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Adding a dopant to an antiferromagnetic spin background disturbs the magnetic order and leads to the
formation of a quasiparticle coined the magnetic polaron, which plays a central role in understanding strongly
correlated materials. Recently, remarkably detailed insights into the spatial properties of such polarons have
been obtained using atoms in optical lattices. Motivated by this we develop a nonperturbative scheme for
calculating the wave function of the magnetic polaron in a bilayer antiferromagnet using the self-consistent
Born approximation. The scheme includes an infinite number of spin waves, which is crucial for an accurate
description of the most interesting regime of strong correlations. Utilizing the developed wave function, we
explore the spatial structure of the polaron dressing cloud consisting of magnetically frustrated spins surrounding
the hole. Mimicking the nonmonotonic behavior of the antiferromagnetic order, we find that the dressing cloud
first decreases and then increases in size with increasing interlayer hopping. The increase reflects the decrease in
the magnetic order as a quantum phase transition to a disordered state is approached for large interlayer hopping.
We, furthermore, find that the symmetry of the ground state dressing cloud changes as the interlayer coupling
increases. Our results should be experimentally accessible using quantum simulation with optical lattices.
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I. INTRODUCTION

The properties of dopants in antiferromagnetic (AFM)
environments have been intensely studied both experimen-
tally and theoretically for decades. The reasons for this are
at least twofold. First, the dopants are believed to be the
charge carriers and fundamental building blocks for under-
standing unconventional superconducting phases in cuprates
[1]. Second, the superconducting phases in cuprates as well
as in pnictides [2], organic layers [3], and twisted bilayer
graphene [4] all reside close to the antiferromagnetically
ordered phase. The mobile charge carriers can, therefore,
provide important clues to the underlying physics behind un-
conventional superconducting phases. The essential properties
of these systems are captured by the Fermi-Hubbard model
and the associated t-J model. Breakthroughs using quantum
simulation of the Fermi-Hubbard model with ultracold atoms
[5–16] have stimulated new interest in this fundamental topic
[17–22]. In particular, the impressive single-site resolution
[23–26] of such experiments makes it possible to measure
spatial correlations, giving insights into the spatial structure
of the emergent quasiparticles [14] and their dynamical for-
mation [15], which are well beyond the reach of condensed
matter experiments. Recently, progress towards studying bi-
layer systems using optical lattices has been reported [27].
This is not only interesting due to the relation to cuprates
with superconducting blocks of two CuO2 planes, but also
because bilayer systems exhibit a quantum phase transition
to a disordered state of interlayer spin singlets [28–33].

On the theory side, the self-consistent Born approximation
(SCBA) has proven to yield accurate descriptions of single
dopants in these systems, whether it be their equilibrium
[21,34–40] or nonequilibrium properties [22]. The ability to

describe the spatial structure of the emergent magnetic po-
larons [21,37] hinges in this framework on the analytical
expression for the many-body wave function [22,41].
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FIG. 1. The magnetic dressing cloud of the polaron ground state
for t⊥/t = 0.5 (left) and t⊥/t = 3.25 (right) with a hole in the center
of layer 1. Here, M̃ = ±1 corresponds to the average magnetization
predicted by linear spin-wave theory (LSWT). For t⊥/t = 0.5, the
ground state momentum is p = (π/2, π/2) indicated by the arrow,
and the cloud has C2v symmetry. Increasing t⊥/t to 3.25 changes the
ground state momentum to p = 0, where the magnetization cloud
recovers the full C4v symmetry of the antiferromagnet. In this limit,
the spins in the dressing clouds in the two layers are approximately
antiparallel.
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Motivated by the exciting progress regarding the exper-
imental study of bilayer systems, we generalize the SCBA
approach for a single layer [21,37,41], and derive an ana-
lytical expression for the magnetic polaron many-body wave
function for the bilayer geometry. The wave function in-
cludes an infinite number of spin waves, which is important
in the strongly correlated regime. This, in turn, allows us to
calculate the magnetic dressing cloud around the hole by self-
consistently solving a set of Dyson-like equations. We use this
to explore how the dressing cloud is modified by the interlayer
interaction. We find that the size of the ground state dressing
cloud exhibits a nonmonotonic behavior with increasing hop-
ping between the two layers and that it, additionally, changes
its spatial symmetry (see Fig. 1).

The paper is organized as follows. In Sec. II, we introduce
the t-J model and discuss how we retrieve an effective model
in terms of the hole and spin waves. The SCBA is then de-
scribed and the quasiparticle wave function is constructed in
Sec. III. Using the quasiparticle wave function, we derive a set
of Dyson-like equations used to calculate the spin frustration
surrounding the hole in Sec. IV. In Sec. V, we explore the
spatial structure of the quasiparticle as the interlayer coupling
is varied before we conclude in Sec. VI.

II. BILAYER t-J MODEL

To model the behavior of a single hole in an AFM bilayer,
we use the t-J model with the Hamiltonian

Ĥ = Ĥt + ĤJ , (1)

where

Ĥt = −t
∑

l,〈i,j〉,σ
c̃†

l,i,σ c̃l,j,σ − t⊥
∑
i,σ

c̃†
1,i,σ c̃2,i,σ + H.c. (2)

is the hopping Hamiltonian, and

ĤJ = J
∑
l,〈i,j〉

[
Ŝl,i · Ŝl,j − 1

4
n̂l,inl,j

]

+ J⊥
∑

i

[
Ŝ1,i · Ŝ2,i − 1

4
n̂1,in̂2,i

]
(3)

describes spin coupling within and between the layers. The
subscript l is an index for the top (l = 1) and bottom (l = 2)
layers, J, J⊥ > 0 are the antiferromagnetic couplings between
the spins, and t, t⊥ are the intra- and interlayer hopping am-
plitudes. The restricted fermionic operators, c̃†

i,σ = ĉ†
j,σ (1 −

n̂i,σ̄ ), are constructed so that no double occupancies are al-
lowed. The isotropic spin coupling in Eq. (3) naturally arises
as an effective low-energy description of superexchange pro-
cesses in the Fermi-Hubbard model at large on-site repulsions
U , for which J = 4t2/U and J⊥ = 4t2

⊥/U . As this is directly
relevant to current experiments using atoms in optical lattices
as well as strongly correlated two-dimensional (2D) materials,
we will assume these relations in the following such that
J⊥/J = (t⊥/t )2.

In the absence of holes, the bilayer system undergoes a
quantum phase transition at J⊥/J � 2.5 [29] corresponding
to t⊥/t � 1.6, from an AFM ordered phase at low J⊥/J to a
disordered phase at large J⊥/J , in which neighboring spins in

the two layers form spin singlets [30,42,43]. Deep in the AFM
phase, the low energy states can be quantitatively described
using spin-wave theory [33,44], and we will, furthermore, use
this framework to qualitatively describe magnetic polarons in
the region close to the quantum critical point (QCP).

A. Linear spin-wave theory

The AFM order defines two sublattices A and B where the
spins predominantly point up and down. Using a Holstein-
Primakoff transformation generalized to take the presence of
holes into account [1,34,35,45], the mapping for sublattice
A is

Ŝz
l,i = (1 − ĥ†

l,iĥl,i)/2 − ŝ†
l,iŝl,i,

Ŝ−
l,i = Ŝx

l,i − iŜy
l,i = ŝ†

l,i(1 − ŝ†
l,iŝl,i − ĥ†

l,iĥl,i)
1/2, (4)

c̃i,↓ = ĥ†
l,iŝl,i, c̃i,↑ = ĥ†

l,i(1 − ŝ†
l,iŝl,i − ĥ†

l,iĥl,i)
1/2,

with ĥ†
l,i being a fermionic creation operator of a hole and

ŝ†
l,i a bosonic creation operator of a spin excitation. Similar

expressions apply to sublattice B. Applying the generalized
Holstein-Primakoff transformation, keeping only the linear
terms, Fourier transforming, and using the mapping

