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From frustration-free parent Hamiltonians to off-diagonal long-range order:
Moore-Read and related states in second quantization
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We construct a recursive second-quantized formula for Moore-Read Pfaffian states. We demonstrate the utility
of such second-quantized presentations by directly proving the existence of frustration-free parent Hamiltonians,
without appealing to polynomial clustering properties. Furthermore, we show how this formalism is connected
to the existence of a nonlocal order parameter for Moore-Read states, and we provide proof that the latter
exhibit off-diagonal long-range order (ODLRO) in these quantities. We also develop a similar second-quantized
presentation for the fermionic anti- and PH-Pfaffian states, as well as f - and higher wave paired composite
fermion states, and we discuss ODLRO in most cases.
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I. INTRODUCTION

The past few decades have witnessed tremendous efforts
in the study of strongly correlated systems, including un-
conventional superconductors [1–3], quantum spin liquids
[4–7], as well as fractional quantum Hall (FQH) systems
[8–11]. In FQH systems, the kinetic energies of electrons
are quenched as electrons occupy a certain Landau level,
rendering Coulomb interactions as the major term in the
Hamiltonian. The closed form for the ground state of the
many-body Coulomb interaction is difficult to obtain; thus,
theorists resort to model Hamiltonians for which the pro-
totypical trial state of the closed-form wave function is the
exact unique densest zero mode (zero-energy ground state
with the minimum total angular momentum). These model
Hamiltonians include a two-body pseudopotential [12] for the
Laughlin state [13], a two-body parent Hamiltonian [14] for
the unprojected Jain composite fermion state [10,15], a three-
body parent Hamiltonian [16,17] for the Moore-Read Pfaffian
state [18], and general multibody parent Hamiltonians for
Read-Rezayi states [19–21]. Of all FQH states, much attention
has been paid to those with non-Abelian anyonic excitation, a
key necessary ingredient for topological quantum computa-
tion [22,23]. A typical example is the Moore-Read Pfaffian
state, which is constructed from correlators in conformal field
theory [24].

In the study of model FQH states and their corresponding
parent Hamiltonian, it is common practice to focus on the
first-quantized wave functions, whose algebraic clustering
properties when two or more particles come together are tra-
ditionally utilized to construct closely related first-quantized
parent Hamiltonians. More recently, a second-quantized ap-
proach was developed to yield alternative, second-quantized
presentations of FQH model states, study their parent
Hamiltonians, and establish new such Hamiltonians

[14,25,26]. In particular, this approach has proven effective
in constructing parent Hamiltonians [14] for unprojected Jain
composite fermion states, which are, in general, not fully
characterized by conventional clustering properties. It has
also been used to explain the existence of a frustration-free
parent Hamiltonian as a consequence of the matrix product
structure of the Laughlin state [27]. Furthermore, it inspired a
picture for particle fractionalization [28] that largely recovers
a symmetry between quasiholes and quasiparticles, which
is typically obscure in traditional treatments. A strength
of the second-quantized approach is that it allows rigorous
statements about the zero mode space of some frustration-free
solvable models where traditional methods are inadequate.
This is particularly so in the context of partonlike states (see
Refs. [29–38] and references therein), where Landau-level
mixing leads to wave functions that are no longer represented
by holomorphic polynomials, barring established techniques
from being used to prove uniqueness and/or completeness
of zero-mode trial wave functions. Alternative methods
to achieve such statements have recently been developed,
emphasizing largely second-quantized methods over
first-quantized ones. In some cases, one can develop the entire
theory surrounding certain classes of trial wave functions,
their parent Hamiltonians, and their associated zero-mode
spaces using an exclusively second-quantized formalism
that nowhere references the polynomials associated with
first-quantized wave functions. This has been done, in
particular, for Laughlin states [25] as well as all composite
fermion states in the positive Jain sequence [14]. Here, the
construction of traditional polynomial trial wave functions
is replaced by certain recursion relations in particle number
that allow the second-quantized trial states to be created
from the vacuum via a corresponding operator product. The
prototypical version of such products is Read’s presentation
[39] of the Laughlin state as a “condensate” involving a
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nonlocal order parameter (which was originally given in
a mixed first-/second-quantized notation). Analogously,
second-quantized constructions were recently discussed for
composite fermion states [26].

In this paper, we put forth similar developments that
yield a fully second-quantized construction of the Moore-
Read sequence, and a concurrent discussion of its parent
Hamiltonians. Our main result is a fully second-quantized
expression of Moore-Read states as an operator product acting
on the vacuum. As is well known, the parent Hamiltoni-
ans of Moore-Read states involve three-body terms [16,17].
While higher-body terms are quite common in the literature
of quantum Hall parent Hamiltonians [40–45], the discussion
is typically limited to the lowest Landau level utilizing first
quantization. While we will not leave the lowest Landau level
in this paper, one byproduct of our approach will be the exten-
sion of second-quantized methods so far exclusively applied
to two-body interactions to solvable models involving higher-
body terms. We thus make manifest how the “frustration-free
property” of the Moore-Read state and its parent Hamiltonian
arises in second quantization. We will further utilize these re-
sults to demonstrate the existence of off-diagonal long-range
order in Moore-Read states. Finally, we will extend several of
these results to the anti-Pfaffian and PH-Pfaffian states.

This paper is organized as follows. In Sec. II A, we
set up the problem. In Sec. II B, we postulate a second-
quantized recursive formula (2.16a) for fermionic (bosonic)
ν = 1/M Pfaffian state, whose zero-mode property is proven
in Secs. II C and II D. In Sec. II E, we perform a root anal-
ysis of the recursively defined state. In Sec. II F, we obtain
its second-quantized nonlocal order parameter and prove the
existence of off-diagonal long-range order. In Sec. II G, we
generalize to Pfaffian states with higher angular momentum
pairing. In Sec. III, we obtain the second-quantized recursive
formulas (3.1) and (3.8) for fermionic anti- and PH-Pfaffian
states, based on the recursive formula for the fermionic Pfaf-
fian state. We present discussion and outlook in Sec. IV.

II. SECOND-QUANTIZED MOORE-READ
PFAFFIAN STATE

A. Moore-Read Pfaffian state and its parent Hamiltonian

In this section, we review some defining properties of the
Moore-Read state and its parent Hamiltonian, and we estab-
lish the second-quantized formulation of these properties.

The parent Hamiltonian for the ν = 1/M fermionic
(bosonic) Moore-Read Pfaffian state [18], whose first-
quantized wave function is given by

Pf

(
1

zi − z j

)∏
k<l

(zk − zl )
M (2.1)

with even (odd) positive integer M for fermions (bosons),
respectively, consists of two-body and three-body projection
operators [46],

H = H (2bd) + H (3bd). (2.2)

The two-body projection operator H (2bd) in second quantiza-
tion is of the following form [47]:

H (2bd) =
∑

0�m<M−1
(−1)m=(−1)M−1

∑
J∈Z0+

T (2bd,m)†
J T (2bd,m)

J , (2.3)

where the positive-semidefinite two-body fermionic (bosonic)
operator T (2bd,m)†

J T (2bd,m)
J is the second-quantized form of the

Haldane Vm pseudopotential [12]. That is, it projects onto an
antisymmetric (symmetric) two-body state of relative angular
momentum mh̄ and total angular momentum Jh̄ in the low-
est Landau level (LLL). In disk geometry, it can be given a
concrete form via

T (2bd,m)
J = 2

1−J
2

∑
k

pm, J
2
(k)

√(
J

m

)(
J

J
2 + k

)
c J

2 −kc J
2 +k, (2.4)

and similar expressions hold in other geometries [47]. Here,(J
m

) = J!/(J − m)!m! is the binomial coefficient, and ci is
a fermionic (bosonic) operator that annihilates a particle of
angular momentum ih̄ in the LLL. Throughout this paper, we
are dealing with LLL orbitals on the disk, so only those ci with
non-negative i are of concern to us. We therefore let ci = 0
whenever we formally encounter negative i in the calculation.
pm, J

2
(k) is a polynomial in k of degree m and parity (−1)m,

whose expression is given by

pm, J
2
(k) = (−1)m+ J

2 −k

( m
J/2−k

)( J
J/2−k

)
× 2F1

(
−J

2
+ k,−J + m, 1 − J

2
+ k + m,−1

)
(2.5)

with 2F1 the hypergeometric function.
The zero mode, or ground space of H (2bd), is spanned by

the ν = 1/(M − 1) Laughlin state and its zero-energy exci-
tations, which physically represent the edge and quasihole
excitations of this state. The zero-mode condition associated
with H (2bd) can be cast as

T (2bd,m)
J |ψzero〉 = 0 (2.6)

for all J and m in Eq. (2.3). This zero-mode condition is
clearly invariant under the formation of new linearly indepen-
dent linear combinations of the operators T (2bd,m)

J , and thus it
can be written as

Q(2bd,m)
J |ψzero〉 = 0 (2.7)

in terms of simpler operators

Q(2bd,m)
J =

∑
0�i1,i2�J

i1+i2=J

(i1 − i2)m

√
i1!i2!

ci2 ci1 . (2.8)

Here, J and m run over the same values as before. The
simple monomial form of the last expression offers yet a
more condensed version of the two-body zero-mode condi-
tion. Defining the operators

Q(2bd,P )
J =

∑
0�i1,i2�J

i1+i2=J

P (i1, i2)√
i1!i2!

ci2 ci1 , (2.9)
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where P is any polynomial in two variables of the requisite
symmetry, we may equivalently cast Eq. (2.7) as

Q(2bd,P )
J |ψzero〉 = 0, (2.10)

where J runs over all non-negative integers as before, and
P can be any polynomial of degree less than M − 1. To see
the equivalence with Eq. (2.7), write P in terms of variables
i1 + i2 and i1 − i2, and note that i1 + i2 is a constant in the
definition of Eq. (2.9).

