, we showed
that TPSC+SFM leads to accurate values of the spin and
charge susceptibilities in the doped 2D Hubbard model over
a wide range of temperatures and interaction strength. For the
same model, TPSC+ gives the most accurate results for the
self-energy out of the three TPSC approximations considered
here. Our comparisons to the second-order perturbation theory
self-energy illustrate the nontrivial nature of the three TPSC
approaches.

We showed that TPSC+ does not satisfy the f-sum rule.
Yet it is possible to perform gauge-invariant conductivity cal-
culations by using the zero Matsubara frequency value of the
current-current correlation function for the diamagnetic term.

Finally, our work, in line with previous benchmark efforts
[18–20,25,26,45,54–56], shows that TPSC and its variations
are reliable methods to obtain qualitative results for the weak
interaction regime of the Hubbard model. From our bench-
mark work, we assess that all three TPSC methods are only
valid in the weak to intermediate interaction regime of the
Hubbard model and that they cannot capture the physics of the
strong interaction regime (U � 5). The quantitative improve-
ments brought about by TPSC+ and TPSC+SFM over TPSC
are similar to the ones brought about by the recently developed
TPSC+DMFT approach [26,27], except deep in the renormal-
ized classical regime where the TPSC+DMFT approach is not
valid, contrary to both TPSC+ and TPSC+SFM.
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APPENDIX A: DETAILS ON THE IMPLEMENTATION
OF THE TPSC+ ALGORITHM

In Fig. 16, we show the workflow of the TPSC+ calcula-
tions. It starts by intitializing the TPSC+ class with the given
input parameters. Then begins the TPSC calculation, which
we use as the first guess for the self-consistency loop. The
implementation for the TPSC+SFM algorithm is similar to
the one described in this Appendix.

FIG. 16. Algorithm’s workflow for the TPSC+ method. The
input parameters are the Hubbard interaction strength (U ), the tem-
perature (T ), the filling (n), the second- and third-neighbor hopping
terms (t ′, t ′′), and the size of one of the two dimensions in the square
reciprocal space (nk). The variable α helps convergence by adding
damping to the iterative process; it allows to choose the combination
of the previous and present Green’s function that is input in the new
calculation. The dotted lines represent fast Fourier transforms. The
condition criteria are the Frobenius matrix norm of the difference
between the iterated Green’s functions at steps j and j + 1.

The TPSC and TPSC+ approaches allow to choose the size
of the reciprocal space that is relevant. We use fast Fourier
transforms (FFT) repetitively, so we choose the number of
sites in one spatial direction nk as a power of 2 because FFT
works best in those cases. When 1/ξsp is smaller than the k res-
olution, the results are not considered valid anymore because
in this approximation of TPSC it is important that the self-
energy be influenced by long-wavelength spin fluctuations. So
the number nk of the k resolution should be chosen wisely
considering those facts without overusing the resources.

Let the total number of wave vectors be defined as N =
n2

k . The correlation functions and the self-energy are defined
by convolutions in reciprocal space, which results in order-
N2 calculations for one physical quantity (susceptibilities or
self-energy). It is computationally cheaper to obtain these
quantities by fast Fourier transforms (FFT). Each FFT takes
N ln N calculations. We use the quantities in the reciprocal
space, but because of the convolution properties, it is easy
to determine what are those quantities in the real space. We
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then have to calculate F (�r, τ ) ∝ f (�r, τ )g(�r,−τ ), instead of
F (�q, iqn) ∝ ∑

k f (�k, ikn)g(�k + �q, ikn + iqn). So in total, for
one physical quantity, one executes 2N ln N + N calculations
instead of N2 calculations.

