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Antiferromagnetic quantum spin Hall insulators with high spin Chern numbers
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Topological states in antiferromagnetic (AFM) systems have gained much attention recently. However, general
proposals for the realization of a two-dimensional (2D) AFM quantum spin Hall (QSH) insulator are still absent.
In this paper, we present a general proposal for 2D AFM QSH insulators by stacking 2D half quantum anomalous
Hall insulators in a way that maintains the symmetry of a combination of inversion symmetry and time-reversal
symmetry. Depending on the number of stack layers, the obtained AFM QSH insulators can have multiple
pairs of dissipationless spin transport channels, revealing the nontrivial implication of high (even) spin Chern
numbers (Cs). Using two concrete material examples, Fe2BrMgP monolayer and TiTe bilayer, we show that both
intercalation and van der Waals stacks can be used to realize the proposed AFM QSH insulators. The robustness
of the gapless edge states and the topological invariants (high Cs) of our AFM QSH insulators have been tested
and shown to be robust against diluted magnetic impurities and weak magnetic field. The spin-chirality-spatial
locking phenomenon in the edge states and their susceptibility to z-direction electric field modulation promote
these systems as promising candidates for innovative spintronics applications.

DOI: 10.1103/PhysRevB.108.075138

The two-dimensional (2D) topological insulator (TI) or
quantum spin Hall (QSH) insulator [1,2], a conceptual land-
mark of topological states, has inspired the research of exotic
topological phenomena and dissipationless spintronics de-
vices for almost two decades [3,4]. The QSH insulator,
protected by the time-reversal symmetry T , was characterized
by a Z2 index [1] or a spin Chern number [Cs = 1

2 (C↑ − C↓)]
[5], which have been shown to be equivalent to each other
[Z2 = mod(Cs, 2)] [6,7]. The two integral values of Z2 (e.g., 0
and 1) mean that a high Cs greater than 1 will be equivalent to
Cs = 0 (even Cs) or Cs = 1 (odd Cs). This raises the question
of whether there is a nontrivial state which has multiple pairs
of dissipationless spin transport channels and is characterized
by a high Cs [8,9], especially an even high Cs corresponding
to a trivial Z2 = 0 in T -preserved QSH insulators.

3D antiferromagnetic (AFM) TIs have been intensively
explored [10–16] and experimentally realized in MnBi2Te4

[16]. Thus, it is desirable to achieve a 2D AFM QSH in-
sulator in experiments. Recently, the 2D QSH insulator was
shown to be robust to the AFM substrates [17] and a 2D
AFM topological nonsymmorphic crystalline insulator was
proposed to host the gapless edge modes in the nanoribbons,
preserving a specific nonsymmorphic symmetry [18]. Can we
find a general method to achieve AFM QSH insulators? In
a 2D AFM insulator, one cannot define a Z2 invariant [11]
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while the Cs can be applied [19]. Is it possible to find a 2D
AFM QSH that has a high Cs?

In this paper, we answer these questions affirmatively and
provide two types of concrete examples of such an AFM
QSH insulator with a high spin Chern number (even). A way
to realize a QSH insulator is to create a z-component spin
(sz) conserved superposition of two quantum anomalous Hall
(QAH) insulators with equal but opposite magnetic moments
[2]. To follow this simple proposal, we consider 2D systems
with A-type AFM order, consisting of two identical half-QAH
insulators by intercalation or van der Waals (vdW) stacking.
Let’s assume that our AFM systems have a symmetry of
a combination of inversion symmetry P and T (PT ). The
antiunitary PT symmetry satisfies (PT )2 = −1, leading to
the double degeneracy of every band of the 2D system (see
Ref. [4] and Appendix A). When the two doubly degenerate
bands cross, 2D Dirac points arise, the stability of which is
closely related to the crystal symmetries of the systems [4].
If the spin-orbit coupling (SOC) can open the energy gap of
Dirac points and maintain the sz conservation, a QSH insulator
with well-defined Cs can be generated.