We will now similarly cast the zero-mode condition asso-
ciated with H (3bd). H (3bd), as given in the literature [21,46],
is a three-body projection operator that projects onto states
of relative angular momentum 3M − 3. To make the claim
even stronger, we also include the three-body projection op-
erator that projects onto states of relative angular momentum
3M − 2. The Moore-Read state will be the unique zero mode
of the resulting Hamiltonian within its angular momentum
sector with or without the addition of the 3M − 2 term. Note,
however, that the latter must be taken to vanish identically
if M = 2 (fermionic case) or M = 1 (bosonic case), since
the corresponding three-body states do not exist [21]. The
second-quantized form for H (3bd) is thus given by

H (3bd) =
3M−2∑

t=3M−3

∑
J∈Z0+

T (3bd,t )†
J T (3bd,t )

J , (2.11)

with

T (3bd,t )
J =

∑
0�i1,i2,i3�J
i1+i2+i3=J

Qt (i1, i2, i3)√
i1!i2!i3!

ci3 ci2 ci1 . (2.12)

Here, t runs over an index set that labels an orthonormal basis
of three-particle states with total angular momentum J and
relative angular momentum t (all in units of h̄). Any such
state can be expressed via Eq. (2.12) through an appropriately
chosen polynomial Qt in three variables, of the requisite sym-
metry for fermions/bosons. (Qt will also depend on J and M;
we will, however, leave this understood.) Qt can be chosen to
be of degree t (not necessarily homogeneous).

The zero-mode condition associated with H (3bd) then reads,
in complete analogy with the two-body case,

T (3bd,t )
J |ψzero〉 = 0 (2.13)

for all J � 0 and t = 3M − 3, 3M − 2.
For general M, the polynomials Qt are rather com-

plex, even more so than their two-body counterparts (2.5).
Luckily, we will not need their precise form. For similar
reasons, though perhaps less well known, the zero-mode con-
dition (2.13) can be given an equivalent form analogous to
Eq. (2.10). To this end, we define generic three-body destruc-
tion operators

Q(3bd,Q)
J =

∑
0�i1,i2,i3�J
i1+i2+i3=J

Q(i1, i2, i3)√
i1!i2!i3!

ci3 ci2 ci1 (2.14)

with Q a polynomial in three variables and of the desired
(anti)symmetry. By definition, the zero modes we are in-
terested in satisfy both the two-body and the three-body
zero-mode conditions Eqs. (2.10) and (2.13). In this case, we

may, however, replace the three-body zero-mode condition
(2.13) with the seemingly stronger condition

Q(3bd,Q)
J |ψzero〉 = 0 (2.15)

for all integers J � 0 and all three-variable polynomials Q
of degree less than or equal to 3M − 2. Clearly, ensuring
Eq. (2.15) is sufficient to ensure that Eq. (2.13) is also
satisfied. Below we will show that our second-quantized ex-
pression for the Moore-Read state satisfies both Eqs. (2.10)
and (2.15). It is thus, in particular, a zero mode of the
Hamiltonian Eq. (2.2). In turn, any state that is a zero mode
of this Hamiltonian, and has the same angular momentum
as the Moore-Read state, must be equal to the Moore-Read
state (2.1) itself (up to a constant). This follows from known
spectral properties of this Hamiltonian [21,46]. We will thus
be able to establish, without referring to any explicit first-
quantized polynomial construction, that the second-quantized
expression, which will constitute the main result of this work
below, is the Moore-Read state.

It may be instructive, however, to understand why ful-
fillment of the stronger equation (2.15) by the Moore-Read
state is not coincidental, but indeed a zero mode satisfying
both Eq. (2.10) (or any of its equivalents) and Eq. (2.13) also
satisfies Eq. (2.15). This may be done as follows. One may
convince oneself that any three-particle state generated from
the vacuum |0〉 via (Q3bd,Q

J )† |0〉, with Q of degree L, lies
in the subspace of relative angular momentum less than or
equal to L. (Conversely, if a three-particle state of given total
angular momentum J has relative angular momentum L, it can
be written in this way by a polynomial of degree L.) Hence,
for L = 3M − 2 and at given J , these three-particles states
span the subspace spanned by the states associated with the Qt

defined after Eq. (2.12) and (all) additional states of relative
angular momentum less than 3M − 2. However, it is well
known that zero modes of H (2bd) in Eq. (2.3) are automatically
annihilated by three-particle projection operators onto states
with relative angular momentum less than 3M − 3. It is for
this reason that such three-particle projection operators are
usually excluded from Eq. (2.2). Hence, in the presence of the
two-body constraint (2.10), the three-body constraint (2.15)
becomes truly equivalent to that of (2.13).

B. Recursive formula for the fermionic (bosonic) Pfaffian state

With its essential defining properties now in place, we pos-
tulate the following second-quantized recursive formula for
the Moore-Read “Pfaffian” state, whose first-quantized wave
function is Eq. (2.1):

|PfN+2〉 = 1

N + 2

M−1∑
l=0

(−1)l

(
M − 1

l

) MN+M−1∑
r,k=0

√
r!k!

× c†
r c†

kSMN+M−1−l−rSMN+l−k |PfN 〉 (2.16a)

for even non-negative particle number N , where the particle-
number-conserving operator S� is defined in Eq. (2.17) below.
The beginning of the recursion is defined by |Pf0〉 = |0〉. As
we comment below, the recursion (2.16a) can be viewed as a
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purely second-quantized version of a “mixed” first-/second-
quantized presentation of the Pfaffian state that has already
appeared in the original work by Moore and Read [18]. While
Eq. (2.16a) can be derived directly from the Moore-Read wave
function (2.1), we will emphasize here that one does not need
to make contact with this first-quantized wave function, nor
any other presentation given originally by Moore and Read,
in order to show directly that (2.16a) defines the densest zero
mode of a frustration-free parent Hamiltonian. Our approach
is thus intrinsically second-quantized.

In addition, the recursion (2.16a) generalizes a similar
second-quantized recursion for the Laughlin state [25] that,
in turn, can be seen to be a (purely) second-quantized ren-
dition of Read’s presentation [39] of the Laughlin state as
the “Bose condensate” of certain (nonlocal) “order param-
eter” operators that are off-diagonal in particle number. An
important distinction between Eq. (2.16a) for the Moore-Read
state and the earlier recursions for the Laughlin state is that
we are increasing the particle number by 2, reflecting the
paired nature of the state. However, the Moore-Read state with
an odd particle number can also be accessed in this frame-
work, simply via removal of one particle from |PfN 〉 with
even N . We will comment in detail on particle removal fur-
ther below. Wherever desired, we will notationally condense
Eq. (2.16a) to

|PfN+2〉 = RN |PfN 〉 , (2.16b)

where RN denotes the operator on the right-hand side of
Eq. (2.16a).

To prove Eq. (2.16), we will utilize the strategy set up
in the preceding section. That is, we will establish the state
|PfN 〉 as defined in Eq. (2.16a) to be a zero mode of the
parent Hamiltonian (2.2), which uniquely defines the state
given that it has the proper total angular momentum. This
serves the important additional purpose of exposing the
inner workings that render complex (long-ranged) second-
quantized positive-semidefinite Hamiltonians—like the one
in question—frustration-free. It is also for this reason that
we proceed without making any essential use of the first-
quantized wave function (2.1). We will, however, comment on
how Eq. (2.16a) could be derived in the first-quantized manner
in Appendix A.

To proceed, we make contact with the operator formalism
first established in Refs. [25,47,48], and then generalized to
composite fermions in multiple Landau levels in Ref. [26].
The S operator [25,26] in Eq. (2.16a), which originates from∏

i< j (zi − z j )M in the first quantization, is defined as

S� = (−1)�
∑

n1+n2+···+nM=�

en1 en2 · · · enM for � � 0,

(2.17)
S� = 0 for � < 0,

where en, in turn, is the particle-number-conserving
operator that, in first quantization, multiplies the wave
function with the elementary symmetric polynomial
2−n/2 ∑

1�i1<i2···<in�N zi1 zi2 · · · zin . Second-quantized represe-
ntations of these operators and other generators of symmetric
polynomials have been discussed in detail in Ref. [48].

We have

en = 1

n!

+∞∑
l1,...,ln=0

√
l1 + 1 c†

l1+1

√
l2 + 1 c†

l2+1 · · ·
√

ln + 1

× c†
ln+1cln · · · cl2 cl1 for n > 0,

e0 =1,

en = 0 for n < 0. (2.18)

This then allows for recursive generation of the second-
quantized Moore-Read state via Eqs. (2.16) and (2.17).

en is related to the power-sum symmetric polynomial
operator

Pd =
+∞∑
r=0

√
(r + d )!

r!
c†

r+d cr (2.19)

for d � 0 by the Newton-Girard relation [26,48],

en = 1

n

n∑
d=1

(−1)d−1Pd en−d . (2.20)

The action of Pd on an N-particle state is that of multiplying its
first-quantized wave function with the power-sum symmetric
polynomial Pd ≡ 2−d/2 ∑N

i=1 zd
i .

Pd is a “zero-mode generator” in the sense that when acting
on a zero mode |ψzero〉, as defined by Eqs. (2.10) and (2.15), it
gives a new zero mode. The reason is that Q(2bd,P )

J Pd |ψzero〉 =
0 since [Q(2bd,P )

J , Pd ] is of the form Q(2bd,P ′ )
J−d , with P ′ a poly-

nomial of degree no larger than that of P . Thus, [Q(2bd,P )
J , Pd ]

vanishes on zero modes by Eq. (2.10). For analogous reasons,
we also have Q(3bd,Q)

J Pd |ψzero〉 = 0. By the Newton-Girard
formula, every en can be expressed in terms of all Pd with
d = 1, 2, . . . , n. Therefore, en and S� are also zero-mode
generators.

Another important property of S� is that different S� com-
mute with each other. The commutative property of S� can
likewise be established by first establishing the commutativity
of the Pd among themselves, and then extending this property
to the en via Newton-Girard relations.

A centerpiece of this work and the machinery to follow is
the description of the effect of the removal of a single particle
in state r from the state |PfN+2〉 in terms of the addition
of a particle to the state |PfN 〉, plus operators generating a
“correlation hole” just big enough such that the net effect is
the local charge depletion described by cr :

cr |PfN+2〉 =
√

r!