⎡
⎢⎢⎢⎣

ŝ1,k

ŝ†
1,−k

ŝ2,k

ŝ†
2,−k

⎤
⎥⎥⎥⎦ = 1√

2

[
1 −1

1 1

][
U+,k 0

0 U−,k

]
⎡
⎢⎢⎢⎢⎣

b̂+,k

b̂†
+,−k

b̂−,k

b̂†
−,−k

⎤
⎥⎥⎥⎥⎦, (5)

it has previously been shown [45] that the Hamiltonian trans-
forms into

ĤJ = E0 +
∑

k,μ=±
ωμ,kb̂†

μ,kb̂μ,k (6)

and

Ĥt =
∑
k,p,l

ĥ†
l,p+kĥl,p[g+(p, k)b̂†

+,−k + (−1)l g−(p, k)b̂†
−,−k]

+
∑
k,p

ĥ†
2,p+kĥ1,p[ f+(k)(b̂+,k + b̂†

+,−k )

+ f−(k)(b̂−,k − b̂†
−,−k )] + H.c. (7)

Here, we only retain the lowest-order terms in the operators
b̂†

μ,k, describing bosonic spin waves in the branch μ = ± with
dispersions

ω±,k = 1
2

√
(Jz + J⊥)2 − (Jzγk ± J⊥)2. (8)

The intra- and interlayer interaction vertices are

g±(p, k) = zt√
2N

[u±,kγp+k − v±,kγp],

f±(k) = t⊥√
2N

[u±,k ∓ v±,k], (9)
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with z = 4 being the lattice coordinate number, γk =
2(cos kx + cos ky)/z the structure factor, and

u±,k =
√

1

2

(
zJ + J⊥
2ω±,k

+ 1

)
,

(10)

v±,k = sgn[zJγk ± J⊥]

√
1

2

(
zJ + J⊥
2ω±,k

− 1

)
,

the coherence factors obtained from diagonalizing ĤJ . The
lattice constant is taken to be unity. In the derivation of
the quasiparticle wave function, the exact expressions for the
interaction vertices are not important, but their symmetries
will greatly simplify the expressions. These symmetries are
related to the AFM ordering vector Q = (π, π ), and for the
coherence factors and the spin-wave dispersions, we have

u+,k+Q = u−,k, v+,k+Q = −v−,k, ω+,k+Q = ω−,k, (11)

whereas the interaction vertices fulfill

g±(p, k + Q) = −g∓(p, k), g±(p + Q, k) = −g±(p, k),

f±(k + Q) = f∓(k). (12)

Equation (7) constitutes our effective Hamiltonian found
within LSWT. For the bilayer Heisenberg model this approx-
imation scheme has been shown to neglect a longitudinal
mode [33]. To consider this mode, one could instead tend
to the bond-operator representation [44,46–48]. That said,
the result presented in Sec. V, when approaching the QCP,
reflects the decrease in AFM order which is qualitatively well
captured within LSWT, but overestimates the transition point
to lie around t⊥/t � 3.67 as can generally be expected from a
mean-field theory. With the effective Hamiltonian in place, we
turn to the quantum field theory approach applied previously
[45] to describe the quasiparticle properties of the emergent
magnetic polarons.

B. Quantum field theory

With the effective Hamiltonian in Eq. (7), the Matsubara
Green’s function of a hole takes on a 2 × 2 matrix structure
[45]

Glm(p, τ ) = −〈Tτ [ĥl,p(τ )ĥ†
m,p]〉 , (13)

where Tτ is the time ordering in imaginary time τ and
l, m = 1, 2 denote the two layers. In frequency space,
the Dyson equation reads G(p) = 1G0(p) + G0(p)�(p)G(p),
where � = [�lm] is the self-energy matrix and p = (p, iωp)
with iωp a fermionic Matsubara frequency. Finally, G0(p) =
1/iωp is the noninteracting hole Green’s function. Due to
the layer symmetry, there are only two independent matrix
elements for the Green’s function: Gd = G11 = G22 and Go =
G12 = G21 or equivalently �d = �11 = �22 and �o = �12 =
�21. Using this, it follows from the Dyson equation that

Gd(p) = G−1
0 (p) − �d(p)(

G−1
0 (p) − �d(p)

)2 − (�o(p))2
,

Go(p) = �o(p)(
G−1

0 (p) − �d(p)
)2 − (�o(p))2

. (14)

FIG. 2. Feynman diagrams for �d within the SCBA. The green
color is associated with layer l = 1 and yellow with l = 2, such
that the all green and all yellow propagators represent Gd while
the mixed green and yellow propagators represent Go. The green
(yellow) vertex describes a hole in layer l = 1 (l = 2) interacting
with a spin wave and continuing in the same layer. Instead, the red
vertex describes interlayer interactions where the hole jumps from
one layer to the other. The off-diagonal self-energy �o is given by
similar diagrams [45].

In order to calculate the self-energies, we employ the
SCBA to sum the class of so-called rainbow diagrams as illus-
trated in Fig. 2. This includes an infinite number of spin waves
that are absorbed in the same order as they are emitted and
turns out to provide an accurate description of hole dynamics
in the strong-coupling limit t 
 J that naturally arises when
U 
 t [21].

Using the vertex symmetries in Eq. (12), we obtain [45]

�(p, ω) =
∑
k,μ

Vμ(p, k)G(p + k, ω − ωμ,k )V †
μ (p, k)

= 2
∑

k

V+(p, k)G(p + k, ω − ω+,k )V †
+(p, k),

(15)

with the coupling matrix

Vμ(p, k) =
[
μg+(p, k) μ f+(k)

f+(k) g+(p, k)

]
. (16)

We iteratively solve Eqs. (14) and (15) self-consistently start-
ing from � = 0. This yields the hole Green’s function with
poles determining the energy of the magnetic polarons, which
due to the layer symmetry come in two classes: either sym-
metric or antisymmetric under layer exchange [45].

In Fig. 3, we plot the crystal momentum of the lowest
energy polaron as a function of t⊥/t . Here and in the rest of
the paper we use J/t = 0.3. When the layers are decoupled,
i.e., t⊥/t = 0, the magnetic polaron ground state of the system
has crystal momentum p = (π/2, π/2). For increasing inter-
layer hopping, however, Fig. 3 shows that the ground state
momentum moves from p = (π/2, π/2) along the diagonal
and settles at p = 0, (π, π ) for t⊥/t � 2.3 [44,45]. As we will
show in Sec. V, this is essential for understanding the spatial
structure of the ground state as the coupling between the lay-
ers changes. The insets in Fig. 3 show the energy dispersion of
the magnetic polaron in the Brillouin zone for different values
of t⊥/t with the momentum of the ground state indicated.
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FIG. 3. The ground state crystal momentum versus t⊥/t for
J/t = 0.3. The yellow and green markers correspond to the symmet-
ric and antisymmetric solution, respectively, and they both represent
the degenerate ground state. The insets show the dispersion of the
polaron in the first quadrant of the Brillouin zone at written values
of t⊥ and with the color bars indicating ω/t . The energy minima are
indicated by the yellow and green markers which represent the sym-
metric and antisymmetric solution, respectively. Around t⊥/t � 2.3,
the crystal momentum of the ground state settles at p = 0 for the
antisymmetric solution and p = (π, π ) for the symmetric.

III. QUASIPARTICLE WAVE FUNCTION

While quantities such as the quasiparticle energy and
residue are naturally obtained from the field theory described
above, it is much less suited to calculate observables related
to the real-space structure of the magnetic polaron. This is a
serious limitation given the detailed spatial information pro-
vided by the optical lattice experiments [14,15]. Motivated by
this, we now generalize a nonperturbative scheme to calculate
the many-body wave function of the magnetic polaron within
the SCBA from a single layer [21,41] to the bilayer case.

The wave function of the magnetic polaron can in general
be expanded in the number of spin waves it has excited in the
antiferromagnet. This gives

|�p〉 =
∑

l

[
a(l )(p)ĥ†

l,p +
∑
μ1,k1

a(l )
μ1

(p, k1)ĥ†
l,p+k1

b̂†
μ1,−k1

+ · · ·
]

|AFM〉 , (17)

where |AFM〉 is the AFM ground state and · · · represents
states with multiple spin waves excited. The coefficient
a(l )

{μn}(p, {kn}) is the amplitude for having n spin waves excited
in the branches {μn} = μ1, . . . , μn with crystal momenta
{kn} = −k1, . . . ,−kn. The ith spin wave is, hereby, excited
into the branch μi with crystal momentum −ki. The super-
script l = 1, 2 defines the layer in which the hole resides.