We first show that the PT symmetry can decouple different
spin spaces with sz = ±1/2 while maintaining the conserva-
tion of sz in a PT pair. Without loss of generality, we set
the local magnetic moments of the top and bottom ferromag-
netic (FM) layers along +z and −z directions, respectively.
When the SOC effect is ignored, sz is well-defined and each
eigenstate ψ (k) and its PT partner, PT ψ (k), have opposite sz
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FIG. 1. The illustration for the effect of the PT symmetry in real
space and reciprocal space (a) and for the energy bands near a Dirac
point (b) for the PT -symmetric stacked half QAH insulators. In the
DOS, the dashed line denotes the Fermi level, and positive (negative)
DOS are for the upper (lower) QAH insulator. The line type (dashed
or solid) in (b) denotes the irreducible representations for the bands.
(c) The illustration for the spin-chirality-spatial locked edge states
of the AFM QSH insulators with a high Cs, where the yellow and
green regions represent the identical stacked QAH insulators and
the intercalation (vdW gap), respectively. (d) same as (c), but for a
multilayer stacking AFM QSH insulator. Blue and red represent spin
up and spin down, respectively.

values. When SOC is included, the eigenstates of the system at
every k point are also paired according to PT . Under the basis
of a PT doublet {ψ (k), (PT )ψ (k)}, the PT operator takes
the form of −iσy = (0 −1

1 0 ) (for details, see Appendix A).
The anticommutative relation between ŝz and PT , {PT , ŝz} =
0, lead to the form of ŝz, under this basis to be chosen as
h̄
2 σz = h̄

2 (1 0
0 −1). As a result, we can easily obtain the relation

between the two eigenstates of ŝz {χ↑(k), χ↓(k)} and the PT
doublet {ψ (k), (PT )ψ (k)} as follows:

χ↑(k) = ψ (k),

χ↓(k) = (PT )ψ (k),
(1)

The interaction between the pair {χ↑(k), χ↓(k)} is then
given as

〈χ↑(k)|Ĥ |χ↓(k)〉
= 〈ψ (k)|Ĥ |(PT )ψ (k)〉
= 〈ψ (k)|(PT )|Ĥψ (k)〉
= E (k)〈ψ (k)|(PT )ψ (k)〉 = 0,

(2)

which means that the sz up state and sz down state are decou-
pled from each other in a PT pair.

Let’s consider a Dirac point in a PT symmetric system
created by stacking two half (fully spin-polarized) QAH insu-
lators [20–23]. As shown in Fig. 1(a), the half property of the
single QAH insulator results in the approximate isolation of its
spin-up and spin-down bands. The PT symmetry ensures that
the spin-up bands from top layer ψT

i,↑(k) = ∑
R eik·Rwi,↑(r −

R) are degenerate with the spin-down bands from bottom
layer ψB

P i,↓(k) = PT ψT
i,↑(k) = ∑

R eik·RwP i,↓(r − R) near
the Fermi level (EF ), where i and Pi denote the sites of
orbital wi in the top layer and the sites of orbital wP i in
the bottom layer, respectively. As shown in Fig. 1(b), the

energy bands with the same sz in the two branches of the
Dirac point come from the same QAH insulator and have the
same irreducible representations. As we discussed above, the
PT symmetry leads to states with different sz in one branch
being orthogonal to each other and belonging to different
irreducible representations. Eventually, the PT symmetry and
the half property of the constituent units enable the binding
of the spin and representation of the energy bands near this
Dirac point. This means that energy bands with different
spins have different representations, while energy bands with
the same spin have the same representation. Thus, the SOC
maintains the conservation of sz and can only open energy
gaps within the states with the same sz in this stacked system.
Since all the occupied states in a single spin channel have
nontrivial winding numbers, a unique AFM QSH insulator
emerges. Note that states with different sz are decoupled,
so winding numbers greater than 1 in a single spin channel
become meaningful, and similarly for Cs greater than 1. The
high Cs will result in multiple pairs of dissipassionless spin
transport channels. More interestingly, a spin-chirality-spatial
locking phenomenon appears in the edge states of this AFM
QSH insulator. The edge states in the half-QAH insulator are
fully spin polarized, whose spin directions are locked with
their chirality [20]. These above elements together lead to
the spin-chirality-spatial locking phenomenon in edge states,
where transport channels with different spins have different
chirality and spatial distribution regions, as shown in Fig. 1(c).
The number of such spin transport channels, as well as the Cs,
can be further extended by increasing the number of stacked
layers, as shown in Fig. 1(d).