2

M−1∑
l=0

(−1)l

(
M − 1

l

) MN+M−1∑
k=0

√
k! c†

k

× [SMN+M−1−l−rSMN+l−k + (−1)M−1

× SMN+M−1−l−kSMN+l−r] |PfN 〉 . (2.21)

This equation can actually be derived as a pure consequence
of Eq. (2.16a), that is, without resorting to the first-quantized
wave function of the Moore-Read state. We show this in
the Supplemental Material [49]. The derivation is lengthy,
however. To the less patient reader, we thus offer an alterna-
tive proof of Eq. (2.21) [and by extension Eq. (2.16a)] that
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uses the first-quantized wave function. This proof is given in
Appendix A.

We shall now proceed to show that the recursion
Eq. (2.16a) defines the Moore-Read state at filling 1/M by
showing that it is a zero mode of the appropriate parent
Hamiltonian at the proper angular momentum. We begin with
the two-body terms.

C. Proof that the recursively defined Pfaffian state
is a zero mode of the two-body Hamiltonian (2.3)

We prove by the method of mathematical induction that the
state as recursively defined in Eq. (2.16a) is a zero mode of all
Q(2bd,P )

J with degree of P less than M − 1, thus a zero mode
of the two-body Hamiltonian (2.3).

Proof. We begin the induction by proving the claimed
property directly for |Pf0〉 = |0〉, |Pf2〉, and |Pf4〉. By using
the recursive formula Eq. (2.16a), the second-quantized form
of |Pf2〉 is

|Pf2〉 = 1

2

M−1∑
l=0

(−1)l

(
M − 1

l

) M−1∑
r,k=0

√
r!k! c†

r c†
k

× SM−1−l−rSl−k |0〉

= 1

2

M−1∑
l=0

(−1)l

(
M − 1

l

)√
(M − 1 − l )!l!

× c†
M−1−l c

†
l |0〉 . (2.22)

In the above calculation of |Pf2〉, we have used the fact
that the S operator is the sum of products of e opera-
tors, which have annihilation operators on the right, thus
SM−1−l−rSl−k |0〉 vanishes unless M − 1 − l − r = 0 and l −
k = 0. The second-quantized form of |Pf4〉 is given in
Eq. (B1).

|Pf0〉, |Pf2〉, and |Pf4〉 are annihilated by all Q(2bd,P )
J with

degree of P less than M − 1, since |Pf0〉 is vacuum and

Q(2bd,P )
J |Pf2〉 = (−1)M−1δJ,M−1

M−1∑
l=0

(−1)l

(
M − 1

l

)
× P (l, M − 1 − l ) = 0,

due to Eq. (B4). The proof that |Pf4〉 is annihilated by all
Q(2bd,P )

J is given in Appendix B.
Now we establish the induction step, assuming that

Q(2bd,P )
J |PfN 〉 = 0 (2.23)

holds for all J , with some N � 4. Then we have

(N + 2)Q(2bd,P )
J |PfN+2〉 = Q(2bd,P )

J

M−1∑
l=0

(−1)l

(
M − 1

l

) MN+M−1∑
r,k=0

√
r!k! c†

r c†
kSMN+M−1−l−rSMN+l−k |PfN 〉

= 2
∑

0�i1,i2�J
i1+i2=J

P (i1, i2)√
i2!

ci2

M−1∑
l=0

(−1)l

(
M − 1

l

) MN+M−1∑
k=0

√
k! c†

k

× [SMN+M−1−l−i1 SMN+l−k + (−1)M−1SMN+M−1−l−kSMN+l−i1 ] |PfN 〉

+ 2(−1)M
∑

0�i1,i2�J
i1+i2=J

P (i1, i2)
M−1∑
l=0

(−1)l

(
M − 1

l

)
SMN+M−1−l−i2 SMN+l−i1 |PfN 〉

+
M−1∑
l=0

(−1)l

(
M − 1

l

) MN+M−1∑
r,k=0

√
r!k! c†

r c†
kQ(2bd,P )

J SMN+M−1−l−rSMN+l−k |PfN 〉

= 4Q(2bd,P )
J |PfN+2〉 + 2(−1)M

∑
0�i1,i2�J

i1+i2=J

P (i1, i2)
M−1∑
l=0

(−1)l

(
M − 1

l

)
SMN+M−1−l−i2 SMN+l−i1 |PfN 〉 ,

(2.24)

where we have used Eq. (2.16a) in the first step, ci2 ci1 c†
r c†

k =
δr,i1 ci2 c†

k + (−1)M−1δr,i2 ci1 c†
k + δk,i2 ci1 c†

r +(−1)M−1δk,i1 ci2 c†
r −

δr,i1δk,i2 + (−1)Mδr,i2δk,i1 + c†
r c†

kci2 ci1 in the second step,
and Eq. (2.21) in the last step so as to reassemble
the first expression after the second step into the first
expression on the last line. We have also used the identity
Q(2bd,P )

J SMN+M−1−l−rSMN+l−k |PfN 〉 = 0 since SMN+M−1−l−r

and SMN+l−k are zero-mode generators, and |PfN 〉 is assumed
to be a zero mode.

Now we need to simplify the last term

∑
0�i1,i2�J

i1+i2=J

P (i1, i2)
M−1∑
l=0

(−1)l

(
M − 1

l

)

× SMN+M−1−l−i2 SMN+l−i1 |PfN 〉 . (2.25)
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Under a change of variables, i1 − l = i′1 and i2 + l = i′2, the
above term becomes

M−1∑
l=0

(−1)l

(
M − 1

l

) ∑
−l�i′1�J−l
l�i′2�J+l

i′1+i′2=J

P (i′1 + l, i′2 − l )

× SMN+M−1−i′2 SMN−i′1 |PfN 〉 . (2.26)

Now we shall use an important identity,

S� |PfN 〉 = 0 for � > MN . (2.27)

The reason for its validity is the following: the state
|PfN 〉 has N particles, while nonzero S� is defined as
(−1)�

∑
n1+n2+···+nM=� en1 en2 · · · enM , in which eni will move

the orbitals of ni particles for i = 1, 2, . . . , M. For � > MN ,
there must be an ni larger than the particle number N , thus S�

annihilates |PfN 〉 in this case.
As a result of the above identity, the lower limit of both

i′1 and i′2 can be changed to 0, which does not affect the
summation. Therefore, the upper limit of both i′1 and i′2
can be changed to J on account of i′1 + i′2 = J . After the
change of limits of summations, Eq. (2.25) can be finally
simplified to∑

0�i′1,i
′
2�J

i′1+i′2=J

[ M−1∑
l=0

(−1)l

(
M − 1

l

)
P (i′1 + l, i′2 − l )

]

× SMN+M−1−i′2 SMN−i′1 |PfN 〉 , (2.28)

which vanishes since the summation in the square brackets is
exactly 0 as a result of Eq. (B4), considering that the degree
of P is less than M − 1.

After this lengthy simplification, we obtain (N +
2)Q(2bd,P )

J |PfN+2〉 = 4Q(2bd,P )
J |PfN+2〉. Therefore, if |PfN 〉 is

a zero mode of all Q(2bd,P )
J for some N � 4, so will be |PfN+2〉.

By mathematical induction, the fermionic (bosonic) Pfaffian
state, as recursively defined in Eq. (2.16a), is thus a zero mode
of the two-body Hamiltonian (2.3). �

D. Proof that a recursively defined Pfaffian state is a zero
mode of the three-body Hamiltonian (2.11)

Next, we prove by the method of mathematical induction
that the fermionic (bosonic) Pfaffian state, as recursively de-
fined in Eq. (2.16a), is a zero mode of all Q(3bd,Q)

J with degree
of Q less than 3M − 1, thus a zero mode of the three-body
Hamiltonian (2.11).

Proof. To begin the induction, we prove the claimed prop-
erty directly for |Pf0〉 = |0〉, |Pf2〉, |Pf4〉, and |Pf6〉.

It is easy to see that |Pf0〉 and |Pf2〉 are annihilated by all
Q(3bd,Q)

J , since in these cases the particle numbers are less than
3. We prove that |Pf4〉 and |Pf6〉 are annihilated by all Q(3bd,Q)

J
in Appendix C.

Now prove the induction step and assume that

Q(3bd,Q)
J |PfN 〉 = 0 for all J and some N � 6. (2.29)

Similar to Eq. (2.24), we obtain

(N + 2)Q(3bd,Q)
J |PfN+2〉 = Q(3bd,Q)

J

M−1∑
l=0

(−1)l

(
M − 1

l

) MN+M−1∑
r,k=0

√
r!k! c†

r c†
kSMN+M−1−l−rSMN+l−k |PfN 〉

= 3
∑

0�i1,i2,i3�J
i1+i2+i3=J

Q(i1, i2, i3)√
i1!i2!

ci2 ci1

M−1∑
l=0

(−1)l

(
M − 1

l

) MN+M−1∑
k=0

√
k! c†

k

× [SMN+M−1−l−i3 SMN+l−k + (−1)M−1SMN+M−1−l−kSMN+l−i3 ] |PfN 〉

− 6
∑

0�k1,k2,i�J
k1+k2+i=J

Q(k1, k2, i)
ci√
i!

M−1∑
l=0

(−1)l

(
M − 1

l

)
SMN+M−1−l−k1 SMN+l−k2 |PfN 〉

+
M−1∑
l=0

(−1)l

(
M − 1

l

) MN+M−1∑
r,k=0

√
r!k! c†

r c†
kQ(3bd,Q)

J SMN+M−1−l−rSMN+l−k |PfN 〉

= 6Q(3bd,Q)
J |PfN+2〉 − 6

∑
0�k1,k2,i�J
k1+k2+i=J

Q(k1, k2, i)√
i!

ci

M−1∑
l=0

(−1)l

(
M − 1

l

)
SMN+M−1−l−k1 SMN+l−k2 |PfN 〉 ,

(2.30)

where we have used Eq. (2.16a) in the first step, ci3 ci2 ci1 c†
r = δr,i1 ci3 ci2 + (−1)M−1δr,i2 ci3 ci1 + δr,i3 ci2 ci1 + (−1)M−1c†

r ci3 ci2 ci1
twice, and c†

r ci2 ci1 = ci2 ci1 c†
r − δr,i1 ci2 + (−1)Mδr,i2 ci1 in the second step, and again Eq. (2.21) in the third step in order to

condense terms into the first term on the last line. We have also used the identity Q(3bd,Q)
J SMN+M−1−l−rSMN+l−k |PfN 〉 = 0 since

SMN+M−1−l−r and SMN+l−k are zero-mode generators, and |PfN 〉 is assumed to be a zero mode.

