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Electron confinement in chain-doped transition metal dichalcogenides:
A platform for spin-orbit coupled one-dimensional physics
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State-of-the-art defect engineering techniques have paved the way to realize unique quantum phases out of
pristine materials. Here, through density-functional calculations and model studies, we show that the chain-
doped monolayer transition metal dichalcogenides, where M atoms on a single zigzag chain are replaced by a
higher-valence transition-metal element M ′ (MX2/M ′), exhibit one-dimensional (1D) bands. These 1D bands,
occurring in the fundamental gap of the pristine material, are dispersive along the doped chain but are strongly
confined along the lateral direction. This confinement occurs as the bare potential of the dopant chain formed by
the positively charged M ′ ions resembles the potential well of a uniformly charged wire. These bands could show
unique 1D physics, including another type of Tomonaga-Luttinger liquid behavior, multiorbital Mott insulator
physics, and an unusual optical absorption due to the simultaneous presence of the spin-orbit coupling, strong
correlation, multiple orbitals, Rashba spin splitting, and broken symmetry. We find the broadening of the half-
filled 1D bands with correlation. It is surprising since correlation reduces the effective hopping interactions and
in turn reduces the bandwidth. This is interpreted to be due to multiple orbitals forming the single Hubbard band
at different points of the Brillouin zone. Furthermore, due to the presence of an intrinsic electric field along the
lateral direction, the 1D bands are Rashba spin-split and provide a mechanism for tuning the valley-dependent
optical transitions.
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I. INTRODUCTION

Successful synthesis of atomistically controlled van der
Waals layered materials in the form of transition metal
chalcogenides (TMDs) has given rise to a wide range of meso-
scopic nontrivial quantum phases. These include proximity of
p-wave superconductivity and charge density wave as in
NbSe2 [1–3], topological Weyl semimetallic nature and large
magnetoresistance as in WTe2 [4–6], and the exotic orbital
and quantum spin Hall effects [7–9].

One of the emerging areas of research on two-dimensional
(2D) TMDs is to further reduce the dimensionality and ex-
plore subnanoscale quantum physics. For example, the Moirè
bilayers of TMDs and their heterostructures allow twist angle
controlled resonant effects to engineer exciton band structures
[10,11]. The lateral superlattices and nanoribbons are syn-
thesized out of TMDs to produce edge and interfacial states
[12–17]. A recent study has proposed a typical moirè lattice
out of WTe2, where an overarching periodicity creates a one-
dimensional (1D) lattice for electrons residing in collective
eigenstates which give rise to rarely observed exotic quantum
states of Tomonaga Luttinger liquid (TLL) behavior [12]. The
ribbon edge states in 1-T′-WTe2 exhibiting TLL behavior is

*These authors contributed equally to this work.
†SatpathyS@missouri.edu
‡nandab@iitm.ac.in

an experimental result in this direction [15]. The TLL state is
also experimentally observed in MoS2 by creating mirror twin
boundaries [16]. Electron correlation is an important missing
factor in TMDs and, therefore, correlation-driven exotic quan-
tum phases in the area of magnetism and superconductivity
are less evident in this class of compounds. To achieve the
correlated electron phases, narrow bands in the vicinity of
Fermi energy need to be created, and one of the ways to make
it possible is to confine the electron motion by reducing the
dimensionality.

Unlike the semimetallic 1T′ phase [18], the 2H phase of
TMDs has wide band gaps and hence unique quantum phases
and transport can be envisaged in them by inducing midgap
states of lower dimensions. With growing interest in doped
2D TMDs, there are experimental proposals on tunable dop-
ing mechanisms in these systems [19]. Recently, Lin et al.
[20] reported excellent controllability for substitutional dop-
ing of the foreign atoms in 2D TMDs through low-energy ion
implantation techniques such as site-selective laser-assisted
chemical vapor doping [21]. Furthermore, a very recent ex-
perimental work demonstrated a controlled doping strategy
for TMDs based on a dislocation climb mechanism [22]. In
this reference, the authors were successful in forming highly
doped nanostripes of Ti, V, Cr, and Fe atoms in WSe2 and
WS2 monolayers.