Our first-principles density functional theory (DFT) cal-
culations are carried out with the generalized gradient
approximation proposed by Perdew, Burke, and Ernzerhof
(PBE) [24], which is implemented in the VIENNA AB INITIO

SIMULATION PACKAGE [25]. The GGA + U method [26] is
employed to describe the correlated Fe and Ti 3d electrons,
and the value of the on-site Coulomb interaction U and ex-
change interaction J are set to 2.5 (3.0) and 0.0 (0.0) eV for
Fe [23] (Ti [22]), respectively. The plane-wave cutoff energy
was set to 500 eV and the vacuum space is more than 15 Å
to avoid the influence between two adjacent slabs. The force
converge criterion was less than 0.01 eV/Å, the energies
were less than 10−6 eV, and Monkhorst-Pack k-point grids of
12×12×1 were adopted for the calculations. The vdW inter-
action functional using the method of DFT-D3 is employed
in the vdW heterostructure calculations. The tight-binding
(TB) model and edge states are calculated by WANNIER90 [27]
and WANNIERTOOLS [28], respectively. The hybrid functional
HSE06 [29] is used to verify band structure. The phonon
spectra is calculated by using density functional perturba-
tion theory (DFPT) implemented in the PHONOPY package
[30,31], with 3×3×1 supercell.

In accordance with our analysis, we discover that the AFM
insulators Fe2XYP monolayer (X = Br, Cl or I, Y = Mg, Be)
and TiTe bilayer can host the QSH effect with high Cs, which
could simply be viewed as the intergrowth of MgP between
double layers of half Chern insulator FeX [23] and the vdW
stacking of double layers of half Chern insulator TiTe [22], re-
spectively. In contrast to the previously theoretically reported
topological semimetals with WC-type hexagonal structure
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FIG. 2. Top and side views of the Fe2XYP monolayer (X =
Br, Cl or I, Y = Mg, Be) (a) and of the TiTe bilayer vdW
heterostructure (b) with A-type AFM ordering of magnetic atoms, re-
spectively. The yellow arrows in (a) denote the atomic spin moments
aligned or antialigned with the z axis. The red dot in (a) represents
the PT center. (c) Phonon spectra for the Fe2BrMgP monolayer,
showing that the Fe2BrMgP monolayer is dynamically stable. (d) The
energy evolution curves for the Fe2BrMgP monolayer. The insets
display snapshots of the final frames for the Fe2BrMgP monolayer.

(space group P6m2 and No. 187) [32], the recently theo-
retically proposed FeX and TiTe monolayers are half-QAH
insulators with space group P4/nmm (No. 129) [22,23]. The
crystal structures of these two types of AFM insulators are
shown in Figs. 2(a) and 2(b). The optimized lattice constants
of the different Fe2XYP monolayers are listed in Table I.
The phonon spectra [Fig. 2(c)] without imaginary frequency
mode manifests the dynamical stability of the Fe2XYP mono-
layer. The thermal stability of Fe2XYP monolayer is further
confirmed by first-principles molecular-dynamics simulation
[Fig. 2(d)], which shows that the structure remains intact at
a temperature of 300 K after 10 ps. To determine their mag-
netic ground states, the

√
2×√

2×1 supercell of these twos
type of AFM insulators with four magnetic configurations are

TABLE I. The optimized lattice constants and energy gap calcu-
lated by PBE+U with SOC for the Fe2XYP monolayer with different
X and Y atoms.