Recursive determination of amplitudes

To find explicit expressions for the amplitudes, we use the
Schrödinger equation (ω − Ĥ ) |�p〉 = 0 for the polaron with
energy ω. The Hamiltonian given by Eq. (7) can only excite
and annihilate a single spin wave at a time; any coefficient
is, therefore, only coupled to the coefficients for having one
more or one less spin wave excited. In addition, when tak-
ing matrix elements of the Schrödinger equation the SCBA
dictates that the order of the spin waves is kept fixed so that
only a single Wick contraction for a particular coefficient is
maintained. This reduces the complexity of the many-body
wave function while retaining the possibility of describing a
highly correlated state with many spin waves excited.

With this approach, we derive a set of equations of motion,
which at order n � 1 has the matrix form[

ω −
n∑

i=1

ωμi,ki

]
a{μn}(p, {kn})

= V †
μn

(Kn−1, kn)a{μn−1}(p, {kn−1})

+
∑
kn+1
μn+1

Vμn+1 (Kn, kn+1)a{μn+1}(p, {kn+1}). (18)

Here, a = [a(1), a(2)] is a vector containing the wave-function
coefficients for the hole in each layer and Kn ≡ p + ∑n

i=1 ki.
In close analogy to the single-layer case [21,37,41], we find
that the recursive relation

a{μn+1}(p, {kn+1}) = G

(
Kn+1, ω −

n+1∑
i=1

ωμi,ki

)

× V †
μn+1

(Kn, kn+1)a{μn}(p, {kn}) (19)

self-consistently solves the equations of motion as can
straightforwardly be checked by inserting Eq. (19) into
Eq. (18) (see Appendix A for details). Equation (19) gives for
n = 0 the matrix equation

[ω · 1 − �(p, ω)]a(p) = 0, (20)

which shows that ω must coincide with one of the two poles
ε±

p of the Green’s functions in Eq. (14) in order to have a
nonzero solution of the coefficients. Thus, the polaron ener-
gies obtained from the wave function are the same as from
the Green’s function. This explicitly demonstrates the consis-
tency of the two approaches. The zero-order coefficients for
the symmetric or antisymmetric polaron with wave function
|�±

p 〉 are a(2)(p) = ±a(1)(p) solving a(1)(p)[ω − �d(p, ω) ∓
�o(p, ω)] = 0. All higher-order coefficients can now be cal-
culated iteratively in terms of the zero-order coefficients.

To each order, there will be 2n+1 terms and an equal num-
ber of coefficients. With the vertex symmetries in Eq. (12),
we can simplify the number of coefficients to a single
unique coefficient for each order, which reduces Eq. (19) to
a scalar relation (see Appendix C). After normalizing the
wave function (see Appendix B), the polaron wave function
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to first order is

|�±
p 〉 =

√
Z±

p

2

⎛
⎝ĥ†

1,p ± ĥ†
2,p +

∑
k1

R±(p, k1)[(ĥ†
1,p+k1

± ĥ†
2,p+k1

)b̂†
+,−k1

+ (ĥ†
1,p+k1+Q ∓ ĥ†

2,p+k1+Q)b̂†
−,−k1−Q] + · · ·

⎞
⎠ |AFM〉 ,

(21)

where

R±(p, {kn}) = [Gd(Kn,

±
{kn}) ± Go(Kn,


±
{kn})]

× [g+(Kn−1, kn) ± f+(kn)] (22)

and


±
{kn}(p) = ε±

p −
n∑

i=1

ω+,kn . (23)

Here, Z±
p = [1 − ∂ω(�d(p, ω) ± �o(p, ω))|ω=ε±

p
]−1 is the

quasiparticle residue of the polaron.

IV. MAGNETIC DRESSING CLOUD

Having derived the SCBA expression for the polaron wave
function in a bilayer, we now turn to its spatial structure.
Specifically, we will compute the magnetic dressing cloud,
i.e., the magnetic frustration around the hole. Following
Refs. [21,37], we define the magnetization at position r + d
in layer l given the hole is at position r in layer 1 as

M±
l (d, p) =

〈
ĥ†

1,rĥ1,rŜ(z)
l,r+d

〉±
p〈

ĥ†
1,rĥ1,r

〉±
p

〈
Ŝ(z)

l,r+d

〉±
p

= 1 − 2M (2),±
l (d; p, ε±

p )

MAFM
,

(24)

where 〈· · ·〉±p = 〈�±
p | · · · |�±

p 〉 is the average with respect to
the symmetric or antisymmetric polaron wave function given
by Eq. (21). The hole-spin correlator is

M (2),±
l (d; p, ε±

p ) = 2N 〈ĥ†
1,rĥ1,r ŝ†

l,r+dŝl,r+d〉±p
= 2N 〈ĥ†

l,rĥl,r ŝ†
1,r+dŝ1,r+d〉±p , (25)

where we have used that the hole is evenly spread
out over the entire lattice for crystal momentum states,
〈ĥ†

1,rĥ1,r〉p,± = 1/(2N ). This also means that the hole has
negligible impact on the average local magnetization,
〈Ŝz

m,r+d〉
±
p

= 〈AFM| Ŝz |AFM〉 + O(1/N ). Spin-wave theory

gives 2| 〈AFM| Ŝz |AFM〉 | ≡ MAFM = 1 − 2Mfl, where Mfl =∑
k(v2

k,+ + v2
k,−)/(2N ) describes the reduction of magnetic

order due to quantum fluctuations in the antiferromagnetic
ground state. Additionally, we have used the layer symme-
try of the system to swap the indices of the holes and spin
excitations. Using Eq. (5), we can write

M (2),±
l (d; p, ε±

p ) = Mfl + B±
l,p(d) + C±

l,p(d), (26)

where the B and C functions describe the frustration induced
by the hole. Their explicit expressions read

B±
l,p(d) = 1

N

∑
q1,q2

ei(q1−q2 )·dB±
l (q1, q2; p, ε±

p ),

B±
l (q1, q2; p, ω) =

∑
k,μ1,μ2

bμ1,μ2 (q1, q2)

× 〈
ĥ†

l,k+q1−q2
ĥl,kb̂†

μ1,−q1
b̂μ2,−q2

〉±
p,ω

,

(27)

and

C±
l,p(d) = − 1

2N

∑
q1,q2

ei(q1+q2 )·d · C±,l (q1, q2; p, ε±
p )

+ H.c.,

C±
l (q1, q2; p, ω) =

∑
k,μ1,μ2

cμ1,μ2 (q1, q2)

× 〈
ĥ†

l,k+q1−q2
ĥl,kb̂μ1,−q1 b̂μ2,−q2

〉±
p,ω

.

(28)

Here 〈· · · 〉±p,ω means the average with respect to the polaron
wave function |�±

p 〉 given by Eq. (21) but with the energy ε±
p

replaced by ω when calculating the coefficients. The vertex
functions bμ1,μ2 (q1, q2) = μ1μ2(vμ1,q1vμ2,q2 + uμ1,q1 uμ2,q2 )
and cμ1,μ2 (q1, q2) = μ1μ2(uμ1,q1vμ2,q2 + vμ1,q1 uμ2,q2 ) arise
due to the transformation to the spin-wave operators b̂.
We have M±

l = 1 for B±
l,p = C±

l,p = 0, meaning that the
magnetization is that of the underlying antiferromagnet
in the absence of holes. It follows that M±

l < 1 reflects a
hole-induced suppression of AFM order while M±

l > 1 gives
an increased order.