In this paper, we have engineered 1D quantum states out of
the semiconducting 2H phase of MoX2 and WX2 monolayers,
with X being a chalcogen. This is achieved by replacing a
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FIG. 1. (a) Top view of the chain-doped MX 2/M ′ compound,
where a single zigzag chain of the pristine MX 2 structure is replaced
with an M ′X2 chain. (b) The reduced 1D Brillouin zone (line ex-
tending between −π/a < kx < π/a) for the chain-doped structure
and its relation to the original 2D Brillouin zone (hexagon). All three
valley points K of the hexagonal BZ fall onto the same point, marked
by K , on the 1D BZ, and the same happens for the K ′ points. The
hexagonal zone collapses vertically onto the kx axis, and the points
lying outside the 1D BZ in the process are brought inside it via the
reciprocal lattice translation of 2π/a. The zigzag/armchair labels
in the figure indicate the orientation of the BZ with respect to the
crystalline directions in real space. (c), (d) The DFT+SOC band
structure of the pristine MoTe2 and WTe2 (shaded grey), projected
into the 1D BZ. The red lines indicate the defect bands introduced by
the Tc doped chain in the forbidden region. These bands represent
1D propagating states along the chain, while they are confined in
the lateral direction. The defect bands are dominated by the orbital
characters of Tc. The small splitting of the otherwise degenerate
defect bands is because of the Rashba SOC due to a nonzero lateral
electric field (see text).

single chain of Mo or W along the zigzag direction with
an element M ′ with one extra valence electron as shown in
Fig. 1. We find these chain-doped systems, henceforth repre-
sented as MX 2/M ′ to be dynamically stable. The 1D bands,
depending on several other factors, build a perfect platform
to induce nontrivial low-dimensional quantum phases, which
may include Peierls distortion [23], topological magnons [24],
charge density waves [25], TLL [26], and 1D magnetism.

In the case of MTe2/Tc and MTe2/Re, we find that the
weakly SOC-driven degenerate half-filled 1D bands running
along the chain make them ideal candidates for exhibiting
TLL phenomena. In the magnetic phase, the effect of strong
correlation can produce Mott insulating states by breaking the
half-filled 1D bands to lower and upper Hubbard subbands
with a gap in between. However, a phenomenon emerges
where the on-site Coulomb repulsion, instead of localizing,
delocalizes the lower Hubbard subbands. Upon practical real-
ization, it can give rise to an unusual 1D quantum transport.
The dopant chain breaks the reflection symmetry to introduce
an intrinsic electric field along the lateral direction. This, in

FIG. 2. The phonon frequencies of the chain-doped MoTe2/Tc

(Mo6Tc1Te14). The force constants obtained from the DFPT method
are taken into account through the PHONOPY code [27] as imple-
mented in VASP. The absence of imaginary modes implies the
dynamical stability of the chain-doped structure.

turn, makes the 1D bands Rashba spin-split and introduces
valley-dependent optical transition in the system.

II. STRUCTURAL AND COMPUTATIONAL DETAILS

The prototype representation of the chain-doped mono-
layer structures (MX 2/M′ = Mn−1M′

1X2n) is shown in
Fig. 1(a). A detailed description of M ′X2 chain formation in
a monolayer sheet of TMD is given in Sec. I of the Supple-
mental Material (SM) [29]. We have adopted the supercell
approach with n = 13, which is found to be sufficient to
induce the 1D defect bands. The phonon band structures of
such systems do not show imaginary frequencies (see Fig. 2),
suggesting dynamical stability. We have further calculated
the formation energy of all chain-doped MX 2/M ′ compounds
which suggest the thermodynamical stability of systems. The
results are provided in the Sec. II of the SM. With chain
doping along the zigzag direction, the 2D Brillouin zone (BZ)
reduces to a 1D BZ as shown by a thick black strip in Fig. 1(b).
The high-symmetry points of the 2D BZ are projected onto
the reduced BZ, which helps us later in discussing the reso-
nance and bound states. The density functional theory (DFT)
calculations are carried out on optimized Mn−1M ′

1X2n struc-
tures using the pseudopotential based projector-augmented
wave method [30,31] within the framework of PBE-GGA
exchange-correlation functional as implemented in the VI-
ENNA AB INITIO SIMULATION PACKAGE (VASP) [32]. The
plane-wave energy cutoff of 400 eV is used. For structural
relaxation, while a 1×8 × 1 �-centered k-mesh is used for BZ
integration, self-consistency of the charge density is obtained
with a 1×8 × 2 k-mesh. The thickness of vacuum layer in
the z direction is taken to be 15 Å. The Hubbard U formal-
ism is adopted to study the correlation effect arising due to
localized defect states. The U values are obtained using the
linear response theory [33]. The cell-averaged bare potential
is calculated using the QUANTUM ESPRESSO simulation
package [34].