X Y Lattice constant (Å) Energy gap (meV)

Be Cl 3.67 140.9
Be Br 3.70 165.5
Be I 3.76 200.9
Mg Cl 4.01 231.4
Mg Br 4.03 258.4
Mg I 4.06 281.4

FIG. 3. (a)–(d) Possible magnetic configurations considered:
ferromagnet (FM), A-type antiferromagnet (AFM1), C-type antifer-
romagnet (AFM2), and G-type antiferromagnet (AFM3). Red and
blue dots denote the magnetic atoms with opposite magnetization
directions. The exchange interactions J1, J2, and Jc are indicated by
black arrows. (e) and (f) are orbital resolved DOS for Fe atoms of the
Fe2BrMgP monolayer with a nonmagnetic and AFM1 ground state,
respectively, where the dxz and dyz orbitals are degenerate. Inset in (f)
shows the d-orbital distribution of Fe atoms with the EF labeled with
a dashed line.

considered, as shown in Figs. 3(a)–3(d). The magnetic mo-
ment of Fe2BrMgP monolayer is 3μB per Fe atom from our
DFT calculations. This can be understood by analyzing the
valence electron configuration of the Fe atom (3d74s0) after
transferring 1e− to nonmagnetic atoms. The crystal field of
the Fe atom 2mm causes the five d orbitals of the Fe atom to
split into four low to high energy groups dz2 < dxy < dx2−y2 <

dxz/yz [Fig. 3(e)]. As shown in the inset of Fig. 3(f), five
unpaired 3d electrons are to first occupy four energy levels
to have high spin alignment based on Hund’âs rules. Then,
the two left 3d electrons will occupy the lowest dz2 and dxy

levels, leading to three unpaired 3d electrons (3μB), which
can be seen in the partial density of states (DOS) of the
Fe2BrMgP monolayer [Fig. 3(f)]. It is found that their ground
magnetic states are all A-type AFMs, which is well understood
by the Goodenough-Kanamori-Anderson rules [33–35]. The
in-plane bond angle between two nearest Fe (Ti) atoms is
close to 90◦ and is expected to induce FM ordering. On the
contrary, Fe (Ti) atoms between neighboring atomic layers
are coupled through an effective bond with a 180◦ bonding
angle, where AFM ordering is induced. The Neel temperature
for the Fe2BrMgP monolayer is ∼125 K, shown in Fig. 4(b),
whose calculation details can be seen in Appendix C. The
unit cells all have No. 129.419 magnetic space group, which
has the typical PT symmetry and two screw symmetries
C̃2x = {C2x|a/2} and C̃2y = {C2y|b/2}.

By calculating the electronic band structures of the
Fe2BrMgP monolayer without SOC, one observes two pairs of

075138-3



XUE, XU, ZHAO, ZHANG, AND YANG PHYSICAL REVIEW B 108, 075138 (2023)

FIG. 4. (a) The first BZ with high-symmetry points and lines
for the Fe2XYP monolayer. (b) The normalized average magnetic
moment (blue curve) and specific heat (red curve) versus temperature
for the Fe2BrMgP monolayer. (c) Spatially resolved DOS for the
Fe2BrMgP monolayer without SOC, where Fe top (bottom) stands
for Fe atoms of the top (bottom) layer. (d) The energy bands of the
Fe2BrMgP monolayer without and with SOC.

fourfold band-crossing points near EF . These crossing points,
representing 2D Dirac points, are symmetrically distributed
on the x axis and the y axis in Fig. 4(d) and are related to
each other by C̃4z = {C4z|(a/2, 0, 0)}. As shown in the DOS
in Fig. 4(c), the low-energy bands originating from the same
FM plane exhibit half properties. The bands on the upper
and lower FM planes have different sz and are degenerate
with each other. The C̃2x leads to the PT pairs at the k-path
invariant under C̃2x to have different eigenvalues of C̃2x. As
a result, the Dirac points at the C̃2x invariant k points are not
stable and can be gapped by SOC, the same results for those
at the C̃2y invariant k points, shown in Fig. 4(d) (for details,
see Appendix B). The gap opening at a 2D Dirac point in
Fig. 4(d) is about 258 meV. In general, a Dirac point located
at the n-fold rotation invariant momentum is usually not stable
and can be gapped by SOC for n = 2, 4, 6. To characterize the
low-energy band structures near a 2D Dirac point, we con-
struct a k · p effective model. The effective Hamiltonian for
a 2D Dirac point in � − X is subjected to the magnetic little
cogroup 2/m′ of � − X , with two generators, C̃2x and PT .
The symmetry constraints are given by