075142-6



FROM FRUSTRATION-FREE PARENT HAMILTONIANS TO … PHYSICAL REVIEW B 108, 075142 (2023)

Now we need to simplify the last term,∑
0�k1,k2,i�J
k1+k2+i=J

Q(k1, k2, i)
ci√
i!

M−1∑
l=0

(−1)l

(
M − 1

l

)
SMN+M−1−l−k1 SMN+l−k2 |PfN 〉 . (2.31)

By using the commutator

[ci, Sl ] =
M∑

k=1

(−1)k

(
M

k

)√
i!

(i − k)!
Sl−kci−k, (2.32)

this term can be rewritten as
M∑

m1,m2=0

(−1)m1+m2

(
M

m1

)(
M

m2

) ∑
0�k1,k2,i�J
k1+k2+i=J

M−1∑
l=0

(−1)l

(
M − 1

l

)
Q(k1, k2, i)SMN+M−1−l−k1−m1 SMN+l−k2−m2

× ci−m1−m2√
(i − m1 − m2)!

|PfN 〉 . (2.33)

Under a change of variables, k1 + m1 + l = k′
1, k2 + m2 − l = k′

2, and i − m1 − m2 = i′, the above term will be

M∑
m1,m2=0

(−1)m1+m2

(
M

m1

)(
M

m2

) M−1∑
l=0

(−1)l

(
M − 1

l

) ∑
m1+l�k′

1�J+m1+l
m2−l�k′

2�J+m2−l
−m1−m2�i′�J−m1−m2

k′
1+k′

2+i′=J

Q(k′
1 − m1 − l, k′

2 − m2 + l, i′ + m1 + m2)

× SMN+M−1−k′
1
SMN−k′

2

ci′√
i′!

|PfN 〉 . (2.34)

Similar to Eq. (2.27), we shall use a constraint

S�ci′ |PfN 〉 = 0 for � > M(N − 1). (2.35)

As a result of this constraint, the lower limit of k′
1 can be raised to 2M − 1, the lower limit of k′

2 can be raised to M, and the
upper limit of i′ can be lowered to J − (3M − 1) on account of k′

1 + k′
2 + i′ = J . Also, observe that i′ should be non-negative;

therefore, the upper limit of both k′
1 and k′

2 can be changed to J .
After these changes of limits of summations, Eq. (2.31) can be finally simplified to∑

2M−1�k′
1�J

M�k′
2�J

0�i′�J−(3M−1)
k′

1+k′
2+i′=J

[
M∑

m1,m2=0

(−1)m1+m2

(
M

m1

)(
M

m2

) M−1∑
l=0

(−1)l

(
M − 1

l

)
Q(k′

1 − m1 − l, k′
2 − m2 + l, i′ + m1 + m2)

]

× SMN+M−1−k′
1
SMN−k′

2

ci′√
i′!

|PfN 〉 . (2.36)

As a result of Eq. (B4), for the summations in the square
brackets not to vanish, there should exist at least one term
in Q in which the power of l , m1, and m2 should be greater
than or equal to M − 1, M, and M, respectively. However, the
degree of Q is less than 3M − 1. Therefore, the term in the
square brackets vanishes, rendering Eq. (2.31) zero.

After this lengthy simplification, we obtain (N +
2)Q(3bd,Q)

J |PfN+2〉 = 6Q(3bd,Q)
J |PfN+2〉. Therefore, if |PfN 〉 is

a zero mode of all Q(3bd,Q)
J for some N � 6, so will be |PfN+2〉.

By mathematical induction, the fermionic (bosonic) Pfaffian
state, as recursively defined in Eq. (2.16a), is thus a zero mode
of the three-body Hamiltonian (2.11). �

E. Root state and filling factor of the fermionic (bosonic)
Pfaffian state |PfN〉

The Moore-Read FQH state belongs to a large class of
trial wave functions that follow a “root state + squeezing”
paradigm. This holds true for all Jack polynomial FQH trial
states [50–54] and their fermionic counterparts, of which
Moore-Read states are examples, and it has recently been
generalized to a considerable number of mixed Landau level
FQH states [26,55–58]. Consider those occupation number
eigenstates |{ni}〉 in the angular momentum LLL eigenba-
sis that appear with a nonzero coefficient in an N-particle
state |ψ〉. |{ni}〉 is a Slater determinant for fermions and a
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symmetrized monomial (permanent) for bosons, but we will
prefer the neutral term configuration to refer to both cases.
The case of interest will be where |ψ〉 is a zero mode of the
parent Hamiltonian. Then we write

|ψ〉 = |ψ〉root +
∑

|{ni}〉�=|ψ〉root

C{ni} |{ni}〉 , (2.37)

where |ψ〉root is comprised of those configurations in the ex-
pansion that cannot be obtained from any other configuration,
appearing with nonzero coefficient in |ψ〉, through so-called
inward-squeezing processes [51]. These inward-squeezing
processes are generated by the operations

c†
j c

†
i ci−mc j+m, (2.38)

where i � j and m > 0. Usually, |ψ〉root is proportional to a
single configuration such that all the other configurations in
the expansion in Eq. (2.37) can be obtained from it via inward
squeezing. However, by our definition, |ψ〉root can also be a
linear combination of such configurations, as it may happen
that the zero mode |ψ〉 is a linear combination of simpler
zero modes. We refer the reader to the referenced literature
[26,47,50–58] for details. Also, we note that Jack states and
their fermionic counterparts have been associated with certain
types of recursion relations [54,59,60]. These are recursion
relations for the coefficients of the mode expansion, where
the particle number is fixed and the recursion proceeds along
increasing “squeezing level” of the associated modes. This is
to be distinguished from the present case, where we defined
states recursively in particle number.

The root states satisfy Pauli-like principles. In the case of
a single-component state in a single Landau level, these are
known as generalized Pauli principles [25,50,51]. For exam-
ple, there is no more than one particle in any three consecutive
orbitals in the root state of the ν = 1/3 Laughlin state, which
corresponds to the familiar 100100100 . . . configuration. The
same generalized Pauli principle does, however, apply to
other zero modes (not necessarily of the highest density) of
the state’s parent Hamiltonian. For multicomponent and/or
multi-Landau-level states, our definition of a root state will
generally lead to more than one configuration entering |ψ〉root,
and especially will lead to root level entanglement. In this
case, we speak of “entangled” Pauli principles [56]. The

unprojected ν = 2/5 Jain state may serve as an example of
this, where this entangled Pauli principle requires next-nearest
neighbors to be singlets of an SU(2)-algebra related to the
Landau level degrees of freedom, in addition to ruling out
double occupancies (with the same angular momentum but
different Landau level indices) [55]. Effectively, this leads to
a situation in which there can be no more than two particles
in any five consecutive orbitals, in the root state. By contrast,
basis states inward-squeezed from root states do not satisfy
these Pauli-like principles.

As root states contain much information about the univer-
sal properties of the underlying state, including statistics [61],
their uses are manifold. In an obvious way, they encode the
filling fractions of the underlying state, commonly defined as
the ratio of the particle number to the highest angular momen-
tum of any orbital occupied in the state (in the thermodynamic
limit).

In this subsection, we will now prove that |PfN 〉 has a root
state

c†
0c†

M−1c†
2Mc†

3M−1 . . . c†
(N−2)Mc†

(N−1)M−1 |0〉 (2.39)

for even particle number N . This will reaffirm that it has the
correct highest occupied orbital [angular momentum (N −
1)M − 1], rendering it the unique densest zero mode of its
parent Hamiltonian, thus identical (up to normalization) to the
Moore-Read state at the respective filling factor. This will also
serve to close one loop-hole in the reasoning so far. As for
that shown above, it might be possible that the state |PfN 〉 as
defined in Eq. (2.16a) vanishes, at least for some sufficiently
high particle number N . We can rule this out below, as we
show in particular that the state |PfN 〉 has a nonzero overlap
with the root state (2.39).

Again, we prove this by mathematical induction. For N =
2, the above statement is true, as seen from Eq. (2.22). Now
we assume

|PfN 〉root ∝ c†
0c†

M−1c†
2Mc†

3M−1 . . . c†
(N−2)Mc†

(N−1)M−1 |0〉
(2.40)

for N � 2, and its coefficient CNroot in the expansion of |PfN 〉
in terms of occupation number basis states is nonzero.

We plug |PfN 〉root into Eq. (2.16) to obtain

RN |PfN 〉root = 1

N + 2

M−1∑
l=0

(−1)l

(
M − 1

l

) MN+M−1∑
r1,r2=0

√
r1!r2! c†

r1
c†

r2
SMN+M−1−l−r1 SMN+l−r2 |PfN 〉root

= 1

N + 2

M−1∑
l=0

(−1)l

(
M − 1

l

) MN+M−1∑
r1,r2=0

M∑
p1,...,pN ,q1,...,qN =0

(−1)
∑N

i=1(pi+qi )
N∏

i=1

(
M

pi

)(
M

qi

)

×
√

(q1 + p1)!

0!

(M − 1 + q2 + p2)!

(M − 1)!

(2M + q3 + p3)!

(2M )!

(3M − 1 + q4 + p4)!

(3M − 1)!
· · · [(N − 2)M + qN−1 + pN−1]!

[(N − 2)M]!

×
√

[(N − 1)M − 1 + qN + pN ]!r1!r2!

[(N − 1)M − 1]!
c†

r1
c†

r2
c†

q1+p1
c†

M−1+q2+p2
c†

2M+q3+p3
c†

3M−1+q4+p4
. . . c†

(N−2)M+qN−1+pN−1

× c†
(N−1)M−1+qN +pN

SMN+M−1−l−r1−
∑N

i=1 pi
SMN+l−r2−

∑N
i=1 qi

|0〉
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= 1

N + 2

M−1∑
l=0

(−1)l

(
M − 1

l

) M∑
p1,...,pN ,q1,...,qN =0

(−1)
∑N

i=1(pi+qi )
N∏

i=1

(
M

pi

)(
M

qi

)

×
√

(q1 + p1)!