III. FORMATION OF 1D BANDS

While a range of chain-doped configurations are inves-
tigated, here we will discuss the electronic structure of
MoTe2/Tc and WTe2/Tc as prototypes. However, it is useful
to first provide a brief overview of the electronic structure
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FIG. 3. The orbital-resolved band structure of the monolayer
MoTe2 obtained using WANNIER90 [28]. The valence band maximum
occurring at the valley points, K and K ′, are dominated by the angu-
lar momentum orbitals L± = (x2 − y2 ± ixy), while the conduction
band minima are formed by the z2 orbital, all belonging to the Mo
atom. The spectrum below the top valence band is formed by the
Te-p states.

of the pristine TMDs so the formation of the dopant states
can be better understood. For this purpose, in Fig. 3, we
present the band structure of monolayer 2H-MoTe2 [35]. The
electronic properties of the TMDs have been widely studied
[35–37]. The formation of bands can be described with two-
step chemical bonding. In the first step, the nearest-neighbor
Mo-d–Te-p interactions give rise to lower-lying Te-p domi-
nated bands and upper-lying Mo-d dominated bands. Driven
by the trigonal prismatic crystal field, the latter is further split
into three groups: A′

1(z2), E ′(xy, x2 − y2), and E ′′(xz, yz).
The second step involves second-neighbor interactions where
in the monolayer limit the reflection symmetry along the ẑ
direction permits hybridization among the A′

1 and E ′ orbitals
to create a band gap. The valley points K and K ′ host both
the valence band maximum (VBM) and the conduction band
minimum (CBM). The VBM at K and K ′ are found to be
formed by x2 − y2 + ixy (L+) and x2 − y2 − ixy (L−) orbitals,
respectively, giving rise to opposite orbital moments [8] while
the CBM is formed by the z2 character and hence with zero
orbital moments [8,35]. The role of the spin-orbit coupling
(SOC) in this compound is restricted to splitting the bands
dominated by L+ and L− by a few meV without perturbing the
broad band structure. To produce unique quantum transport
phenomena, the midgap states with varying characters can be
generated in these systems through hole or electron doping.

The band structures of the chain-doped systems MoTe2/Tc
and WTe2/Tc are, respectively, shown in Figs. 1(c) and
1(d). The gray shaded region represents the bands of pristine
MoTe2/(WTe2) projected along ky = 0 [see Figs. 1(c) and
1(d)]. The red bands belong to the chain-doped compounds.
Most of them overlap with the bands of the parent compound,
but the rest form defect bands, creating either bound states
by lying in the forbidden region or resonating states by over-
lapping with the bulk bands. The defect bands lying in the
vicinity of the Fermi level (εF ) are of significant importance
as they can introduce different transport behavior in the sys-
tem. Our orbital projection analysis indeed shows that these

bands are formed by the xy, x2 − y2, and z2 orbitals of the Tc
chain. Furthermore, the defect bands are dispersive along the
chain direction while remaining bound perpendicular to it, and
thereby a platform for 1D quantum physics is created.

The basic electronic configuration enables us to explain the
formation of the 1D quantum state. In the semiconducting
MoTe2 and WTe2, Mo4+ and W4+ have d2 configuration.
When Tc is doped, the Tc4+ has d3 electronic configuration
out of which two electrons (assume it as d2) participate in
maintaining the bulk semiconducting band structure while the
remaining d electron (assume it as d1) occupies the defect
state which becomes half filled. In the case of chain doping,
this leads to the formation of 1D band.

By giving away the additional electron (d1), the Tc chain
becomes positively charged. To estimate the resulting po-
tential well, we have approximated the 1D chain to be a
cylindrical wire of radius R0. From Gauss’s law, the potential
inside and outside the wire can be expressed as

V =
{ ρ

4εrε0
r2, r < R0

ρR2
0

4ε0εr

(
1 + 2 log

(
r

R0

))
, r > R0,

(1)

where ρ = e/πR2
0a is the charge density of the wire, with

a being the lattice constant. Based on the earlier theoretical
studies, the dielectric constant (εr) is taken to be 20 [38].
We mapped the modeled potential with the cell-averaged bare
potential obtained from the DFT calculations on a MoTe2/Tc
superlattice. There is excellent agreement capturing both r2

and logarithmic behavior inside and outside the wire, respec-
tively, for R0 = 2.6 Å, which is higher than the atomic radii of
Tc and lower than the lattice parameter.