C̃−1
2x H (qx, qy)C̃2x = H (qx,−qy),

PT −1H (qx, qy)PT = H∗(−qx,−qy ),
(3)

where q is measured from the 2D Dirac point in � − X . In
the basis of the calculated irreducible representations near the
Dirac point {DT3DT4, DT3DT4}, we find that the effective
model for the non-SOC part up to second order in q and the
SOC part up to first order in q is given by

H (qx, qy) = H0 + HSOC, (4)
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FIG. 5. Spin-spatial resolved projected band structures for the
Fe2BrMgP monolayer without SOC [(a), (b)] and with SOC [(c),
(d)]. (a) and (c) are for the spin-up projection, (b) and (d) for the
spin-down projection. Red and blue stand for projections of the Fe
atoms in the top and bottom layers, respectively.

where H0 = h1σ0 ⊗ σz + h2σ0 ⊗ σy, h1 = (Aqx + Bq2
x +Cq2

y ),
and h2 = (Dqy + Eqxqy). The HSOC = HSOC1 + HSOC2 =
�1σz ⊗ σx + �2σy ⊗ σx, where �1 = −(λ10 + λ11qx ) and
�2 = (λ20 + λ21qx ). The h1 term represents the linear and
quadratic terms of the dispersion near the Dirac point. The
h2 term is the coupling term. The SOC term HSOC can
be divided into a spin-conserved SOC term HSOC1 and
a spin-mixing SOC term HSOC2. The HSOC2 is negligibly
small (see Fig. 5) due to the PT symmetry and the half
property of the constituent units (QAH insulators). After
dropping the negligibly small spin-mixing SOC term HSOC2,
the eigenenergies of the Hamiltonian are given as E± =
±

√
h2

1 + h2
2 + �2

1, whose corresponding eigenstates can be

classified into two types: �T
± = [− i(h1±

√
h2

1+h2
2+�2

1 )
h2+i�1

, 1, 0, 0]ᵀ

and �B
± = [0, 0,− i(h1±

√
h2

1+h2
2+�2

1 )
h2−i�1

, 1]ᵀ. At the Dirac point,
where qx = qy = 0, a gap is given as 	E = 2|λ10|. Due to the
similar low-energy electronic structures of the two proposed
types of AFM insulators, we will focus on the Fe2BrMgP
monolayer in the following sections. Corresponding results
for other materials can be found in Fig. 8.

To confirm the the topologically nontrivial character of the
gap, the spin Hall conductivity σ S

xy is calculated using the
Kubo formula [36,37]:

σ S
xy = eh̄

(2π )2

∫
�S

xy(k)d2k,

�S
xy(k) =

∑
n

fnk�
S
n,xy(k),

�S
n,xy(k) = h̄2

∑
m �=n

−2Im
[〈nk| 1

2 {σ̂z, v̂x}|mk〉〈mk|v̂y|nk〉]
(εnk − εmk )2

.

(5)
Here, vi is the ith Cartesian component of the velocity
operator, fnk is the Fermi-Dirac distribution function, and
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FIG. 6. (a) Energy dependence of the spin Hall conductivity σ S
xy,

showing a quantized value within the energy window of the SOC gap.
(Inset) K-space distribution of spin Berry curvature within the SOC
gap. (b) Evolution of WCCs for the Fe2BrMgP monolayer along ky.
(c) and (d) The edge states of a semi-infinite Fe2BrMgP monolayer
cut along the [100] and [120] direction, respectively.

JS
x = (h̄/4){σ̂z, v̂x} describes a spin current flowing in the

x direction, with the spin polarization perpendicular to the
plane. The curly brackets in the expression for JS

x stand for an
anticommutator. Figure 6(a) displays the σ S

xy as a function of
the Fermi level in a Fe2BrMgP monolayer. The quantization
of σ S

xy within the insulating region arises mainly from the
spin Berry curvature �S

xy(k) near the Dirac points at the k
lines (−X ) → X and (−Y ) → Y , as shown in the inset of
Fig. 6(a). This quantization demonstrates the nontrivial band
topology of Fe2BrMgP monolayer. The calculated σ S