Calculating the magnetization around the hole is now re-
duced to computing the B±

l,p and C±
l,p functions in Eqs. (27)

and (28). For strong coupling, t/J > 1, it is important to do
this including terms in the polaron wave function |�±

p 〉 with
an arbitrary number of spin waves. This was first achieved
recently for a single layer in Ref. [21], and here we generalize
this to the bilayer case at hand. As detailed in Appendixes
D and E, using a diagrammatic approach we derive self-
consistency equations for B±

l,p and C±
l,p, which we then solve

numerically. This allows us to include terms in the wave
function with an arbitrary number of spin waves, which is
crucial in the strong-coupling regime.

As described in Sec. III, the bilayer supports magnetic
polaron eigenstates that are either symmetric or antisymmetric
with respect to layer exchange. It follows from the AFM sym-
metries in Eqs. (11) and (12) that the associated magnetization
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clouds are related by the mapping (see Appendix G)

M−
l (d, p + Q) = M+

l (d, p). (29)

In the following, we, therefore, focus only on antisymmetric
eigenstates. Also, we can in analogy with the single-layer
case use time-reversal and inversion symmetry to show that
the dressing cloud around the polaron is C2 symmetric, even
when the momentum of the polaron is nonzero. Indeed, we
have M±

l (d, p) = M±
l (d,−p) = M±

l (−d, p) where the first
equality follows from time-reversal symmetry and the second
from inversion symmetry [21]. It follows from these symme-
tries that all degenerate polaron states have the same dressing
cloud.

V. RESULTS

We now discuss our numerical results for the dressing
cloud of magnetic frustration around the hole. Compared to
the single-layer case discussed in Ref. [21], the bilayer system
has a qualitatively new feature in the sense that it undergoes a
quantum phase transition to a disordered state with increasing
interlayer coupling [30,42,43]. We, therefore, focus on how
this interlayer coupling affects the magnetic dressing cloud
of the polaron. The calculations are performed on a 16 × 16
lattice with periodic boundary conditions by first solving
the self-consistent equations for the Green’s functions, after
which the B±

l,p and C±
lp series are calculated.

A. Dressing cloud for fixed momentum

Figure 4 shows the magnetization M−
l (d, p) at sites sepa-

rated by the in-layer vector d = (x, y) from the hole for the
antisymmetric polaron. We take momentum p = (π/2, π/2),
which is the ground state for t⊥/t � 0.6 (see Fig. 3). The left
column shows the magnetization in layer 1 where the hole is
located, and the right column shows the magnetization in layer
2. Different rows correspond to different values of t⊥/t . The
value M−

l (d, p) = 1 corresponds to a magnetization equal to
that of the AFM state without the hole. Figure 4 clearly shows
an elongated shape of frustration in both layers and for all
values of t⊥/t with the dressing cloud primarily spread out
parallel to the diagonal x = y. This is analogous to what was
previously shown to be the case for crystal momenta along
the magnetic Brillouin zone (MBZ) boundary |px| + |py| = π

for a single layer. We also see that, in addition to the C2

symmetry, the dressing cloud has mirror symmetries along
the diagonals. One can in fact show that for momenta along
the MBZ boundary, the magnetization cloud has the symme-
tries of the group C2v [21]. We, furthermore, see that with
increasing t⊥ the dressing cloud steadily increases in spatial
size and magnitude in layer 2. Contrary to this, the dressing
cloud in layer 1 where the hole resides is initially slightly
decreasing with increasing t⊥. It eventually starts increasing
for larger values of t⊥ and the dressing cloud has a similar
size in the two layers for t⊥/t = 3, where the hole has even
reversed the sign of the magnetic order at neighboring lattice
sites. To analyze this behavior further, we plot in Fig. 5 the
magnetization in the vicinity of the hole as a function of t⊥/t .
We also plot the magnetization 2| 〈AFM| Ŝz |AFM〉 | in the
absence of holes, which exhibits a nonmonotonic behavior:

−3

0

3

y

(a)

Layer 1

t⊥/t = 0.5

Layer 2

−3

0

3

y

(b)

t⊥/t = 1.5

−3 0 3
x

−3

0

3

y

(c)

−3 0 3
x

t⊥/t = 3.0
−0.5

0.0

0.5

1.0
M−

FIG. 4. The dressing cloud of magnetic frustration in layer 1
(left) and layer 2 (right) around the hole in layer 1 for the polaron
with crystal momentum p = (π/2, π/2) indicated by the arrow. The
cloud has a C2v symmetry in both layers with the spins primarily
frustrated parallel to the crystal momentum. For t⊥/t = 0.5, 1.5 the
frustration cloud is clearly more prominent in the same layer as the
hole. Instead for t⊥/t = 3, we see clouds of similar sizes in the two
layers.

0 1 2 3
t⊥/t

1.0

0.5

0.0

−0.5

−1.0

M
− 2

Layer 2

p = (π/2, π/2)

(b)

0.0

0.5

1.0

2|Ŝ
z
|

1.0

0.5

0.0

−0.5

M
− 1

Layer 1

(a)

FIG. 5. The magnetization in (a) layer 1 and (b) layer 2 in the
vicinity of a hole in layer 1 as a function of interlayer hopping for
p = (π/2, π/2). Deviations from M = 1 signals frustration. (a) In
layer 1, we see a nonmonotonic behavior as t⊥/t is increased. This
can be understood through the strength of the AFM order, which is
shown as a black line. As the order increases, the cloud diminishes
in size before expanding as the order decreases. (b) In layer 2, on the
other hand, the magnetic frustration monotonically increases.
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It initially increases with t⊥ since the Fermi-Hubbard relation
J⊥ ∝ t2

⊥ makes the AFM ordering across the planes stronger,
reaching a maximum at t⊥/t � 0.82 after which it decreases
as the quantum phase transition to the disordered state is ap-
proached [45]. This nonmonotonic behavior of the magnetic
order is reflected in the size and magnitude of the dressing
cloud in layer 1, which initially decreases with t⊥, i.e., M
increases towards 1 as can be seen in Fig. 5, because the
increased size of the order parameter reduces the mobility of
the hole. On the other hand, when t⊥ > 0.82t and the local
AFM order starts decreasing, it becomes easier for the hole to
delocalize which boosts the magnetic frustration around the
hole (see Fig. 5). For small values of t⊥/t , the second layer is
essentially not affected by the presence of a hole in layer 1,
and the magnetization is hardly changed from its background
value, M−

2 = 1. However, as the coupling between the layers
is increased, frustration appears here as well. This happens
both because the hole can now make virtual hops to the second
layer via t⊥, and because the interlayer spin coupling J⊥ ∝ t2

⊥
favors the spins in the second layer to antialign with the spins
in layer 1. Again we see from Fig. 5 that for large values of t⊥
the presence of the hole even inverts the sign of the magnetic
order. For values other than J/t = 0.3, the situation is qual-
itatively the same. Quantitatively, lower values of J/t < 0.3
mean a lowered frustration cost and result in an increase in
frustration, and vice versa for J/t > 0.3. This is detailed in
Appendix I.

B. Dressing cloud of ground state

As we discussed in Sec. II B, the momentum of the ground
state polaron smoothly changes from p = (π/2, π/2) at t⊥ =
0 to p = 0 [or p = (π, π )] as the QCP is approached with
increasing t⊥ (see Fig. 3) [44,45]. Figure 6 plots the magneti-
zation in the vicinity of the hole as a function of t/t⊥ for the
ground state; i.e., the crystal momentum varies according to
Fig. 3. In addition to the increase of the dressing cloud with
increasing t⊥ also seen for the case of the fixed momentum
discussed in Sec. V A, Fig. 6 shows that the symmetry of
the dressing cloud changes. The reason for this change is
that the crystal momentum of the ground state varies with
t⊥. For small t⊥/t , the momentum p = (π/2, π/2) is at the
magnetic Brillouin zone boundary so that the dressing cloud
has C2v symmetry [21]. As seen in Fig. 3, the momentum
of the ground state decreases with t⊥, becoming zero for
t⊥/t � 2.3. At this point, the dressing cloud recovers the full
C4v symmetry of the AFM order. It follows that the symmetry
of the magnetic polaron undergoes the transition C2v → C4v

with increasing t⊥/t .
Figure 6 also shows that the dressing cloud in layer 2

closely mimics that in layer 1 when t⊥ is large. To analyze
this quantitatively, we plot in Fig. 7 the difference M−

1 (r) −
M−

2 (r) between the magnetization in the two layers for p =
(π/2, π/2) and p = 0 for a few selected sites as a function of
t⊥/t . This clearly shows that the difference vanishes rapidly
with increasing t⊥ for the polaron with momentum p = 0
[Fig. 7(a)]. The reason is that the spins in the dressing cloud in
the two layers antialign for strong interlayer coupling making
them approximately mirror images of each other. Notably,
this antialignment of the spins inside the dressing clouds
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3

y

(a)

p = (π/2, π/2)

Layer 1

t⊥/t = 0.5

Layer 2

−3

0

3

y

(b)

p = (π/4, π/4) t⊥/t = 1.5

−3 0 3
x

−3

0

3

y

(c)

p = (0, 0)

−3 0 3
x

t⊥/t = 3.0

−1

0

1
M−

FIG. 6. The magnetization cloud in layer 1 (left) and layer 2
(right) in the vicinity of a hole in layer 1 for the ground state
of the system. The ground state momentum changes from (a) p =
(π/2, π/2), over (b) p = (π/4, π/4), to (c) p = 0 as illustrated by
the black arrows.