The wave functions of the ground and first two excited
states [ψn(r)] and their corresponding eigenvalues (εn) are
shown in Fig. 4(a), lower panel, which were obtained from
the numerical solution to the one-particle Schrödinger equa-
tion with the potential given in Eq. (1). The eigenstates
resemble those of the Airy functions which are the solutions
of the Schrödinger equation at linearly varying potential wells
[39]. The |ψ1(r)|2 plotted in a blue solid line in the upper half
of Fig. 4(a) reflects the charge spread away from the Tc chain.
For validation, we computed the cell averages of |ψ1(r)|2
(black filled squares) along the direction perpendicular to the
chain and compared them with the atomwise contribution of
the partially occupied lower lying defect band—values are
depicted through the red filled circles—and found a very good
match among them. The rapid exponential decay of the charge
spread is also demonstrated through the logarithmic charge
density [ρDFT(r)] contours calculated for the 1D band. The
ρDFT(r) is calculated by integrating the lower lying defect
band up to εF . From Fig. 4(b), we observe that the spread
vanishes after three layers on either side of the Tc chain while
accumulating most of the charge on the chain itself. This
implies that the defect state is bound laterally and dispersive
along the Tc chain.

IV. PLATFORM FOR 1D PHYSICS

A. Rashba SOC and valley-dependent optical transitions

The partially filled nondegenerate defect bands can be fit-
ted with a tight-binding model on the doped chain along with
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FIG. 4. The confinement of the chain-doped bands along the lateral direction. (a) Lower panel: The cell-averaged bare potential (red solid
line) and the model potential (black solid line) as per Eq. (1). The ground- and the first two excited-state wave functions (ψ1, ψ2, and ψ3) are
sketched by blue dotted lines. These are obtained by numerically solving the Schrödinger equation for the model potential. Upper panel: The
spread of the extra valence electron in this potential. The DFT obtained values are shown by red circles. The cell average of the ground-state
charge density (|ψ1(r)|2) is shown by black squares. (b) Charge-density contours (isosurface value = 0.0001 e/Å3) of the partially occupied
defect bands as obtained by integrating from the bottom of the defect bands to the Fermi energy (see the red bands in Fig. 1).

a Rashba-like term, viz.,

ε(k) = (ε0 + 2t cos kx + 2t ′ cos 2kx + 2t ′′ cos 3kx )I

+ λR(Ê × �k) · �σ , (2)

where the chain runs along x̂; ε0 is the on-site energy taken
to be zero; t , t ′, and t ′′ are, respectively, the hopping to the
first-, second-, and third-nearest neighbors. Here, I is the 2×2
identity matrix and �σ are Pauli spin matrices. λR is the Rashba
strength. From the symmetry of the structure [Fig. 4(b)], an
electric field exists in the y direction on the plane, which
translates to a magnetic field �B = �v × �E/c2 in the electron’s
rest frame that couples to the spin moment. This leads to the
spin-split band structure with a linear dispersion described by
the last term in Eq. (2).

The TB parameters, obtained by fitting to the DFT results,
are listed in Table I for a number of chain-doped compounds.
We note that there is a substantial second-neighbor hopping
t ′, but the third-neighbor hopping is substantial only for the
Re chains and negligible for the Tc chains. The TB bands
fitted with DFT for WTe2/Tc are shown in Fig. S2 of the
SM. Similar models can also be developed for the Rashba
spin-split defect bands that lie in the forbidden regions other
than the fundamental gap. The schematic band structure along
with the Rashba spin splitting is illustrated in Fig. 5, which
suggests interesting valley-dependent optical properties. In
the parent MX 2 material, circularly polarized light with op-
posite polarization is absorbed at the two different valleys
K and K ′. Due to the Rashba-like spin splitting, we predict
the chain-doped compounds to exhibit additional features in
the valley-dependent optical absorption between the bulk to

the defect states. The lowest-energy optical transitions at the
valley points are forbidden because the lower defect band has
spin opposite to that of the bulk valence band edge. Note that
the projected bands onto the 1D BZ of the chain-doped com-
pound not only shows the fundamental gap extending through
the full BZ, but also gaps that exist at certain regions of the BZ
as indicated for the valence bands in Fig. 5. As also indicated
in the figure, localized 1D bands can exist within these gaps,
and valley-dependent optical transitions would occur between
these states, including the localized 1D bands lying in the fun-
damental gap. To illustrate, the dipole allowed lowest-energy
optical transitions (σ+ and σ−) between partially filled and
localized 1D conduction bands in the vicinity of valley points
are indicated in the figure.

TABLE I. Rashba strength (in eV/Å) and the hopping integrals
(in eV) for the 1D defect bands in MX 2/M ′, which are obtained by
fitting Eq. (2) with the 1D half-filled defect bands.