xy within
the insulating region is strictly equal to −4 in unit of e/(4π ),
indicating that there is no coupling between states with differ-
ent sz, which is consistent with the analysis presented earlier.
The σ S

xy = −4 also demonstrates that the Fe2BrMgP mono-
layer has a high spin Chern number Cs = (2π/e)σ S

xy = −2,
which is confirmed by the Wannier charge center (WCC) of
the Fe2BrMgP monolayer in Fig. 6(b). Due to the lack of T
symmetry, there is no Kramers degeneracy of the WCC at the
T -invariant momentum. However, no gap opening occurs at
the crossing points of the WCC spectra, indicating that the
Chern numbers defined for each sz space are robust and non-
trivial (C↑ = −2 and C↓ = 2). The robustness of the crossing
points of the WCC spectra is also tested by adding an sz mix-
ing term Mσx into the pristine Hamiltonian of the Fe2BrMgP
monolayer, which represents a uniform FM exchange field
along the x direction (M is the strength of the exchange field).
The obtained results, shown in Fig. 7(c), demonstrate that M
not more than 0.05 eV will not open the gap of the crossing
points of the WCC.

Cs = −2 suggests that two pairs of gapless edge states with
opposite chiralities appear in the bulk gap [Figs. 6(c) and
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FIG. 7. (a) Spin-resolved and (b) localization-resolved band
structures of one-dimensional nanoribbon for Fe2BrMgP monolayer
with SOC. The projections are only applied for one side of the
nanoribbon. Color in (a) from blue to red indicating the spin polariza-
tion on the edge with the expectation value of σz, and in (b) from gray
to yellow or green represents the weight of atoms located from the
middle to top or bottom regions at one edge of the ribbon structures.
(c) Evolution of WCCs for the Fe2BrMgP monolayer along ky with
applied strength of 0.03 eV x-direction FM exchange field. (d), (e),
and (f) are the edge states of a semi-infinite Fe2BrMgP monolayer
cut along the [100] with applied strength of 0.03 eV FM exchange
field in x-direction, strength of 0.3 eV magnetic impurities at an Fe
atom site at the boundary, and strength of 0.005 eV/Å z-direction
electric field, respectively. Mid-gap edge states in (d) and (e) remain
gapless while in (f) are gapped.

6(d)]. The edge states with different chiralities come from the
spin spaces with different sz, which are decoupled from each
other by PT symmetry and the half property of the constituent
units (QAH insulators). The two independent spin spaces with
different sz can be viewed as two fully decoupled QAH insu-
lators with opposite chiralities. The appearance of the gapless
edge states of the QAH insulator is unaffected by its boundary
shape. Hence, the appearance of the gapless edge states in
our PT -symmetric AFM-QSH insulators also has no special
requirements on the shape of the boundary, see Figs. 8(e)
and 8(f). To break the PT symmetry, a small uniform external
vertical electric field of 0.005 eV/Å is applied to the system,
which can induce relatively significant gaps for edge states, as
shown in Fig. 7(f).
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FIG. 8. (a), (b) Total energies as a function of the lattice con-
stant for the Fe2XMgP and the Fe2XBeP monolayers with X =
Cl, Br, and I, respectively, in which the minimum total energy
at the equilibrium lattice constant for each case is set as energy
zero. Band structures of the Fe2BrMgP monolayer using WAN-
NIER90 (c) and HSE06 (d). (e) Sketch of the one-dimensional
nanoribbons of the Fe2BrMgP monolayer for the edge states, where
the dashed boxes mark the columns of atoms removed at the
nanoribbon boundaries. (f) Localization-resolved band structures
for (e), where the color from gray to red or blue indicates the
weight of atoms located from the middle to the left or right re-
gions of the ribbon structures. (g) The fitted bands for the case
without SOC, based on our TB model with the following parame-
ters: Vddπ = 0.05 eV, Vddσ = 0.2 eV, Vddδ = −0.2 eV, εp = −2.5 eV,
εxy = −0.434 eV, εz2 = 0.366 eV, εx2−y2 = −1 eV, λp = 0 eV, λd =
0 eV, Vpdπ = −0.7l eV, Vpdσ = 4.8(l3 − 1.732)/(1 − 8τ 2) eV. (h)
The fitted bands for the case with SOC, using the same parameters
as (g) except for λp = 0.375 eV, λd = 0.05 eV. (i) The calculated
one-dimensional nanoribbon for (h). (j)–(l) are results for the A-type
AFM TiTe bilayer: band structures (j), the edge states of a semi-
infinite TiTe bilayer cut along the [100] direction (k), and evolution
of WCCs along ky (l).