0!

(M − 1 + q2 + p2)!

(M − 1)!

(2M + q3 + p3)!

(2M )!

(3M − 1 + q4 + p4)!

(3M − 1)!
· · · [(N − 2)M + qN−1 + pN−1]!

[(N − 2)M]!

×
√

[(N − 1)M − 1 + qN + pN ]!

[(N − 1)M − 1]!
(MN + M − 1 − l −

∑N

i=1
pi )!(MN + l −

∑N

i=1
qi )!

× c†
MN+M−1−l−∑N

i=1 pi
c†

MN+l−∑N
i=1 qi

c†
q1+p1

c†
M−1+q2+p2

c†
2M+q3+p3

c†
3M−1+q4+p4

. . . c†
(N−2)M+qN−1+pN−1

× c†
(N−1)M−1+qN +pN

|0〉 ,

where we have used Eq. (B2) to move S to the right of c†. We
have also used the fact that both indices of S operators, MN +
M − 1 − l − r1 − ∑N

i=1 pi and MN + l − r2 − ∑N
i=1 qi, have

to be 0, following the same logic used in the derivation of
Eq. (2.22).

The only solutions for

c†
MN+M−1−l−∑N

i=1 pi
c†

MN+l−∑N
i=1 qi

c†
q1+p1

c†
M−1+q2+p2

× c†
2M+q3+p3

c†
3M−1+q4+p4

. . . c†
(N−2)M+qN−1+pN−1

× c†
(N−1)M−1+qN +pN

|0〉 (2.41)

in the above expression to be proportional to |PfN+2〉root ∝
c†

0c†
M−1c†

2Mc†
3M−1 . . . c†

NMc†
(N+1)M−1 |0〉 are parametrized by a

choice of j = 0, 1, 2, . . . , N/2, where q1 = p1 = q2 = p2 =
· · · = q2 j = p2 j = 0 and q2 j+1 = p2 j+1 = q2 j+2 = p2 j+2 =
· · · = qN = pN = M, and furthermore a choice of l = 0, M −
1. One checks that all these solutions enter with the same
sign, and thus |PfN+2〉root will be generated from |PfN 〉root via
Eq. (2.16). On the other hand, by acting with RN on any |{ni}〉
that can be obtained from |PfN 〉root via inward squeezing,
similar considerations show that |PfN+2〉root cannot be gener-
ated, and the only configurations that can be generated are
obtainable from |PfN+2〉root via inward squeezing. Together,
these results show that |PfN+2〉root is the root state of |PfN+2〉
not only in name, but according to the definition given at the
beginning of this section.

In summary, the fermionic (bosonic) Pfaffian state |PfN 〉,
as recursively defined in Eq. (2.16) for even particle number
N , has a root state proportional to

c†
0c†

M−1c†
2Mc†

3M−1 . . . c†
(N−2)Mc†

(N−1)M−1 |0〉 , (2.42)

thus possessing the filling factor 1/M.

F. Off-diagonal long-range-order operator
of the Pfaffian state in second quantization

In this subsection, we establish the connection between
the foregoing results and the existence of off-diagonal long-
range order (ODLRO) in a nonlocal order parameter for the
Moore-Read state. Such a connection is natural, as the second-
quantized recursion (2.16) we use to define the Moore-Read
state in this paper is a generalization of a similar recursion
for the Laughlin state that, in its original form [39], emerged

as the interpretation of the Laughlin state as a condensate
of a nonlocal order parameter. This is quite manifest also
in Eq. (2.16), and it can be further emphasized by its trivial
formal “integration” via

|PfN 〉 = (R)N/2 |0〉 (2.43)

for N even, where

R =
∑

Neven

RN PN , (2.44)

and PN is the projection onto N-particle subspace of the Fock
space. In this form, one may see this equation as equivalent
to Eq. (5.8) by Moore and Read [18], with the important
difference that the latter is presented in mixed first-/second-
quantized notations.

Fully second-quantized forms similar to ours have been
given before for the Laughlin state [25], concurrent with
second-quantized expressions for the associated nonlocal or-
der parameter [48]. Both have been successfully generalized
to composite fermion states [26], which became instrumental
in constructing parent Hamiltonians for these states [14]. To
complete our second-quantized picture for the Moore-Read
state, it is thus prudent to construct the nonlocal order param-
eter directly and demonstrate its display of ODLRO. Similar
to previously studied examples, the key ingredient is the ac-
tion of an electron destruction operator on the incompressible
ground state, as facilitated in the present case by Eq. (2.21).
While Refs. [26,48] demonstrated the ODLRO in the orbital
basis, a formulation in real space is equally possible. We will
aim for the demonstration of real-space ODLRO here, and to
this end, utilize some notation developed in Ref. [28].

We thus introduce the field operator annihilating a particle
(we again treat fermions and bosons on an equal footing)
at z = x + i y, projected onto the lowest Landau level, via
its mode expansion �(z) = ∑

r�0 φr (z)cr , where the single-
particle wave function on the disk is

φr (z) = N−1
r zre−|z|2/4 (2.45)

with the normalization factor Nr = √
2π2rr! . By introduc-

ing pseudofermionic (bosonic) operators [26] c̄r := cr/Nr and
c̄†

r := Nrc†
r for compactness, Eq. (2.21) can be recast in the
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form

�(z) |PfN+2〉 = e−|z|2/4

4π

M−1∑
l=0

(−1)l

(
M − 1

l

) ∑
r,k�0

zr c̄†
k√

2r+k

× [SMN+M−1−l−rSMN+l−k + (−1)M−1

× SMN+M−1−l−kSMN+l−r] |PfN 〉 . (2.46)

This may be simplified by introducing the second-quantized
N-body quasihole operator ÛN (z) = ∑N

d=0(−z)N−d 2
d
2 ed ,

which creates a Laughlin-quasihole at z. Its Mth power
is given by Û M

N (z) = (−1)MN
∑

r�0 zr2
MN−r

2 SMN−r (see the
supplementary notes of Ref. [28]). Note that Read’s order pa-
rameter for the 1/M-Laughlin state is precisely �†(z)Û M

N (z),
albeit with the role of fermions and bosons reversed com-
pared to the present case. Using the commutativity of the
S-operators among themselves, and the fact that

Sm |PfN 〉 = 0 for m > MN , (2.47)

we now obtain

�(z) |PfN+2〉 = FM,N (z) |PfN 〉 , (2.48)

where

FM,N (z) = (−1)MN e−|z|2/4

2π
√

2MN+M−1

M−1∑
l=0

(−1)l

(
M − 1

l

)

× zM−1−l
∑
k�0

c̄†
k+l√
2k

SMN−kÛ
M
N (z). (2.49)

In line with Read’s original reasoning for the Laughlin state
[39], we can argue that

〈PfN |F†
M,N (z)�(z)�†(z′)FM,N (z′) |PfN 〉

= 〈PfN+2| ρ(z)ρ(z′) |PfN+2〉
→ 〈ρ〉2, (2.50)

where we use the Landau-level projected fields �(z) to define
local densities ρ(z) = �†(z)�(z), such that N̂ = ∫

d2z ρ(z) is
the Landau-level projected particle number operator. We also
assumed the exponential decay of correlations as |z − z′| →
∞, such that the expression approaches the square of the parti-
cle density 〈ρ〉 of the homogeneous fluid, which is determined
by the filling factor ν.

We thus infer the existence of ODLRO of the ν = 1/M
Moore-Read Pfaffian state in the nonlocal operator given by

O(z) = �†(z)FM,N (z). (2.51)

It is worth noting that, in spite of deliberately writing (2.51)
in a form similar to the Laughlin-state order parameter
�†(z)Û M

N (z), there are important differences. The most crucial
difference lies in the fact that Eq. (2.51) changes particle
number by 2, as a change by 1 is also “hidden” in the field
operator FM,N (z). The fact that the order parameter changes
the particle number by 2 is, of course, a direct signature of the
paired nature of the Moore-Read state. We emphasize once
more that the presentation of the Moore-Read state in the form
(2.43) is by itself not sufficient to demonstrate ODLRO. For
this, we crucially needed Eq. (2.21).

Given the above, following again Read’s construction
[39], we could alternatively use Eq. (2.43) [together with
Eq. (2.21)] to construct a condensate of a well-defined phase
conjugate to particle number, for which the order parameter
(2.51) itself assumes an expectation value. The only difference
with the Laughlin-state case would be that such a condensate
would have well-defined particle number parity, i.e., it would
be a coherent superposition of states (2.43) with even N only.
We leave the (simple) details to the reader.

G. Higher angular momentum paired Pfaffian states

We generalize the results of Sec. II to a Pfaffian state of the
form


m
N ∼ Pf

[
1

(zi − z j )m

] ∏
1�i< j�N

(zi − z j )
M, (2.52)

where odd m � M. Pf[ 1
(zi−z j )m ] signifies paired composite

fermions beyond p-wave pairing, where in particular the case
m = 3 has recently been studied [33].

For this state, the recursion relation Eq. (2.16) generalizes
straightforwardly via the modification RN → Rm

N , where

Rm
N = 1

N + 2

M−m∑
l=0

(−1)l

(
M − m

l

) MN+M−m∑
r,k=0

√
r!k! c†

r c†
k

× SMN+M−m−l−rSMN+l−k, (2.53a)

such that ∣∣Pfm
N+2

〉 = Rm
N

∣∣Pfm
N

〉
, (2.53b)

where we also introduced a ket |Pfm
N 〉 associated with the wave

function (2.52).
For the state (2.52), we do not know an appropriate parent

Hamiltonian at this point, so the proof of Eq. (2.53) nec-
essarily proceeds by making contact with the first-quantized
form given in Eq. (2.52). This is done in Appendix A, where
we also specify pertinent normalization conventions. Equally
importantly, one can generalize the effect of particle removal,
Eq. (2.21), as follows:

cr

∣∣Pfm
N+2

〉 =
√

r!