Compound name λR t t ′ t ′′

MoSe2/Tc 0.10 −0.053 0.032 0.003
MoSe2/Re 0.76 −0.049 0.035 0.019
MoTe2/Tc 0.10 −0.070 0.026 0.007
MoTe2/Re 1.00 −0.077 0.030 0.019
WS2/Tc 0.00 −0.041 0.039 0.002
WSe2/Tc 0.20 −0.057 0.044 0.000
WTe2/Tc 0.74 −0.090 0.048 0.007
WTe2/Re 0.68 −0.081 0.041 0.025
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FIG. 5. Schematic 1D defect bands indicating the Rashba spin
splitting and valley-dependent optical absorption. The shaded bands
indicate the band structure of the 2D host material, while the red lines
indicate the localized 1D defect bands introduced in the band gap of
the host. The red dashed lines in the valence band indicate resonance
states. Some dipole-allowed optical transitions for circularly polar-
ized light are indicated by σ− and σ+. The orbital-projected bands
of prototype WTe2/Tc are shown in Fig. S3 of the SM.

B. Electronic correlation

Electron correlation effects are expected to be important
for the 1D defect bands, since the bandwidth is quite narrow.
A key parameter for characterizing the strength of the corre-
lation effects is the on-site Coulomb repulsion U , which we
now proceed to compute using DFT and the linear response
approach.

In this method [33], U is computed by calculating the
difference between interacting and noninteracting density re-
sponse functions,

U = χ−1
0 − χ−1 =

(
∂nKS

i

∂αi

)−1

−
(

∂ni

∂αi

)−1

, (3)

where αi is a perturbative shift in the single-particle potential
at site i, for which U is being computed. Since the bandwidth
of the d bands of the host compound MX 2 are rather large, and
the bands are either occupied or unoccupied, the correlation
effects are relatively weak. In contrast, the defect bands are
1D, relatively narrow, and half filled, so the correlation effects
are expected to be important there. Therefore, we compute
U only for the 1D defect bands. To obtain the response
functions, the variation in occupation numbers is obtained by
performing the DFT calculations in two ways: (i) by allowing
the Kohn-Sham potential to adjust self-consistently, which
optimally screens the perturbation αi to give χ0, and (ii) by
calculating the Kohn-Sham potential without screening to get
χ . The latter is achieved by a single loop, without enforcing
self-consistency. The variation of nKS

i and ni as a function
of αi at the doped metal site (Tc or Re) is shown in Fig. 6
for MoSe2/Tc and MoSe2/Re. The on-site Coulomb repul-
sion U0 calculated with this procedure is listed for various

FIG. 6. Calculation of the Coulomb repulsion U0 for the metal
atom on the doped chain, Tc or Re, using Eq. (3). Plotted are the
occupation numbers, nKS

i and ni, as a function of the perturbing
potential α at the doped metal site, obtained using 1×4 supercell of
MoSe2/Tc and MoSe2/Re, i.e., (Mn−1M′

1X2n, n = 7)×4, where the
perturbing potential was applied to a single Tc or Re atom.

chain-doped compounds in Table II, together with the Fermi
velocity vF and the bandwidth W . The spin-resolved Fermi
velocities v

↑
F and v

↓
F are computed at the Fermi momentum

k↑
F and k↓

F , which is roughly halfway along the � − X line (see
Figs. 1 and 7), by taking the derivative of the energy h̄v

↑↓
F =

(∂E↑↓(k)/∂k)k=k↑↓
F

. k↑
F and k↓

F differ as the SOC makes the
spin-resolved bands nondegenerate. As seen from Table II,
U/W � 1 for all compounds studied, which would put these
materials in the strong correlation limit.

C. Tomonaga Luttinger-Liquid physics

The low-energy behavior of the correlated electrons in 1D
is described by the TLL theory, with features generic to many
interacting 1D electron systems, such as the spin-charge sep-
aration and the anomalous scaling of the correlation functions
[40–46]. A few years ago, the TLL theory was extended to
include SOC. When SOC is introduced, the complete spin-
charge separation is destroyed, resulting in mixed bosonic
excitations involving these two degrees of freedom. However,
the anomalous scaling of the correlation functions remains
with modified exponents [47,48]. The TLL with SOC has been
studied experimentally in the context of quasi-1D systems

TABLE II. Characteristics of the 1D defect band for various
compounds. U , W , and vF are the on-site Coulomb repulsion, band-
width, and Fermi velocity, respectively.