To further understand the nontrivial topological properties
of our systems, a TB model was built. For our system, the
low-energy bands near EF can be regarded as deriving from
two decoupled and equal layers with opposite magnetic
moments. Thus, we can derive our low-energy effective TB
model with the basis in a single layer and a single spin
channel. Due to the low-energy dispersions mainly consisting
of the dz2 , dx2−y2 , and dxy orbitals of the magnetic atoms,
which form three bases of the point group, we adopted the
basis as {M1 − dx2−y2 ↑, M1 − dxy ↑, M1 − dz2 ↑, M2 −

dx2−y2 ↑, M2 − dxy ↑, M2 − dz2 ↑, X1 − px ↑, X1 − py ↑,

X2 − px ↑, X2 − py ↑} for our TB model. M1 and M2
represent two magnetic atoms in the same layer with
coordinates (1/4, 1/4, z) and (3/4, 3/4, z), respectively,
and X1 and X2 represent two other nonmagnetic atoms
in the same layer with coordinates (1/4, 3/4, z + τ ) and
(3/4, 1/4, z − τ ), respectively, as shown in Fig. 2(a). Under
this basis, the total Hamiltonian can be written as

H (k) =
[

Hd Tpd

T †
pd Hp

]
, (6)

where Hd represents the nearest-neighbor (NN) hopping terms
and on-site SOC terms of the d orbitals of the magnetic atoms
in one layer, Hp corresponds to the on-site energy and on-site
SOC terms of the p orbitals of the nonmagnetic atoms in the
same layer. Tpd denotes the NN hopping terms between the d
and p orbitals in this layer. It is worth noting that we neglected
the NN hopping between the px/y orbitals in Hp due to the
significant difference in on-site energy between the p and d
orbitals, which prevents the d electrons from hopping through
the p orbitals.

Then Hd can be expressed as follows:

Hd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

εx2−y2 −2iλd 0 h14 0 0

2iλd εxy 0 0 h25 h26

0 0 εz2 0 h26 h36

h14 0 0 εx2−y2 −2iλd 0

0 h25 h26 2iλd εxy 0

0 h26 h36 0 0 εz2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(7)

where h14 = 4Vddπ cos( kx
2 ) cos( ky

2 ), h25 = (3Vddσ + Vddδ )

cos( kx
2 ) cos( ky

2 ), h26 = −√
3(Vddδ − Vddσ ) sin( kx

2 ) sin( ky

2 ), and

h36 = (3Vddδ + Vddσ ) cos( kx
2 ) cos( ky

2 ).
Tpd can be written as

Tpd =

⎡⎢⎢⎢⎢⎢⎢⎣
0 t12 t13 0

t21 0 0 t24

0 t32 t33 0
t13 0 0 t12

0 t24 t21 0
t33 0 0 t32

⎤⎥⎥⎥⎥⎥⎥⎦, (8)

where t12 = i[
√

3
8l3 Vpdσ + (l − 1

4l3 )Vpdπ ] sin( ky

2 ), t13 =
−i[

√
3

8l3 Vpdσ + (l − 1
4l3 )Vpdπ ] sin( kx

2 ), t21 = −i 1
l Vpdπ sin( ky

2 ),
t24 = −i 1

l Vpdπ sin( kx
2 ), t32 = i 1

l3 [
√

3Vpdπ + ( 1
8 − τ 2)Vpdσ ] sin

( ky

2 ), and t33 = i 1
l3 [

√
3Vpdπ + ( 1

8 − τ 2)Vpdσ ] sin( kx
2 ).