0.0
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− 2
−

M
− 1 p = (0, 0)
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0.0

0.5

M
− 2
−

M
− 1

p = (π/2, π/2)

(b)

FIG. 7. Difference M−
1 − M−

2 in magnetization between the
layers versus the interlayer hopping t⊥/t . (a) For p = 0, the mag-
netization rapidly becomes identical in the two layers. (b) For p =
(π/2, π/2), they remain different for the shown values of t⊥/t but
will eventually become identical (Appendix D).
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FIG. 8. The size of the ground state dressing cloud in the two
layers with the hole residing in layer 1 as a function of t⊥/t . The size
of the magnetic order parameter in the absence of the hole is shown
as a black line.

in the two layers is much less pronounced for the polaron
with momentum p = (π/2, π/2), and this yields spatial in-
sight into why the ground state momentum changes from
p = (π/2, π/2) to p = 0 for increasing t⊥. In fact, for t⊥ 
 t ,
it comes with a high magnetic energy cost scaling as J⊥ ∝ t2

⊥
if spins do not antialign between the layers, explaining why
the p = (π/2, π/2) polaron has higher energy than the p = 0
polaron in this regime. In Appendix H, we elaborate on how
the interlayer hopping and interlayer spin-spin individually
promote this mirroring effect of the ground state by taking
J⊥ �= 4t2

⊥/U . Here, we see that the hopping primarily causes
the mirroring effect, while the spin-spin interaction penalizes
states not having AFM order between the layers. As a result,
both couplings are needed to ensure that the ground state
features mirrored layers for increasing t⊥/t .

Finally, we plot in Fig. 8 the size of the magnetic dressing
cloud of the ground state in the two layers defined as

rl
c(p) =

√∑
d

|d|2 · |M−
l (d, p) − 1| (30)

as a function of t⊥/t . We subtract 1 from the frustration
since M−

l (d, p) − 1 = 0 corresponds to no frustration. This
quantifies how the dressing cloud reflects the size of the order
parameter of the environment and, in particular, how it grows
as the phase transition to the disordered state, occurring at
t⊥/t � 3.67 within LSWT, is approached. We believe this
increase is a reliable result even though spin-wave theory
cannot describe the region close to the QCP in a quantitatively
accurate way. The reason is that the increase is caused by
the increase in the hole mobility, which in turn is due to
the decrease in the AFM order as the QCP is approached.
This is a robust physical effect and not an artifact of the
theoretical approximations. In Refs. [47,48] they argue for
the same expansion of the dressing cloud when the QCP is
approached from the disordered phase, supporting our results.
The same effect is shown in Fig. 1, which clearly shows how
the magnetic dressing cloud expands as t⊥ increases and the
phase transition to the disordered state is approached. One can
also see how the dressing clouds in the two layers become
mirror images of each other with their spins antiparallel for
large t⊥/t .

VI. CONCLUSIONS

Inspired by the impressive ability to experimentally probe
the spatial properties of strongly correlated fermions with
single-site resolution, not only in single-layer but also bilayer
optical lattices [27], we developed a nonperturbative scheme
for calculating the polaron wave function for a bilayer anti-
ferromagnet. The scheme is the wave-function version of the
SCBA [21,37,41] and allows one to include an infinite number
of spin waves, which is crucial for describing the strongly cor-
related regime. With the developed wave-function formalism,
it is possible to calculate the spatial structure of the bilayer
magnetic polarons via spin-hole correlators. In particular, we
mapped out the associated dressing cloud in the vicinity of a
hole and investigated how this was influenced by the interlayer
coupling strength. Here, we observed the cloud to mimic the
nonmonotonic behavior of the antiferromagnetic order, where
it first contracts due to an increase in the AFM order, where-
after it starts to expand as the quantum phase transition to the
disordered phase is approached. We, furthermore, found that
the symmetry of the ground state dressing cloud undergoes
the transition C2v → C4v with increasing t⊥/t . This happens
because the ground state momentum smoothly changes along
the diagonal from p = (π/2, π/2) for small t⊥/t to p = 0 for
large t⊥/t . In the latter limit, we find that the strong interlayer
coupling makes the spins in the two layers antiparallel in the
dressing cloud so that they become mirror images of each
other. These effects should be amenable to direct observa-
tion in quantum simulation experiments. Here, however, it is
important to note that one must project onto a single crystal
momentum eigenstate to observe something else than the full
C4v symmetry of the underlying system.

Our scheme for nonperturbatively calculating the polaron
wave function in a bilayer geometry within SCBA offers a tool
that can help to elucidate the behavior of dopants in antiferro-
magnetic environments. For a single layer, the wave function
has been used to investigate the nonequilibrium physics as-
sociated with the creation of the magnetic polaron [22]. The
similarities between the expressions for the single-layer and
bilayer system suggest that it is possible to probe the same
dynamics for a bilayer system with the here-derived wave
function. It also offers the possibility of a detailed comparison
with novel ultracold-atom experiments [27].

In the future, we hope to explore extensions to finite
temperatures, as well as comparisons with sophisticated nu-
merical methods, using, e.g., density matrix renormalization
techniques [49,50]. This will allow a more quantitative de-
scription as the quantum phase transition from the AFM
ordered state at low interlayer coupling to the disordered
phase at large interlayer coupling is crossed.
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APPENDIX A: RECURSION RELATION

In this Appendix, we will explicitly show that the recursion
relation presented in Eq. (19) self-consistently solves Eq. (18).
Inserting the recursion relation into Eq. (18), we find[(

ω −
n∑

i=1

ωμi,ki

)
1l − �

(
Kn, ω −

n∑
i=1

ωμi,ki

)]
a{μn}(p, {kn})

= V †
μn

(Kn−1, kn)a{μn−1}(p, {kn−1}), (A1)

where Eq. (15) has been used. Looking at the Green’s func-
tions in Eq. (14), we find

G(p, ω)−1 =
[
ω − �d(p, ω) −�o(p, ω)

−�o(p, ω) ω − �d(p, ω)

]
, (A2)

which corresponds to the parentheses on the left-hand side in
Eq. (A1). Inserting this, we retrieve

a{μn}(p, {kn}) = G

(
Kn, ω −

n∑
i=1

ωμi,ki

)

× V †
μn

(Kn−1, kn)a{μn−1}(p, {kn−1}), (A3)

showing the recursion relation to be self-consistent.

APPENDIX B: NORMALIZATION

In this Appendix, we show how the normalization of the
wave function links the lowest-order amplitude to the quasi-
particle residue. We have

1 = 〈�±
p |�±

p 〉 = 2(a±
0 (p))2 + 22

∑
k1

(a±
1 (p, k1))2

+ 23
∑
k1,k2

(a±
2 (p, {k2}))2 + · · · , (B1)

where the factor 2n+1 in front comes from the number of dif-
ferent states possible to each order. Each amplitude is related
to the previous order through Eq. (C7). Inserting this yields

〈�±
p |�±

p 〉 = 2(a±
0 (p))2

(
1 + 2

∑
k1

[R±(p, {k1})]2

+ 22
∑
k1,k2

[R±(p, {k2})]2[R±(p, {k1})]2 + · · ·
)

.