Compound/

doping element U (eV) W(eV) vF↑(eVÅ) vF↓(eVÅ)

MoTe2/Tc 1.65 0.30 0.67 0.78
MoSe2/Tc 1.63 0.26 0.41 0.50
WTe2/Tc 1.65 0.34 0.50 0.73
WSe2/Tc 1.63 0.31 0.64 0.76
WS2/Tc 1.30 0.20 0.43 0.76
MoSe2/Re 4.99 0.24 0.82 0.58
MoTe2/Re 4.90 0.27 1.01 0.69
WTe2/Re 4.96 0.31 1.11 0.73

075139-5



GUPTA, CHAUHAN, SATPATHY, AND NANDA PHYSICAL REVIEW B 108, 075139 (2023)

FIG. 7. The nonmagnetic band structures of several chain-doped
compounds. The SOC is included.

such as the carbon nanotubes, quantum wires, and 2D electron
gases confined to a narrow channel by gate electrodes, but
much remains to be done both from theoretical and experi-
mental points of view.

We propose the chain-doped TMDs to be an important
class of materials to study TLL physics, including the effect
of SOC. As illustrated for a number of cases in Figs. 1 and 7,
the defect bands in the chain-doped TMDs are spin split at the
Fermi energy to a varying degree due to the SOC. For exam-
ple, the splitting is near zero for MoTe2/Tc, while it is quite
large for WS2/Tc. The 1D defect bands in the chain-doped
TMDs are nominally half filled, for which the TLL behavior
would be absent [49]. However, departure from the half-filling
scenario can occur naturally due to the presence of impurities
and/or applied gate voltage, which may furthermore be used
to alter the spin-splitting at the Fermi energy. Thus, the chain-
doped TMDs may serve as a rich laboratory for the study
of TLL behavior. Another interesting area of study of the
metallic 1D system is the magnetic behavior in the presence
of the SOC [50], for which the present class of chain-doped
structures may also serve as a useful experimental platform.

The TLL behavior is characterized by several parameters
such as the spin/charge velocities for the collective spin and
charge excitations and the anomalous dimension α, which is
a function of on-site Coulomb repulsion and vF . Explicit ex-
pressions for these quantities exist in the weak-coupling limit.
The Fermi velocity vF for the noninteracting electrons can be
computed by taking the momentum derivative of the band-
structure energy: h̄vF = ∂E (ky)/∂ky|EF . These are listed in
Table II both for the spin-up and -down channels. If we neglect
the SOC (vF↑ = vF↓ ≡ vF ) and take the weak coupling limit,
then analytical expressions for the characteristic TLL parame-
ters are well-known. With this limit, vF is also the spin veloc-
ity vs, while the charge velocity is enhanced by the factor β =
(1 + V (0)/(π h̄vF ))1/2. Here, V (0) = ∫ ∞

−∞ V (x) dx is the inte-
gral of the interaction V (x) in the continuum model and, for a
1D tight-binding model of interacting orbitals, it may be esti-
mated from the expression: V (0) = a(U + νU1 + νU2 + ...),

where U (Ui) is the on-site (near-neighbor) Coulomb repul-
sion, a is the Mo-Mo distance, and ν = 2 is the number of the
various near neighbors. Similarly, the anomalous dimension
using the lowest-order perturbation theory [51,52] may be
calculated as α = (V (0)/(2π h̄vF ))2/2.

However, in the present case, we are in the strong-coupling
limit U/W � 1, for which there are no analytical expressions
for the TLL parameters except in limiting cases. The most
studied model in this limit is the one-band Hubbard model
in 1D. It was solved exactly by the Bethe ansatz a long
time ago for all filling factors n and all values of Coulomb
repulsion U/t � 0 [53]. The results show that at half filling, it
is always an insulator, while for all other n, we have a metallic
system, and the TLL physics is expected to hold. In fact, the
U/t → ∞ Hubbard model has been rigorously shown [54]
to exhibit the TLL behavior. For other values of U , no rig-
orous results are available. However, the t − J model, which
approximates the Hubbard model in the large U limit with
J = 2t2/U , is solvable both at J/t → 0, which is equivalent
to the U → ∞ Hubbard model, and at the supersymmetric
point J/t = 2. In both cases, the model behaves as a TLL
[46,55]). Numerical works using exact diagonalization and
other techniques have indicated the TLL behavior for a wide
range of parameters 0 < J/t �≈ 2 [56,57]. Thus, based on
these works, the TLL behavior is expected for the strong-
coupling case away from half filling. In fact, several authors
have obtained numerical results for the characteristic TLL
parameters for the 1D Hubbard model for different values
of U/t and band filling n [54]. For U/W → ∞, the anoma-
lous dimension α = 1/8 irrespective of the filling factor n
[54,58,59]. Since U/W ∼ 5 − 20 for the compounds studied
here, the U/W → ∞ limit is fairly good here.