For the calculations of physical quantities, and for handling
the many-body propagators with the transitions from real
space to reciprocal space with Matsubara frequencies, we use
sparse sampling and the IR decomposition from the SPARSE-IR

library [57–59].
The convergence criterion, as shown in Fig. 16, is

the Frobenius norm, calculated with the numpy function
“numpy.linalg.norm()” of the difference between the actual
and previous calculations of the interacting Green’s function
G (2). When it is met, the calculation is ended. But if it is not,
the new Green’s function is obtained from a percentage of the
actual ( j + 1) and previous ( j) Green’s functions. The vari-
able that represents this percentage is called α. This is where
the convergence challenge for the TPSC+ and TPSC+SFM
calculations resides. At lower temperatures, the algorithm
finds no solution after a maximum number of iterations.
Nevertheless, the temperatures we reach are low enough to
compare with our benchmarks. We are currently working in
ways to accelerate the convergence or guide it with better
initial guesses. The α allows a better convergence, for hard
cases. Also, we implemented a loop where the temperature
drops slowly and where we use the answer from the previous
temperature as a first guess for the next TPSC+ calculation
at lower temperature, instead of starting from a new TPSC
calculation. It has helped convergence at low temperatures,
but it is not a drastic improvement. In even harder cases, at
half-filling and at low temperature, we used the “Anderson
acceleration” method [60,61].

We have compared computing times between TPSC and
TPSC+ for the parameters of Fig. 13. The computing time
for TPSC+ with the size of the system being 256 × 256 was
roughly 9 s and the computing time for TPSC with the same
system size was roughly 3 s on a personal computer.

APPENDIX B: BENCHMARKS IN THE STRONG
INTERACTION REGIME

In this Appendix, we show results obtained with TPSC,
TPSC+, and TPSC+SFM in the strong interaction regime

FIG. 17. Maximal value of the spin susceptibility obtained from
TPSC (red squares), TPSC+ (blue circles), and TPSC+SFM (green
triangles) as a function of U . Results are shown for (a) n = 0.8 and
T = 0.2, (b) n = 0.875 and T = 0.2, and (c) n = 0.875 and T = 0.1.
Black lines with error bars are CDet data obtained from Ref. [32].

FIG. 18. Spin susceptibility along the path (0,0) to (π, π ) in
the Brillouin zone at fixed temperature T = 0.1, interaction U =
5 and filling n = 0.8, obtained with (a) TPSC, (b) TPSC+, and
(c) TPSC+SFM calculations. Black lines with error bars are CDet
data obtained from Ref. [32].

of the 2D Hubbard model. By construction, the three TPSC
approaches are not intended to be valid in this regime of
parameters. This is mainly due to the formulation of the TPSC
ansatz (27), which is constructed through a Hartree-type de-
coupling.

We first illustrate the maximal value of the spin suscep-
tibility in Fig. 17 as a function of the Hubbard interaction
U . The model parameters are (a) n = 0.8 and T = 0.2, (b)
n = 0.875 and T = 0.2, and (c) n = 0.875 and T = 0.1. The
TPSC, TPSC+, and TPSC+SFM results are compared to
the CDet benchmark from Ref. [32]. The maximal value of
the spin susceptibility increases with U until U � 4, and de-
creases as U increases above that point. This maximum near
U = 4 corresponds to the onset of Heisenberg-type physics
with a localization of magnetic moments. This behavior is
completely missed by the TPSC approach, especially near
half-filling and at low temperatures: the maximal value of
the spin susceptibility only increases with U . In contrast, the
TPSC+ and TPSC+SFM results do not increase as much with
U and even seem to reach a plateau near U = 8. However,
the decrease expected from the CDet data is not seen with
these methods above U = 4, which is a clear indication of the
limited interaction regimes that they can reliably access.

FIG. 19. Spin susceptibility along the path (0,π ) to (π, π ) in
the Brillouin zone at fixed temperature T = 0.1, interaction U =
5, and filling n = 0.8, obtained with (a) TPSC, (b) TPSC+, and
(c) TPSC+SFM calculations. Black lines with error bars are CDet
data obtained from Ref. [32].
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FIG. 20. Charge susceptibility along the path (π, π ) to (0,0) in
the Brillouin zone at fixed temperature T = 0.1, interaction U = 5,
and filling n = 0.8, from (a) TPSC, (b) TPSC+, and (c) TPSC+SFM
calculations. The black lines with error bars are CDet data obtained
from Ref. [32].