2

M−m∑
l=0

(−1)l

(
M − m

l

) MN+M−m∑
k=0

√
k! c†

k

× [SMN+M−m−l−rSMN+l−k + (−1)M−m

× SMN+M−m−l−kSMN+l−r] |Pfm
N 〉 . (2.54)

A derivation of Eq. (2.54) from the first-quantized Eq. (2.52)
is again given in Appendix A, or, from the second-quantized
Eq. (2.53), in the Supplemental Material [49]. The benefit of
Eq. (2.54) is, among other things, a straightforward general-
ization of the derivation of ODLRO given in the preceding
section to the case of Eq. (2.52). This leads to ODLRO in the
following nonlocal operator:

O(z) = �†(z)FM,m,N (z), (2.55)
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where

FM,m,N (z) = (−1)MN e−|z|2/4

2π
√

2MN+M−m

M−m∑
l=0

(−1)l

(
M − m

l

)

× zM−m−l
∑
k�0

c̄†
k+l√
2k

SMN−kÛ
M
N (z). (2.56)

We leave other possible uses of Eq. (2.54), such as in the
construction of possible parent Hamiltonians for Eq. (2.52),
to future work.

III. RECURSIVE FORMULA FOR FERMIONIC
ν = 1/2 ANTI- AND PH-PFAFFIAN STATES

At Landau level filling factor ν = 1/2, several inequivalent
topological phases featuring Majorana fermions are possi-
ble. Among possible competitors, the anti-Pfaffian state has
been proposed as the particle-hole conjugate of the ν = 1/2
Pfaffian state [62,63]. Generally, a particle-hole conjugate of
a state can be obtained by replacing c → h†, c† → h, and
|0〉e → ∏lmax (N )

i=0 h†
i |0〉h, where lmax(N ) is the highest occu-

pied orbital in the ν = 1/2 Pfaffian state, and lmax(N ) =
2N − 3 for N even. As long as we restrict ourselves to the
Fock space associated with the orbitals 0, . . . , lmax(N ), these
relations merely facilitate a reinterpretation of the Pfaffian
state. A new state is obtained when the “holes” created
by the operators h† are again reinterpreted as the particles
(i.e., once more replaced by c†’s). We leave this understood.
On the half-infinite lattice, however, the replacement |0〉e →∏lmax (N )

i=0 h†
i |0〉h does change the vacuum. It replaces the “par-

ticle vacuum” for orbitals with angular momenta l > lmax(N )
with the “hole vacuum,” i.e., a ν = 1 integer quantum Hall
state. The result is that once the h†-operators are reinterpreted
as particles, we obtain the (N − 2)-particle anti-Pfaffian
state |aPfN−2〉 from the N-particle ν = 1/2 Pfaffian state
|PfN 〉, where |aPfN−2〉 has the same highest occupied orbital
lmax(N ) = 2N − 3, and it has an edge with vacuum. The fol-
lowing example illustrates this: The four-particle Pfaffian state
on the disk is (c†

0c†
1c†

4c†
5 − √

2c†
0c†

2c†
3c†

5 + √
10c†

1c†
2c†

3c†
4) |0〉e.

After replacing c → h†, c† → h, and |0〉e → ∏5
i=0 h†

i |0〉h, we
obtain a two-particle anti-Pfaffian state on the disk (h†

2h†
3 −√

2 h†
1h†

4 + √
10 h†

0h†
5) |0〉h. We note that lmax(N ) agrees with

the number of flux quanta on the sphere that the respective
state would require to represent a rotationally invariant state.

Using the above, by particle-hole conjugating the second-
quantized recursive formula Eq. (2.16a) from the (N +
2)-particle fermionic ν = 1/2 Pfaffian state to the (N +
4)-particle state with M = 2, we can arrive at the second-
quantized recursive formula for the fermionic ν = 1/2
anti-Pfaffian (aPf) state,

|aPfN+2〉 = 2

N + 4

2N+5∑
r,k=0

√
r!k! hrhkR2N+5−rR2N+4−k

× h†
2N+2h†

2N+3h†
2N+4h†

2N+5 |aPfN 〉 , (3.1)

for even non-negative N . The beginning of recursion is
|aPf0〉 = |0〉h, the vacuum for holes. Four hole creation op-
erators appear in the recursive formula, since each time we

increase the particle number by 2, the “edge” between vac-
uum and ν = 1 phase in the vacuum replacement |0〉e →∏lmax (N )

i=0 h†
i |0〉h shifts by four orbitals. The R operator in the

above recursive formula for the anti-Pfaffian state is obtained
from S operator in Eq. (2.17) with M = 2 by particle-hole
conjugation. Explicitly,

R� = (−1)�
∑

n1+n2=�

fn1 fn2 for � � 0,

R� = 0 for � < 0.

(3.2)

Here, fn is the particle-hole conjugate of en in Eq. (2.18),

fn = 1

n!

+∞∑
l1,...,ln=0

√
l1 + 1 hl1+1

√
l2 + 1 hl2+1 · · ·

×
√

ln + 1hln+1h†
ln

· · · h†
l2

h†
l1

for n > 0,

f0 = 1,

fn = 0 for n < 0. (3.3)

Note that different R� still commute with each other. For � >

0, S� increases the total angular momentum of an electronic
state by �, whereas its particle-hole conjugate R� decreases the
total angular momentum, as measured by occupied h†-states,
by the same amount.

The parent Hamiltonian for the N-particle anti-Pfaffian
state is the particle-hole conjugate of the three-body parent
Hamiltonian for the ν = 1/2 Pfaffian state in Eq. (2.11) with
M = 2,

HaPfN =
∑

J

U †
J,NUJ,N , (3.4)

with

UJ,N =
∑

i1+i2+i3=J∈[3,6N]

√
6(J − 3)!

3
J
2 4

√
i1!i2!i3!

(i1 − i2)(i1 − i3)

× (i2 − i3)h†
i3

h†
i2

h†
i1
. (3.5)

Note that, however, the above Hamiltonian has an N-particle
anti-Pfaffian state as the unique incompressible zero mode
only if orbital indices in the above sum are restricted by the ad-
ditional constraint 0 � i1, i2, i3 � 2N + 1, or if the edge with
(h-) vacuum is instead replaced with an edge with a ν = 1
state. This is the reason why the edge of the anti-Pfaffian
with vacuum is more complicated than that of the original
Moore-Read state [62,63].

We remark that although the case M = 2 is of greatest
interest, one may generalize the above straightforwardly to
obtain recursions for the particle-hole conjugates of ν = 1/M
Moore-Read states, although these would then not live at the
same filling factor in the thermodynamic limit, but instead
would have filling factor 1 − 1/M.

Note, moreover, that by straightforwardly taking the
particle-hole conjugate of Eq. (2.51), we may define nonlocal
order parameters for these particle-hole conjugates of Moore-
Read states, as arguments leading to Eq. (2.50) will, mutatis
mutandis, hold. In particular, by particle-hole conjugation of
Eq. (2.21), one obtains a similar equation for particle addition
into the particle-hole conjugate of Moore-Read states.
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While so far we have mostly focused on states at even
particle number N , we can easily obtain the incompressible
Moore-Read state at odd particle number N via

|PfN 〉 = clmax (N+1) |PfN+1〉 . (3.6)

Note that for general M, lmax(N ) = M(N − 1) − 1 for N even,
and lmax(N ) = M(N − 1) for N odd [see Eq. (2.42)]. For
odd N , the particle-hole conjugate of |PfN 〉 has lmax(N ) +
1 − N = MN − M − N + 1 particles within the orbitals
0, 1, 2, . . . , lmax(N ), which is also even. (Note that we are
dealing with fermionic states in this section, so M is even.) It is
thus more natural to define the ν = 1/2 anti-Pfaffian (M = 2)
for odd N in analogy with Eq. (3.6) via

|aPfN 〉 = clmax (N+3) |aPfN+1〉 , (3.7)

since the (N + 1)-particle ν = 1/2 anti-Pfaffian state is ob-
tained from the (N + 3)-particle ν = 1/2 Pfaffian state by
particle-hole conjugation.

Lastly, the PH-Pfaffian phase, which recently attracted
much interest [64–66], is the universality class of a particle-
hole symmetric state at ν = 1/2. Inspired by the latter and
with the help of the above developments, we may easily
construct a particle-hole symmetric state defined by a straight-
forward modification and amalgamation of the recursions for
the ν = 1/2 Pfaffian and anti-Pfaffian states,

|PHN+2〉 =
2N+3∑
r,k=0

√
r!k! (c†

r c†
kS2N+3−rS2N−k + crck

× R2N+3−rR2N−kc†
2N c†

2N+1c†
2N+2c†

2N+3)

× |PHN 〉 , (3.8)

for even non-negative N . The beginning of recursion is given
by |PH0〉 = |0〉, the vacuum for electrons. The state |PHN 〉 so
constructed is manifestly particle-hole symmetric on the or-
bital lattices given by the orbitals with indices 0, . . . , 2N + 3.
In particular, |PHN+2〉 would thus suitably fit onto a sphere
with the correct number of flux quanta 2(N + 2) − 1. In the
above, the R operator is still defined as in Eq. (3.2), but with
all h-operators in fn replaced by c-operators, as they must be
creating the same particles as those in the S-operator part of
the recursion.

We defer further analysis of the state defined in Eq. (3.8)
and its relation to the first-quantized particle-hole symmetric
Pfaffian state defined in the literature [65,67–69], or possibly
a gapless particle-hole symmetric state at half-filling [64], to
future work.