When SOC is present, its strength of SOC is parameterized
by the Fermi velocity difference (vF↑ − vF↓)/(vF↑ + vF↓)
and the TLL exponent α is modified [47]. The TLL behavior
of the 1D Hubbard model with next-nearest-neighbor hopping
but without the SOC has been studied using the density-matrix
renormalization group [60]. For the chain-doped TMDs, the
second-neighbor interaction is substantial and, furthermore,
the strength of the SOC can also be tailored by changing
the metal dopant M ′, so these materials can serve as a rich
laboratory for studying the TLL behavior.

D. Half-filled defect bands: Mott-Hubbard
insulating state and unusual band widening

For the half-filled case, the 1D defect bands would not
show the TLL behavior due to the presence of a charge gap
for all values of U within the Hubbard model. This is stud-
ied below by using the mean-field-based DFT+U formalism.
We find two surprising features for the 1D defect bands: (i)
Instead of an AFM ground state expected from the Hubbard
model physics at half filling, we find that the ground state is
usually ferromagnetic. (ii) With U , the bandwidth of the Hub-
bard bands increases instead of decreasing, which is normally
the case for strongly correlated systems where the motion of
the electron is inhibited due to correlated motion, resulting
in a larger effective mass. The increase of the bandwidth of
the Hubbard bands with U can be explained in terms of a
multiband model, as discussed below in some detail.
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FIG. 8. The DFT+U spin-polarized band structures of MoSe2/Re. The transition to Mott insulating phase occurs through the formation of
lower and upper Hubbard bands (LHB and UHB). The LHB widens with U , which is unusual and is interpreted to be due to its multiple-orbital
origin.

A plausible explanation for the ferromagnetism is that we
don’t have an isolated 1D Hubbard chain, rather the electrons
are coupled via the electrons of the host materials. In fact, our
charge density contour plot in Fig. 3 infers that in the case of
MoTe2/Tc there is a covalent bonding between the 1D states
with the nearest-neighbor Te-p states of the host material to
favor the ferromagnetic ordering.

The band-widening feature can be explained using a multi-
band Hubbard model. In essence, different parts of the BZ
consist of different type of orbitals (for instance, z2 at K and
L− at � for the defect bands as seen from Fig. 1), which can
shift around in energy depending on the magnitude of U .

To demonstrate the case of Mott insulating phase and
band widening, we examine the case of MoSe2/Re as
an example. The nonmagnetic band structure shown in
Fig. 7 indicates that the half-filled 1D bands with the band-
width of about 0.24 eV (see Table II). From spin-polarized
DFT + U calculations, we find (see Fig. 8) that with in-
creasing U , the degenerate nonmagnetic half-filled bands spin
separate to form a more-occupied lower Hubbard and a less-
occupied upper Hubbard band. With further increase in U , the
two Hubbard bands separate completely to form a gap, leading
to a Mott insulating state. We see similar effects for other
chain-doped compounds, which are not shown here to avoid
redundancy.

This is in contrast to the conventional Mott insulator, where
increasing U makes the Hubbard bands narrower, as the elec-
tron’s motion becomes restricted due to electron correlation,
resulting in a larger effective mass. In the present case, there
is a rapid increase in the bandwidth with an increase in U . For
example, by increasing U from 0 to 5 eV, the bandwidth has
gone from 0.4 eV to 1.1 eV, as can be seen in Fig. 8.

To describe this physics, we have adopted a multiorbital
Hubbard model with three orbital basis (z2, xy, and x2 − y2),
with the Hamiltonian

H =
∑

iμ

εiμc†
iμciμ +

∑
i j;μν

tiμ jνc†
iμc jν + H.c.

+ U
∑

iμ

niμ↑niμ↓ +
(

U ′ − JH

2

) ∑
iμ<ν

niμniν

− 2JH

∑
i,μ<ν

Sz
iμ · Sz

iν . (4)

Here, the first two terms describe the on-site and kinetic en-
ergy of the electrons, while the third and fourth terms are the
energy cost of having the electrons in the same or different

orbitals at the same lattice site. The last term defines the
Hund’s rule coupling. The relation U ′ = U–2JH has been
used here with JH/U ratio estimated to be 0.03 based on
the agreement between DFT and model band structures. The
niμ = niμ↑ + niμ↓ are the occupation numbers which are
obtained from the DFT+U density matrix.