We now consider the following parameter set: density n =
0.8, temperature T = 0.1, and Hubbard interaction strength
U = 5. This value of U is slightly above the expected regime
of validity of the TPSC methods. We still consider this case
in order to study the momentum dependence of the spin and
charge susceptibilities, which we can compare here to avail-
able CDet data [32].

In Figs. 18 and 19, we show the spin susceptibility along
the diagonal and along the edge of the Brillouin zone,
respectively, for the parameters listed above. Both paths re-
veal similar information: When compared to CDet, TPSC
overestimates the value of the maxima, while TPSC+ and
TPSC+SFM underestimate it. The positions of the maxima
obtained with the TPSC approaches are slightly shifted with
respect to the CDet ones. Still, the results obtained with the
three TPSC approaches are in qualitative agreement with the
CDet benchmark. The separation of the maximum into two
peaks around (π, π ) is captured by these approaches.

In Figs. 20 and 21, we show the charge susceptibility along
the edge and the diagonal of the Brillouin zone, respectively.
All three TPSC approaches result in lower values of χch than
CDet, although they have the right qualitative behavior. As
seen in Fig. 12, TPSC+SFM is in better agreement with the
exact value of χch than TPSC and TPSC+.

FIG. 21. Charge susceptibility along the path (0,π ) to (0,0) in
the Brillouin zone at fixed temperature T = 0.1, interaction U = 5,
and filling n = 0.8, from (a) TPSC, (b) TPSC+, and (c) TPSC+SFM
calculations. The black lines with error bars are CDet data obtained
from Ref. [32].

FIG. 22. On top, the Matsubara data for the self-energy obtained
from TPSC at the antinode, and on the bottom Padé analytic contin-
uation that displays the opening of the pseudogap at T = 0.1, where
the corresponding Matsubara data have a downturn near the origin.

APPENDIX C: ANTIFERROMAGNETIC PSEUDOGAP AND
MATSUBARA SELF-ENERGY

To illustrate the antiferromagnetically induced pseudogap
at the antinode, we perform the Padé analytic continuation
associated with the Matsubara data in Fig. 22 obtained with
TPSC. The spectral weight A(ω, AN) confirms that the fall
of Im 	(iωn, AN) near the origin when temperature is T =
0.1 corresponds to a pseudogap. Note that, as mentioned in
Sec. V C, the TPSC results shown in this Appendix overesti-
mate the temperature T ∗ associated with the opening of the
pseudogap everywhere on the Fermi surface. Moreover, the
antinodal point is special.

All points of the half-filled Fermi surface are connected
by the antiferromagnetic wave vector, hence, all points of
the Fermi surface in Fig. 23 are “hot,” namely they poten-
tially display a pseudogap. The pseudogap first opens at the

FIG. 23. Analytic continuation at the Fermi level ω = 0 for the
spectral weight calculated from TPSC at T = 0.1 on the left and
T = 0.2 on the right. The analytic continuation is performed here
with a fit over the first three Matsubara frequencies using Lagrange
polynomials. While the whole Fermi surface is “hot,” the antinodal
point where there is a large density of states is more affected.
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antinodal point [18]. The criterion for hot spots on the Fermi
surface is the Vilk criterion [18,19,45], requiring the anti-
ferromagnetic correlation length to be much larger than the
thermal de Broglie wavelength vF /πT . The Fermi surface at
the antinode is more strongly influenced by spin fluctuations
and displays a pseudogap when this criterion is not yet satis-

fied for the rest of the Fermi surface. Indeed, at the antinodal
point of this perfectly nested Fermi surface, the Fermi velocity
vanishes vF = 0. This vanishing Fermi velocity is associated
to the van Hove singularity and corresponding infinite density
of states. What happens in this case has been investigated in
Ref. [62].
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