IV. DISCUSSION AND OUTLOOK

In this paper, we developed a second-quantized presenta-
tion for the Moore-Read state at filling factor ν = 1/M. In
practice, this presentation is realized as a recursive definition
of Moore-Read states in second quantization. Such recursions
are of interest in connection with the recent body of literature
about the construction of frustration-free parent Hamiltonians
for FQH states in second quantization, which can, in princi-
ple, lead to new Hamiltonians that are difficult to construct
following the established first-quantized principles. The prime

example for such a development is given by the recently con-
structed Hamiltonians for the (positive) Jain sequence [14].
Two types of presentations for fractional quantum Hall trial
wave functions can be distinguished that are both far removed
from traditional first-quantized constructions and lend them-
selves to the scheme for the discussion of parent Hamiltonians
that is the subject of this paper. One is the MPS-presentation
of fractional quantum Hall trial wave functions, which also
exists for Moore-Read states, but not, to our knowledge, for
composite fermion states or the anti-Pfaffian state. The other
consists in recursion relations that are closely related to an
understanding of the state in question as a condensate of a
nonlocal order parameter. The latter kind of presentation is
what we utilized and further developed in this work for the
Moore-Read states. A closely related mixed first-/second-
quantized presentation of this kind has been known for some
time [18]. While we give a fully second-quantized version
of this presentation, this, by itself, was not sufficient for the
second-quantized discussion of parent Hamiltonians we have
given in this work. Instead, a key ingredient developed in this
paper is the second-quantized description of particle removal
from this state in the form of Eq. (2.21). On the one hand,
this allows us to develop a fully second-quantized under-
standing of the parent Hamiltonian of Moore-Read states. As
the example of the composite fermion states shows, such an
understanding furnishes a promising foundation on which to
base the construction of new parent Hamiltonians that are
not based on simple clustering properties manifest in first
quantization. Moreover, Eq. (2.21) also makes possible our
derivation of off-diagonal long-range order in these states,
in terms of nonlocal order parameters. We have also shown
how both the second-quantized presentation as well as the
definition of the nonlocal order parameter extend to particle-
hole conjugates of Moore-Read states. Some of our findings
are complementary to similar developments utilizing MPS
presentation of Moore-Read states [70]. We are hopeful that
these findings will continue to facilitate developments of
trial fractional quantum Hall states and accompanying par-
ent Hamiltonians that are not conveniently available in the
traditional first-quantized approach. Moreover, the distinction
between various similar non-Abelian phases at half-filling has
inspired several proposals in the past, guiding both physical
[71–73] and numerical experiment [31,65,67–69,74–77]. We
hope that the formulas we developed here for nonlocal order
parameters can provide additional tools to distinguish the
underlying states at least in numerical experiments.

Note added. While preparing this manuscript, we became
aware of a work in parallel by A. Bochniak and G. Ortiz
[78], which contains a second-quantized presentation of the
Moore-Read states equivalent to ours, but otherwise focuses
on different aspects of the physics of these states.
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APPENDIX A: THE DERIVATION OF EQS. (2.16a)
AND (2.21) IN FIRST QUANTIZATION

We can write Moore-Read’s (unnormalized) first-quantized
Pfaffian wave function as


N = NN Pf

(
1

zi − z j

) ∏
1�i< j�N

(zi − z j )
M, (A1)

with even (odd) M for fermions (bosons) and even particle
number N , and an as yet arbitrary normalization constant NN .
We will fix the normalization convention below.

Moore-Read’s original Pfaffian state has also been gen-
eralized to an f -wave paired state of first-quantized wave
function [33]

Pf

[
1

(zi − z j )3

] ∏
1�i< j�N

(zi − z j )
M, (A2)

which inspires us to consider a generalized Pfaffian state


m
N = Nm

N Pf

[
1

(zi − z j )m

] ∏
1�i< j�N

(zi − z j )
M, (A3)

with an odd positive integer m as the pairing parameter, which
must obey 1 � m � M and on which the normalization Nm

N
may depend.

In all of the above, Pf is the Pfaffian of an antisymmetric
matrix with element 1/(zi − z j )m,

Pf

[
1

(zi − z j )m

]
= 1

2
N
2 ( N

2 )!

∑
σ∈SN

(−1)σ
N
2∏

k=1

1

(zσ2k−1 − zσ2k )m
.

(A4)
The permutation σ can be viewed as encoding a way of
pairing indices into pairs (σ2k−1, σ2k ). There is then, how-
ever, much overcounting, as both the order within pairs and

between pairs does not matter. This is compensated by a
factor 1

2N/2(N/2)! . As the order of pairs plays no role, we can,
in particular, still generate all pairings if we fix σN = N . We
write such σ as σ ∈ SN−1. Thus, adjusting the combinatorial
overcounting factor,

Pf

[
1

(zi − z j )m

]
= 1

2
N−2

2 ( N−2
2 )!

∑
σ∈SN−1

(−1)σ

×
N
2∏

k=1

1

(zσ2k−1 − zσ2k )m

= (N − 1)!

2
N−2

2 ( N−2
2 )!

AN−1

N
2∏

k=1

1

(z2k−1 − z2k )m
,

(A5)

where AN−1 denotes the antisymmetrization in just
z1, . . . , zN−1. Thus,


m
N = Nm

N
′ ∏

1�i< j�N

(zi − z j )
MAN−1

N
2∏

k=1

1

(z2k−1 − z2k )m
,

(A6)

where we have absorbed all combinatorial factors into a new
normalization constant Nm

N
′.

For even M, the Laughlin-Jastrow factor is totally symmet-
ric, and we can pull it into the antisymmetrization. For odd M,
the Laughlin-Jastrow factor is totally antisymmetric, and we
can change the antisymmetrization into a symmetrization after
pulling the Laughlin-Jastrow factor inside. We thus define
S (M )

N to be the (anti)symmetrization operator in z1, . . . , zN for
(even) odd M. Changing from N to N + 2:


m
N+2 = Nm

N+2
′ S (M )

N+1

∏
1�i< j�N+2

(zi − z j )
M

N+2
2∏

k=1

1

(z2k−1 − z2k )m

= Nm
N+2

′ S (M )
N+1(zN+1 − zN+2)M−m

∏
1�i�N

(zN+2 − zi)
M

∏
1�i�N

(zN+1 − zi )
MS (M )

N−1

∏
1�i< j�N

(zi − z j )
M

N
2∏

k=1

1

(z2k−1 − z2k )m
.

(A7)

In the above, it might be beneficial to insert an additional (anti)symmetrization operator S (M )
N−1 in front of the last line as shown,

because the products in the first line are already symmetric in the variables zi for i = 1, . . . , N , whereas the second line depends
on only these variables; we were thus able to write S (M )

N+1 = S (M )
N+1S

(M )
N−1 and permute the S (M )

N−1 to the position shown. This gives


m
N+2 = Nm

N+2
′

Nm
N

′ S (M )
N+1(zN+1 − zN+2)M−m

∏
1�i�N

(zN+2 − zi )
M

∏
1�i�N

(zN+1 − zi )
M
m

N . (A8)

Now we need to expand
∏

1�i�N
(zN+2 − zi )M . To do so, we first expand

∏
1�i�N

(zN+2 − zi ) =
N∑

k=0

zk
N+2(−1)N−k

∑
1�i1<i2···<iN−k�N

zi1 zi2 · · · ziN−k

=
N∑

k=0

zk
N+2(−1)N−k 2

N−k
2 eN−k, (A9)
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where we have identified
∑

1�i1<i2···<iN−k�N
zi1 zi2 · · · ziN−k as 2

N−k
2 eN−k . Then we have

∏
1�i�N

(zN+2 − zi)
M =

MN∑
k=0

zk
N+2 2

MN−k
2 SMN−k, (A10)

where S is related to e by Eq. (2.17).
∏

1�i�N (zN+1 − zi )M is expanded in the same way. (zN+1 − zN+2)M−m can be expanded via
binomial expansion.

With these expansions, we obtain


m
N+2 = 1

2π

√
N + 1

N + 2

M−m∑
l=0

(−1)l

(
M − m

l

) ∑
k,r

2
−k−r

2 S (M )
N+1zr

N+2zk
N+1SMN+M−m−l−rSMN+l−k


m
N , (A11)

where we finally fix the arbitrary normalization constants via

Nm
N+2

′

Nm
N

′ (−1)M−m2
2MN+M−m

2 2π

√
N + 2

N + 1
= 1. (A12)

Equation (A11) is equivalent to


m
N+2 = 1√

N + 2

M−m∑
l=0

(−1)l

(
M − m

l

) ∑
k,r

√
r!k!

zr
N+2√

2π2rr!

√
N + 1S (M )

N+1

zk
N+1√

2π2kk!
SMN+M−m−l−rSMN+l−k


m
N . (A13)

Since we rigorously derived the above to yield the manifestly (anti)symmetric wave function (A3), we may optionally act on it
with the (anti)symmetrizer S (M )

N+2, giving


m
N+2 = 1

N + 2

M−m∑
l=0

(−1)l

(
M − m

l

) ∑
k,r

√
r!k!

√
N + 2S (M )

N+2

zr
N+2√

2π2rr!

√
N + 1S (M )

N+1

zk
N+1√

2π2kk!
SMN+M−m−l−rSMN+l−k


m
N .

(A14)

Upon second quantization by using Eq. (1.13) of Ref. [79], with Eq. (2.45) in mind, the above formula leads to

|Pfm
N+2〉 = 1

N + 2

M−m∑
l=0

(−1)l

(
M − m

l

) MN+M−m∑
r,k=0

√
r!k! c†

r c†
kSMN+M−m−l−rSMN+l−k

∣∣Pfm
N

〉
, (A15)

of which Eq. (2.16a) is a special case with m = 1.
Now we derive the expression for the general Pfaffian state with one particle removed by using Eq. (1.12) of Ref. [79]

(Gaussians are included in the integration measure):

cr

m
N+2 = √

N + 2
∫

d2zN+2
zr

N+2√
2π2rr!


m
N+2. (A16)

We now see why we went through the effort not only to derive Eq. (A14), which could have been arrived at more directly, but
also to derive Eq. (A13). This equation has the much needed advantage to expose the dependence on zN+2 by having this variable
appear outside of the symmetrization. Via the change of variable l → M − m − l , we rewrite Eq. (A13) as


m
N+2 = 1

2
√

N + 2

M−m∑
l=0

(−1)l

(
M − m

l

) ∑
k,r

√
r!k!

zr
N+2√

2π2rr!

√
N + 1S (M )

N+1

zk
N+1√

2π2kk!

× [SMN+M−m−l−rSMN+l−k + (−1)M−mSMN+M−m−l−kSMN+l−r]
m
N . (A17)

Then, Eq. (A16) leads to

cr

∣∣Pfm
N+2

〉 =
√

r!