It is too complex to solve the problem for the super-
cell of MoSe2/Re. Since the defect bands originate from
the doped ReSe2 chain and the bulk ReSe2 shows a similar
band-widening behavior as well (see Fig. 9), we study the
phenomenon for bulk ReSe2 using the multiorbital Hubbard
model, Eq. (4).

The results, obtained from both the DFT+U calculations as
well as the multiorbital Hubbard model, are shown in Fig. 9.
From the top panel in the figure, we observe that for U =
0, it has three spin degenerate bands in the vicinity of the
εF , like in all 2H-TMD compounds. Out of the three, one is
completely occupied, another is completely unoccupied, and
the third one is a half-occupied band. With an increase in U ,
the half-occupied band becomes spin nondegenerate. Also,
like the case of MoSe2/Re, the lower Hubbard subband be-
comes more dispersive. The model results, shown in the lower
panel of Fig. 9, match very well with the DFT+U results, and
the widening of the lower Hubbard band is seen from both

FIG. 9. The spin-polarized band structure of 2H-ReSe2 mono-
layer as obtained from DFT+U calculations (upper row) and
three-orbital-based Hubbard model (lower row) showing excellent
agreement. The evolution of the bottom of the LHB with U has been
indicated by the dashed line. There is excellent agreement between
the model and DFT results. Like the chain-doped system MoSe2/Re
(see Fig. 8), the LHB bandwidth, as indicated in (d) and (f), increases
with increasing strength of the on-site Coulomb repulsion.
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results (indicated by the long-dashed lines). As mentioned
already, the lowest conduction band running through EF has
a combination of the orbital characters L± (dominant around
K ′) and z2 (dominated around �). The band widening happens
because the interorbital interaction term [the fourth term in
the Hamiltonian Eq. (4)] lowers the on-site energy for the z2

orbital (dominant around K ′), while increasing the same for
the L+ orbitals (dominant around �). In fact, when this term
was switched off, there is a band narrowing, clearly seen for
the LHB (see Fig. S4 in the SM).

V. SUMMARY

To summarize, by employing DFT calculations and the-
oretical models, we show that the chain-doped TMDs
(MX 2/M ′ = Mn−1M ′

1X2n), with an M ′ dopant chain along the
zigzag direction, form a sharply localized 1D band structure.
While the 1D states are strongly confined along the lateral di-
rection, they are highly mobile along the chain direction. The
localization in the lateral direction is interpreted in terms of
the bound states of the bare potential of the dopant chain. The
partially filled 1D bands provide a platform to explore exotic
spin-orbit coupled 1D quantum phases and properties. These
include the TLL behavior, ferromagnetic Mott insulator,
Rashba-type SOC, and valley-dependent optical transition.
The half-filled 1D bands are ideal candidates for stabilizing
the antiferromagnetic Mott insulating phase. However, the
interaction between the 1D states via the host X-p states makes
it ferromagnetic and insulating. When the 1D bands deviate
from half filling, the substantial second-neighbor interactions
between the M ′ states make it favorable for practical realiza-
tion of the TLL behavior. The deviation from half filling can
be achieved via impurities and gate biasing.

The widening of the lower Hubbard subband with increas-
ing on-site Coulomb repulsion strength in these chain-doped
systems is a nontrivial outcome of this paper. This phe-
nomenon, which is anti-intuitive and goes against the
conventional assumption of band narrowing with increasing
repulsion strength, has hardly been observed in the literature,
which makes this class of materials worth exploring for non-
trivial quantum transport and phases. We have explained the
cause of band widening by developing a multiorbital Hubbard
model. Another important outcome of the present paper is
that due to the presence of an intrinsic electric field along
the lateral direction, the 1D bands are Rashba spin-split and
provide a mechanism to tune the valley-dependent optical
transition in MX 2/M ′.

Our work opens avenues to tailor 1D quantum physics in
2D TMDs. With the advent of state-of-the-art techniques such
as low-energy ion implantation, dislocation climb mechanism,
etc., the chain-doped TMDs can be synthesized in a controlled
manner. In addition to the electron doping and emergent prop-
erties as discussed in this paper, hole doping is also equally
likely to introduce interesting features such as orbital and spin
Hall effects in such chain-doped compounds. As a whole, we
believe that the present paper will excite experimenters and
theoreticians alike to envisage exotic quantum phenomena and
applications.
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