(B2)

Using the expressions for the Green’s functions in Eq. (14)
and the self-energies in Eq. (15), we obtain

1 − ∂ω[�d(p, ω) ± �o(p, ω)]

= 1 + 2
∑

k1

[R±(p, {k1})]2(1 − ∂ω[�d(k1, ω − ω+,k )

± �o(k1, ω − ω+,k )]). (B3)

Evaluating this at ω = ε±
p and comparing it to Eq. (B2), we see

that they are identical up to the factor of 2(a±
0 (p))2. Therefore,

a±
0 (p) = 1√

2

1√
1 − ∂ω(�d(p, ω) ± �o(p, ω))|ω=ε±

p

. (B4)

Finally, we relate this to the quasiparticle residue. To make
the residue coincide with that for a single layer in the limit of
t⊥/t = 0, we define this as half the residue of the poles in the
Green’s function, whereby

Z±
p /2 = Res(Gd, ε

±
p ) = (a±

0 (p))2,

Z±
p /2 = Res(Go, ε

±
p ) = ±(a±

0 (p))2. (B5)

Consequently, the quasiparticle residue, hereby, describes the
total probability of finding the magnetic polaron as a bare
hole:

| 〈�±
p | ĥ†

1,p |AFM〉 |2 + | 〈�±
p | ĥ†

2,p |AFM〉 |2 = Z±
p . (B6)

Ultimately, this leaves the normalization condition to be

a±
0 (p) =

√
Z±

p

2
. (B7)

APPENDIX C: REDUCING COEFFICIENTS

In this Appendix, we will see that it is possible to define
a single unique coefficient for each order using the recursion
relation in Eq. (19), the symmetries of the interaction vertices,
Eq. (12), and those of the Green’s functions

Gd(p + Q, ω) = Gd(p, ω),

Go(p + Q, ω) = −Go(p, ω). (C1)

The recursion relations can be restated as[
a(1)

{μn}(p, {kn+1})

a(2)
{μn}(p, {kn+1})

]
=

n−1∏
i=0

V{μn−i}({kn−i}; p, ε±
p ) ·

[
a±

0 (p)

±a±
0 (p)

]

(C2)

with

V{μn}({kn}; p, ω) = G
(
Kn,


{kn}
{μn}

)
V †

μn
(Kn−1, kn), (C3)

and a(1)(p) ≡ a±
0 (p) being the zero-order coefficient. To relate

the different coefficients we effectively need to change all
subscripts of V to μ = +. If translating the last excited spin
wave’s crystal momentum by Q, we find

V{μn−1},−({kn−1}, kn + Q; p, ω)

=
[

1 0
0 −1

]
· V{μn−1},+({kn−1}, kn; p, ω). (C4)

Hence, we see that by translating the momentum by Q it is
possible to change the subscripts at the expense of a possible
sign. This relation also explains the signs in the expression for
the wave function in Eq. (21). If instead we wish to change
not the last subscript but any other, then we find

V{μn},−,{μm}({kn}, kn+1 + Q, {km}; p, ω)

=
[

1 0
0 −1

]
· V{μn},+,{μm}({kn}, kn+1, {km}; p, ω)

·
[−1 0

0 1

]
. (C5)

If defining the coefficient with the hole present in layer 1
with excited spin waves only in the + branch as

a(1)
+,+,...,+(p, {kn}) ≡ a±

n (p, {kn}), (C6)
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then it becomes possible with Eqs. (C9) and (C4) to relate
any nth-order coefficient to a±

n by translating all momenta
relating to a spin wave of the type μ = − by k → k + Q.
They will be related up to a sign which depends on the
layer the hole is in, the types of excited spin waves, and
the order in which they are excited. As an example we
find a(1)

+,−(k1, k2 + Q; p, ε±
p ) = −a(1)

−,+(k1 + Q, k2; p, ε±
p ) =

−a±
2 (k1, k2; p, ε±

p ). This also leaves it possible to write the
recursion relation as the scalar relation

a±
n+1(p, {kn+1}) = R±(p, {kn+1})a±

n (p, {kn}), (C7)

with the recursive coupling

R±(p, {kn}) = (Gd(Kn,

±
{kn}) ± Go(Kn,


±
{kn}))

× (g+(Kn−1, kn) ± f+(kn)),


±
{kn}(p) = ε±

p −
n∑

i=1

ω+,kn . (C8)

From the above relations, we will now derive relations be-
tween amplitudes in the wave function that will be necessary
for the derivations of the B and C series. If changing the order
of two different types of spin waves, we get

a(l )
{μn},+,−,{μm}({kn}, k, q + Q, {km}; p, ω)

= −a(l )
{μn},−,+,{μm}({kn}, k + Q, q, {km}; p, ω). (C9)

If we instead wish to change only one subscript from − to +,
we find

a(l )
{μn},−,{μm}({kn}, k + Q, {km}; p, ω)

= (−1)m+l a(l )
{μn},+,{μm}({kn}, k, {km}; p, ω). (C10)

At last, we investigate what happens if changing the first or
two first types of spin waves. If changing just the first,

al
−,{μn−1}(k1, {kn−1}; p, ω)

= (−1)n+l al
+,{μn−1}(k1 + Q, {kn−1}; p, ω). (C11)

For the first two,

a(l )
−,−,{μn−2}(k1, k2, {kn−2}; p, ω)

= −a(l )
+,+,{μn−2}(k1 + Q, k2 + Q, {kn−2}; p, ω),

a(l )
+,−,{μn−2}(k1, k2, {kn−2}; p, ω)

= (−1)n+l a(l )
+,+,{μn−2}(k1, k2 + Q, {kn−2}; p, ω),

a(l )
−,+,{μn−2}(k1, k2, {kn−2}; p, ω)

= −(−1)n+l a(l )
+,+,{μn−2}(k1 + Q, k2, {kn−2}; p, ω). (C12)

APPENDIX D: B SERIES

To understand the structure of this series, we will start by
writing the wave function in a diagrammatic form. This form
will not explicitly state the full complexity of the wave func-
tion and extra rules are needed to translate it into the different
terms. This is thought to work as a guide in understanding the

structure

(D1)

The double line combined with the vertex translates to
R±(p; k) while the straight line translates to

√
Z±

p . Looking at
Eq. (21) we see that this is not the whole story since exciting
the μ = − spin wave leaves R to be evaluated at R(p, k + Q)
and then we have a minus sign for specific vertices. We will
come back to these features later, but for now, let us focus on
the structure of the B series. Looking at Eq. (27) we see that
the diagrammatic structure of B±,l (q1, q2; p, ω) becomes

(D2)

where B±,l = Z±
p

∑∞
i=1 B±,l

i , and the orange vertex describes
the bμ1,μ2 factor. The factor Z±

p comes from omitting the lines
at the end in the diagrams. There will also be diagrams that are
not symmetric around the center, Basym; however, it is seen
in Appendix F that Basym = 0. To handle these diagrams we
collect all the diagrams of the last type in B±,l

0 such that

(D3)
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With these definitions, we see that it is possible to rewrite the
B series as

(D4)

With these relations, we will start translating the diagram-
matic representation. We will begin with F±

B , where we have

to remember that the missing vertex in the center means
that the momentum in the two propagators need not be the
same. We also need to worry about the relation in Eq. (C11).
This says that it actually matters whether or not the diagrams
attached to FB contain two spin waves of the same kind or
opposite. If they are opposite then the diagrams need to come
with alternating signs according to Eq. (C11). For now, we
will disregard the factor of (−1)l to find the following for the
same kinds of spin waves:

F±,s
B (q1, q2; p, ω) =

∑
k

(
R±(q1, k; p, ω)R±(q2, k; p, ω)

[
1 + F±,s

B (q1, q2; p + k, ω − ω+
k )

] + R±(q1, k + Q; p, ω)

× R±(q2, k + Q; p, ω)
[
1 + F±,s

B (q1, q2; p + k, ω − ω−
k )

])
, (D5)

and for two different,

F±,a
B (q1, q2; p, ω) = −

∑
k

(
R±(q1, k; p, ω)R±(q2, k; p, ω)

[
1 + F±,a

B (q1, q2; p + k, ω − ω+
k )

]
+ R±(q1, k + Q; p, ω)R±(q2, k + Q; p, ω)

[
1 + F±,a

B (q1, q2; p + k, ω − ω−
k )

])
, (D6)

with the recursive coupling now being defined as

R±({kn}; p, ω) = (
Gd(Kn,


±
{kn}) ± Go(Kn,


±
{kn})

)
(g+(Kn−1, kn) ± f+(kn)),

(D7)


±
{kn}(ω) = ω −

n∑
i=1

ω+,kn ,

in order to encompass being evaluated away from the quasiparticle energies. As a sanity check, we find that in the limit of t⊥ = 0
the results are equivalent to those obtained for a single layer [21].