2

M−m∑
l=0

(−1)l

(
M − m

l

) MN+M−m∑
k=0

√
k! c†

k

× [SMN+M−m−l−rSMN+l−k + (−1)M−mSMN+M−m−l−kSMN+l−r]
∣∣Pfm

N

〉
, (A18)

of which Eq. (2.21) is a special case with m = 1.
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APPENDIX B: THE ANNIHILATION OF |Pf4〉 BY ALL Q(2bd,P )
J

By using the recursive formula Eq. (2.16a), the second-quantized form of |Pf4〉 is

|Pf4〉 = 1

8

M∑
p1,p2,q1,q2=0

(−1)
∑2

i=1(pi+qi )
2∏

i=1

(
M

pi

)(
M

qi

) M−1∑
l1,l2=0

(−1)l1+l2
2∏

i=1

(
M − 1

li

)
×

√
(3M − 1 − l2 − q1 − q2)!(2M + l2 − p1 − p2)!(M − 1 − l1 + p1 + q1)!(l1 + p2 + q2)!

× c†
3M−1−l2−q1−q2

c†
2M+l2−p1−p2

c†
M−1−l1+p1+q1

c†
l1+p2+q2

|0〉 , (B1)

where we have used the commutator

[Sl , c†
r ] =

M∑
k=1

(−1)k

(
M

k

)√
(r + k)!

r!
c†

r+kSl−k (B2)

to move S to the right of c†. We act with Q(2bd,P )
J on |Pf4〉 to obtain

Q(2bd,P )
J |Pf4〉 = 1

4

M∑
p1,p2,q1,q2=0

(−1)p1+p2+q1+q2

(
M

p1

)(
M

p2

)(
M

q1

)(
M

q2

) M−1∑
l2=0

(−1)l2

(
M − 1

l2

)

×
[

M−1∑
l1=0

(−1)l1

(
M − 1

l1

)
P (M − 1 − l1 + p1 + q1, l1 + p2 + q2)

]
δJ,M+p1+p2+q1+q2−1

×
√

(3M − 1 − l2 − q1 − q2)!(2M + l2 − p1 − p2)! c†
3M−1−l2−q1−q2

c†
2M+l2−p1−p2

|0〉

+ 1

4

M∑
p1,q1,q2=0

(−1)p1+q1+q2

(
M

p1

)(
M

q1

)(
M

q2

) M−1∑
l1,l2=0

(−1)l1+l2

(
M − 1

l1

)(
M − 1

l2

)

×
[

M∑
p2=0

(−1)p2

(
M

p2

)
P (l1 + p2 + q2, 2M + l2 − p1 − p2)

]
δJ,l1+l2+2M−p1+q2

×
√

(3M − 1 − l2 − q1 − q2)!(M − 1 − l1 + p1 + q1)! c†
3M−1−l2−q1−q2

c†
M−1−l1+p1+q1

|0〉

+ 1

4

M∑
p2,q1,q2=0

(−1)p2+q1+q2

(
M

p2

)(
M

q1

)(
M

q2

) M−1∑
l1,l2=0

(−1)l1+l2

(
M − 1

l1

)(
M − 1

l2

)

×
[

M∑
p1=0

(−1)p1

(
M

p1

)
P (2M + l2 − p1 − p2, M − 1 − l1 + p1 + q1)

]
δJ,−l1+l2+3M−p2+q1−1

×
√

(3M − 1 − l2 − q1 − q2)!(l1 + p2 + q2)! c†
3M−1−l2−q1−q2

c†
l1+p2+q2

|0〉

+ 1

4

M∑
p1,p2,q1=0

(−1)p1+p2+q1

(
M

p1

)(
M

p2

)(
M

q1

) M−1∑
l1,l2=0

(−1)l1+l2

(
M − 1

l1

)(
M − 1

l2

)

×
[

M∑
q2=0

(−1)q2

(
M

q2

)
P (3M − 1 − l2 − q1 − q2, l1 + p2 + q2)

]
δJ,l1−l2+3M+p2−q1−1

×
√

(2M + l2 − p1 − p2)!(M − 1 − l1 + p1 + q1)! c†
2M+l2−p1−p2

c†
M−1−l1+p1+q1

|0〉

+ 1

4

M∑
p1,p2,q2=0

(−1)p1+p2+q2

(
M

p1

)(
M

p2

)(
M

q2

) M−1∑
l1,l2=0

(−1)l1+l2

(
M − 1

l1

)(
M − 1

l2

)

×
[

M∑
q1=0

(−1)q1

(
M

q1

)
P (M − 1 − l1 + p1 + q1, 3M − 1 − l2 − q1 − q2)

]
δJ,−l1−l2+4M+p1−q2−2

×
√

(2M + l2 − p1 − p2)!(l1 + p2 + q2)! c†
2M+l2−p1−p2

c†
l1+p2+q2

|0〉
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+ 1

4

M∑
p1,p2,q1,q2=0

(−1)p1+p2+q1+q2

(
M

p1

)(
M

p2

)(
M

q1

)(
M

q2

) M−1∑
l1=0

(−1)l1

(
M − 1

l1

)

×
[

M−1∑
l2=0

(−1)l2

(
M − 1

l2

)
P (3M − 1 − l2 − q1 − q2, 2M + l2 − p1 − p2)

]
δJ,5M−p1−p2−q1−q2−1

×
√

(M − 1 − l1 + p1 + q1)!(l1 + p2 + q2)! c†
M−1−l1+p1+q1

c†
l1+p2+q2

|0〉
= 0, (B3)

where the summation in each of
(4

2

)
square brackets is zero by using a combinatorial identity [80],

n∑
i=0

(−1)i

(
n

i

)
ip = 0 for any integer p ∈ [0, n − 1], (B4)

considering that the degree of P is less than M − 1.

APPENDIX C: THE ANNIHILATION OF |Pf4〉 AND |Pf6〉 BY ALL Q(3bd,Q)
J

The second-quantized form of |Pf4〉 has been given in Eq. (B1), and the second-quantized form of |Pf6〉 is

|Pf6〉 = 1

48

M−1∑
l1,l2,l3=0

(−1)
∑3

i=1 li
3∏

i=1

(
M − 1

li

) M∑
p1,...,p6,q1,...,q6=0

(−1)
∑6

i=1(pi+qi )
6∏

i=1

(
M

pi

)(
M

qi

)
×

√
(5M − 1 − l3 − q3 − q4 − q5 − q6)!(4M + l3 − p3 − p4 − p5 − p6)!(3M − 1 − l2 − q1 − q2 + p3 + q3)!

×
√

(2M + l2 − p1 − p2 + p4 + q4)!(M − 1 − l1 + p1 + q1 + p5 + q5)!(l1 + p2 + q2 + p6 + q6)!

× c†
5M−1−l3−q3−q4−q5−q6

c†
4M+l3−p3−p4−p5−p6

c†
3M−1−l2−q1−q2+p3+q3

c†
2M+l2−p1−p2+p4+q4

c†
M−1−l1+p1+q1+p5+q5

× c†
l1+p2+q2+p6+q6

|0〉 . (C1)

We act Q(3bd,Q)
J on |Pf4〉 to obtain

Q(3bd,Q)
J |Pf4〉 = 3(−1)M−1

4

M∑
q1,q2=0

(−1)q1+q2

(
M

q1

)(
M

q2

) M−1∑
l2=0

(−1)l2

(
M − 1

l2

)

×
[

M∑
p1,p2=0

M−1∑
l1=0

(−1)l1

(
M − 1

l1

)
(−1)p1+p2

(
M

p1

)(
M

p2

)

× Q(2M + l2 − p1 − p2, M − 1 − l1 + p1 + q1, l1 + p2 + q2)

]
× δJ,l2+3M+q1+q2−1

√
(3M − 1 − l2 − q1 − q2)! c†

3M−1−l2−q1−q2
|0〉

+ 3

4

M∑
p1,p2=0

(−1)p1+p2

(
M

p1

)(
M

p2

) M−1∑
l2=0

(−1)l2

(
M − 1

l2

)

×
[

M∑
q1,q2=0

M−1∑
l1=0

(−1)l1

(
M − 1

l1

)
(−1)q1+q2

(
M

q1

)(
M

q2

)

× Q(3M − 1 − l2 − q1 − q2, M − 1 − l1 + p1 + q1, l1 + p2 + q2)

]
× δJ,−l2+4M+p1+p2−2

√
(2M + l2 − p1 − p2)! c†

2M+l2−p1−p2
|0〉

+ 3(−1)M−1

4

M∑
p1,q1=0

(−1)p1+q1

(
M

p1

)(
M

q1

) M−1∑
l1=0

(−1)l1

(
M − 1

l1

)
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×
[

M∑
p2,q2=0

M−1∑
l2=0

(−1)l2

(
M − 1

l2

)
(−1)p2+q2

(
M

p2

)(
M

q2

)

× Q(3M − 1 − l2 − q1 − q2, 2M + l2 − p1 − p2, l1 + p2 + q2)

]
× δJ,l1+5M−p1−q1−1

√
(M − 1 − l1 + p1 + q1)! c†

M−1−l1+p1+q1
|0〉

+ 3

4

M∑
p2,q2=0

(−1)p2+q2

(
M

p2

)(
M

q2

) M−1∑
l1=0

(−1)l1

(
M − 1

l1

)

×
[

M∑
p1,q1=0

M−1∑
l2=0

(−1)l2

(
M − 1

l2

)
(−1)p1+q1

(
M

p1

)(
M

q1

)

× Q(3M − 1 − l2 − q1 − q2, 2M + l2 − p1 − p2, M − 1 − l1 + p1 + q1)

]
× δJ,−l1+6M−p2−q2−2

√
(l1 + p2 + q2)! c†

l1+p2+q2
|0〉

= 0, (C2)

where the term in each of
(4

3

)
square brackets is zero. Take the first square bracket as an example: on account of Eq. (B4), for

the summations inside the first square bracket not to vanish, there should exist at least one term in Q in which the power of l1,
p1, and p2 should be greater than or equal to M − 1, M, and M, respectively. However, the degree of Q is less than 3M − 1.
Therefore, the term in the first square bracket vanishes. Likewise, summations in all other square brackets are zero.

Using the same line of reasoning, it is easy to verify Q(3bd,Q)
J |Pf6〉 = 0.
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