With this, we can now approach B±,l
0 , where we need to remember that the two boson lines in the first term in Eq. (D3) need

not be the same and the vertex bμ1,μ2 (q1, q2) depends on the types of spin waves. The fact that this diagram also allows for two
different kinds of spin waves makes it important to think about which layer the hole is present in. Looking at Eq. (17), we see
that if the hole is present in layer 1, then the two types of spin waves come with the same sign while for layer 2 this is not the
case. This means that B±,l

1 comes with a −(−1)l in front when the two spin waves are of the opposite kind. Having this in mind
we find

B±,l
0 (q1, q2; p, ω) = Z±

p

2

[
R±(q1; p, ω)R±(q2; p, ω)b+,+(q1, q2) · [

1 + F±,s
B (q1, q2; p, ω)

]
+ R±(q1 + Q; p, ω)R±(q2 + Q; p, ω)b−,−(q1, q2)

[
1 + F±,s

B (q1 + Q, q2 + Q; p, ω)
] − (−1)lR±(q1; p, ω)

× R±(q2 + Q; p, ω)b+,−(q1, q2) · [
1 + F±,a

B (q1, q2 + Q; p, ω)
]

− (−1)lR±(q1 + Q; p, ω)R±(q2; p, ω)b−,+(q1, q2)
][

1 + F±,a
B (q1 + Q, q2; p, ω)

]
. (D8)

Here, we find B±,2 = 0 in the limit of t⊥/t = 0 and B±,1 to coincide with the result for a single layer. This is expected since in
Eq. (25) we choose the spin to be measured in layer 1; it will therefore make sense that if choosing l = 1 and taking the limit
of t⊥ = 0 we expect to find M1,2 = 0, B±,1 = 0, and C±,1 = 0. Another feature found in Eq. (D8) is that the only difference
between the two layers comes from the terms mixing the spin-wave branches. If we take the extreme limit of t⊥ 
 t we have
b+,− = 0 = b−,+. The same holds for the C series, such that all states, as expected, will show perfect antialignment between the
layers in this limit. It is not trivial what happens for intermediate values (see Fig. 7).

With these relations, we can now present the translation of Eq. (D4):

B±,l (q1, q2; p, ω) = B±,l
0 (q1, q2; p, ω) +

∑
k

[R±(k; p, ω)R±(k; p, ω) · B±,l (q1, q2; p + k, ω − ω+
k )

+ R±(k + Q; p, ω)R±(k + Q; p, ω) · B±,l (q1, q2; p + k, ω − ω−
k )]. (D9)

We can now find B±,l by first solving Eqs. (D5) and (D6) self-consistently starting from F±
B = 0. The results are then inserted

into Eq. (D8) which is then used to solve Eq. (D9) self-consistently starting from B±,l = B±,l
0 .

075141-11



NYHEGN, BRUUN, AND NIELSEN PHYSICAL REVIEW B 108, 075141 (2023)

APPENDIX E: C SERIES

Finding an expression for the C series is much like finding
the one for the B series. The C series differs in that it will con-
nect different orders of the wave function while the B series
connects the same orders. Again, we define C = ∑∞

n=0 Cn,n+2,
where Ci, j represents the overlap between the ith order in
〈�±

p | and the jth order in |�±
p 〉. Cn,n+2 can diagrammatically

be represented as

(E1)

We also have other diagrams, but we find them summing to
zero (see Appendix F). If collecting the last type of diagram
in the quantity C0, we see

(E2)

The derivation of FC follows that of FB with the only differ-
ence being that in the expression for C±,l

0 we have two spin
waves excited to the right of FC and none to the left; for FB we
had one on each side. We, therefore, need to use the relations
presented in Eq. (C12). Again we need to define two types of
FC where one has alternating signs:

F±,s
C (q1, q2; p, ω) =

∑
k

[R±(k; p, ω)R±(q1, q2, k; p, ω)

× [
1 + F±,s

C (q1, q2; p + k, ω − ω+
k )

]

+ R±(k + Q; p, ω)R±(q1, q2, k + Q; p, ω)

× [
1 + F±,s

C (q1, q2; p + k, ω − ω−
k )

]
,

F±,a
C (q1, q2; p, ω) = −

∑
k

[
R±(k; p, ω)R±(q1, q2, k; p, ω)

× [
1 + F±,a

C (q1, q2; p + k, ω − ω+
k )

]
+ R±(k + Q; p, ω)R±(q1, q2, k + Q; p, ω)

× [
1 + F±,a

C (q1, q2; p + k, ω − ω−
k )

]
. (E3)

Here, we again use the definition for the recursive coupling
given in Eq. (D7). To find C±,l

0 we have to be a bit careful
since the purple vertex is seen as only acting on |�±

p 〉. In the

correlator, Eq. (E2), we have b̂μ1,−q1 b̂μ2,−q2 such that b̂μ1,−q1

can either annihilate the first or the second spin wave. Using
that cμ1,μ2 (q1, q2) = cμ2,μ1 (q2, q1) this will yield a factor of 2
and we thereby find

C±,l
0 (q1, q2; p, ω) = Z±

p

(
R±(q1; p, ω)R±(q1, q2; p, ω)

× c+,+(q1, q2) · [
1 + F±,s

C (q1, q2; p, ω)
]

− R±(q1 + Q; p, ω)R±(q1 + Q, q2 + Q; p, ω)c−,−(q1, q2)

× [
1 + F±,s

C (q1 + Q, q2 + Q; p, ω)
]

− (−1)lR±(q1; p, ω)R±(q1, q2 + Q; p, ω)c+,−(q1, q2)

× [
1 + F±,a

C (q1, q2 + Q; p, ω)
] + (−1)lR±(q1 + Q; p, ω)

× R±(q1 + Q, q2; p, ω)c−,+(q1, q2)
]

× [
1 + F±,a

C (q1 + Q, q2; p, ω)
])

. (E4)

Here, the factors in front are a bit ambiguous, but they can
trivially be derived from Eq. (C12). As for the B series, we
find c+,− = 0 = c−,+ in the extreme limit of t⊥ 
 t , thereby
leaving the spins perfectly antialigned between the layers.

With the definition of C±,l
0 we can write the C series as

(E5)

This translates to

C±,l (q1, q2; p, ω) = C±,l
0 (q1, q2; p, ω) +

∑
k

[R±(k; p, ω)

× R±(k; p, ω) · C±,l (q1, q2; p + k, ω − ω+
k )

+ R±(k + Q; p, ω)R±(k + Q; p, ω)

· C±,l (q1, q2; p + k, ω − ω−
k )].

As a sanity check, we find that for t⊥ → 0 this yields the result
presented in Ref. [21] for a single layer.
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APPENDIX F: VANISHING DIAGRAMS

In this section, we will show that the nonsymmetric dia-
grams for the B series and the rest of the diagrams for the C
series vanish. The structure of the nonvanishing diagrams is
such that for the B series they will not be symmetric around
the center. For the C series, the two spin waves annihilated by
the purple vertex will not be excited one after the other. An
example from both series is stated here:

(F1)

The feature determining whether the diagrams vanish or not is which terms in the diagrams come with the same vertex factor, so
bμ1,μ2 or cμ1,μ2 . This is not obvious; we, therefore, examine the diagrams from Eq. (F1).

For B±,l,van.
2 the diagram translates to

B±,l,van.
2 (q1, q2; p, ω) = Z±

p

2

[
b+,+(q1, q2)R±(q1; p, ω)

∑
k

R±(q1, k; p, ω)R±(k, q2; p, ω)R±(k; p, ω)

− b+,+(q1, q2)R±(q1; p, ω)
∑

k

R±(q1, k + Q; p, ω)R±(k + Q, q2; p, ω)R±(k + Q; p, ω)

− (−1)l b+,−(q1, q2)R±(q1; p, ω)
∑

k

R±(q1, k; p, ω)R±(k, q2 + Q; p, ω)R±(k; p, ω)

+ (−1)l b+,−(q1, q2)R±(q1; p, ω)
∑

k

R±(q1, k + Q; p, ω)R±(k + Q, q2 + Q; p, ω)R±(k + Q; p, ω)

+ (−1)l b−,+(q1, q2)R±(q1 + Q; p, ω)
∑

k

R±(q1 + Q, k; p, ω)R±(k, q2; p, ω)R±(k; p, ω)

− (−1)l b−,+(q1, q2)R±(q1 + Q; p, ω)
∑

k

R±(q1 + Q, k + Q; p, ω)R±(k + Q, q2; p, ω)

× R±(k + Q; p, ω) − b−,−(q1, q2)R±(q1 + Q; p, ω)
∑

k

R±(q1 + Q, k; p, ω)R±(k, q2 + Q; p, ω)

× R±(k; p, ω) + b−,−(q1, q2)R±(q1 + Q; p, ω)
∑

k

R±(q1 + Q, k + Q; p, ω)R±(k + Q, q2 + Q; p, ω)

× R±(k + Q; p, ω)

]
. (F2)

Here we see that by taking k → k + Q for every second term
this diagram yields zero. The recurring feature leading to these
terms being zero, in comparison to the symmetric version, is
that the terms coming with the same vertex amplitude, bμ1,μ2 ,
can be put into pairs of the kind a{μn},μ1,μ,{μm} · a{μn},μ,μ2,{μm}
and a{μn},μ1,μ̄,{μm} · a{μn},μ̄,μ2,{μm}, where μ̄ is the opposite type
of spin wave to μ, and the associated momentum is summed
over. If looking at Eq. (C9), we see that such terms come with
an opposite sign. Now, since the moment associated with μ2

is summed over, we can translate them by Q such that the two
terms will sum up to zero. The equivalent symmetric diagrams
will instead come with the same sign in front.

For the C series, the vanishing diagrams yield zero for sim-
ilar reasons. Here, terms coming with the same vertex factor
can be grouped in pairs of a{μn},μ,{μm} · a{μn,μ1},μ,μ2,{μm} and
a{μn},μ̄,{μm} · a{μn,μ1},μ̄,μ2,{μm}, where the momentum associated
with μ is summed over. One should understand {μn, μ2} as
a series of excited spin waves where μ2 is excited at some
unspecified order. Looking at Eq. (C10), we see that these two

terms come with a sign difference. We can therefore translate
the momentum by Q to have them cancel one another.

APPENDIX G: SYMMETRIES OF THE POLARON CLOUD

In this Appendix we use the expressions for the B and C
series, Eqs. (27) and (28), to show the symmetry

M−
l (d, p + Q) = M+

l (d, p). (G1)

Looking at the recursive coupling, Eq. (C8), we find the fol-
lowing symmetry related to the AFM ordering vector:

R+(p + Q, {kn}) = −R−(p, {kn}). (G2)

In the expression for the B and C series, Appendixes D and
E, we find that all R± are multiplied by even numbers of
R±s. The same applies to the residue Z±

p , such that this minus
will change nothing and we retrieve M+

l (d, p) = M−
l (d, p +

Q). Realizing that �+
p+Q and �−

p are degenerate states (see
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FIG. 9. Difference in magnetization between the layers for
J/t = 0.3 and p = (0, 0). (a) Here shown as a function of the in-
terlayer spin-spin correlation with t⊥/t = 0.

√
J⊥/J is chosen since√

J⊥/J = t⊥/t for J⊥ = 4t2
⊥/U , and, therefore, it enables easy com-

parison. (b) Here we instead show it as a function of the interlayer
hopping t⊥/t with J⊥/J = 0. The grey curves in both panels cor-
respond to the nearest-neighbor difference when J⊥ = 4t2

⊥/U , and
should be compared to the orange curve. Doing so, we see that in
(a) the mirroring effect is less prominent while in (b) it follows more
closely. The inset shows the energy of the p = (π/2, π/2) state in
black and p = (0, 0) in red for J⊥/J = 0. The p = (π/2, π/2) state,
thus, remains the ground state with increasing interlayer hopping for
t⊥ = 0.

Ref. [45]), we find that this manifests itself in the same frus-
tration of the magnetic environment.

APPENDIX H: POLARON CLOUD FOR J⊥ �= 4t2
⊥/U

In this Appendix, we investigate the influence of J⊥ and
t⊥ separately in relation to how the polaron clouds in the
two layers mimic one another for large J⊥/t . To do so, we
deviate from J⊥ = 4t2

⊥/U used in the main text, such that
the model no longer describes the low-energy physics of
the Fermi-Hubbard model in the large-U limit. In analog to
Fig. 7(a) in the main text, Fig. 9 shows M−

1 − M−
2 for t⊥/t = 0

[Fig. 9(a)] and J⊥/t = 0 [Fig. 9(b)] with p = (0, 0). The grey
curves show the nearest-neighbor results plotted in the main
text for J⊥ = 4t2

⊥/U . Comparing the orange and grey curves in
Fig. 7(a), we see that a vanishing interlayer hopping, t⊥/t = 0,
yields a less prominent mirroring effect between the layers.
In Fig. 7(b), for J⊥/t = 0, the orange and grey curves follow
each other more closely, though M−

1 − M−
2 stays larger with

no interlayer spin-spin interaction. The mirroring effect where

1.0

0.5

0.0

−0.5

M
− 1

Layer 1 p = (π/2, π/2)

(a)

0 1 2 3
t⊥/t

1.0

0.5

0.0

−0.5−0.5

M
− 2

J/t = 0.1
J/t = 0.3
J/t = 1.0

Layer 2

(b)

FIG. 10. The frustration of the nearest-neighbor site in layer 1
where the hole is present and the opposite sites in layer 2. This is
plotted for J/t = 0.1, 0.3, 1.0 with varying interlayer hopping, t⊥/t .
Here, we see the same behavior as described in the main text with
the overall frustration being larger for smaller J/t .

the cloud upholds the interlayer AFM order is, therefore,
primarily created by interlayer hopping. That said, the energy
decrease associated with keeping the AFM order between the
layers is absent in the case of J⊥/t �= 0. As seen in the inset in
Fig. 7(b), the system will, consequently, not prefer p = (0, 0)
as its ground state. As a result, in order for the system to prefer
the p = (0, 0) polaron state as its ground state, we need the
interlayer spin-spin interaction.

APPENDIX I: DEVIATING FROM J/t = 0.3

This Appendix discusses the influence of the value J/t on
the magnetic dressing cloud. Similar to Fig. 5 in the main
text, we show in Fig. 10 the development of the nearest-
neighbor and next-nearest-neighbor frustrations in layers 1
and 2, respectively, as a function of interlayer hopping for
J/t = 0.1, 0.3, 1.0. Here, we see that they all follow the same
behavior but with increasing frustration for smaller J/t . This
is because for smaller J/t the energy penalty of being local-
ized increases and the hole will be more delocalized, thereby
increasing the frustration. The features described in the main
text are independent of this battle between the two terms since
it reflects the behavior of the order parameter dictated by
J⊥/J . By changing J/t the behavior described in the main
text remains qualitatively the same, but will quantitatively
take place with more (J/t < 0.3) or less (J/t > 0.3) overall
frustration.
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