The Hp can be written as

Hp =

⎡⎢⎢⎢⎣
εp −iλp 0 0

−iλp εp 0 0

0 0 εp −iλp

0 0 −iλp εp

⎤⎥⎥⎥⎦. (9)

In the above statement, εx2−y2/xy/z2 and εp represent
the on-site energy of dx2−y2/xy/z2 and px/y orbitals, respec-
tively. The parameters λd and λp denote the strength of the
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atomic SOC of these orbitals, respectively. The parameters
Vddπ/σ/δ and Vpdπ/σ/δ correspond to the standard Slater-Koster
hopping parameters for the NN π/σ/δ bonds between the
d − d orbitals and p − d orbitals, respectively. l represents

the distance between the magnetic atoms and their NN non-
magnetic atoms.

Through the downfolding procedure, we can obtain the
low-energy effective Hamiltonian as follows:

Heff ≈ Hd − Tpd H−1
p T †

pd (10)

= 1

ε2
p − λ2

p

⎡⎢⎢⎢⎢⎢⎢⎣
H11 H12 H13 H14 0 H16

−H12 H22 H23 0 H25 H26

H13 −H23 H33 −H16 H26 H36

H14 0 H16 H11 H12 H13

0 H25 H26 −H12 H22 H23

−H16 H26 H36 H13 −H23 H33

⎤⎥⎥⎥⎥⎥⎥⎦, (11)

where H11 = εx2−y2 − εp(|t12|2 + |t13|2), H12 = −2iλd +
iλp(t12t∗

21 − t13t∗
24), H13 = −εp(t12t∗

32 + t13t∗
33), H14 = h14,

H16 = −iλp(t13t∗
32 + t12t∗

33), H22 = εxy − εp(|t21|2 + |t24|2),
H23 = −iλp(t21t∗

32 − t24t∗
33), H25 = h25, H26 = h26 −

εp(t24t∗
32 + t21t∗

33), H33 = εz2 − εp(|t32|2 + |t33|2), and
H36 = h36. As shown in Figs. 8(g)–8(i), this model not
only accurately reflects the low-energy dispersions but also
captures the nontrivial topological properties of the system.

Because the building blocks of the Fe2BrMgP mono-
layer are half Chern insulator FeBr, the above-mentioned
spin-chirality-spatial locking phenomenon in edge states is
expected. To show this phenomenon, we calculated the spa-
tial and spin projections of edge states on one side of the
Fe2BrMgP nanoribbon. As shown in Fig. 7(a), the edge states
are fully spin polarized, and the edge states with different
spins have different chirality, indicating that the spin and chi-
rality of edge states are locked. Furthermore, the edge states
with different spins or chiralities are distributed in different
areas of the border, shown in Fig. 7(b).

The robustness of the gapless edge states was tested by
applying a uniform FM exchange field along the x direction
[Fig. 7(d)] and a doped local magnetic impurity [Fig. 7(e)]
at the edge region of the Fe2BrMgP monolayer. To simulate
the effect of magnetic impurities, a local magnetic exchange
field perpendicular to the AFM order of the system was added
to the spin space at an Fe site in the surface Hamiltonian in
the iterative solution of the surface Green’s function for the
semi-infinite system. When the strength of exchange field or
magnetic impurities was not very large, the edge states always
remained gapless, which demonstrates that the nontrivial edge
states of the Fe2BrMgP monolayer are robust to spin-mixing
FM exchange fields and disorder magnetic impurities.

We have some remarks before closing. First, the high Cs

(greater than 1) becomes meaningful, and the high even Cs is
distinct from the Cs = 0 in our proposal. Second, the num-
ber of Cs and spin transport channels can be expanded by
increasing the number of stacked layers. Due to PT symmetry
and the half property of the constituent units, scattering in
the transport channels of our AFM-QSH insulators is neg-
ligible. Third, although the z-direction electronic field can
open gaps in edge states, it cannot completely destroy the
edge states due to the topological response [Fig. 7(f)]. The
gap in edge states and hence spin Hall conductance in our

systems can be effectively tuned by a z-direction electronic
field, which is beneficial for further applications. Moreover,
due to spin-chirality-spatial locking of edge states, the z-
direction electronic field will break the balance of carrier
concentration between transport channels with different chi-
ralities in the upper and lower spaces, and thus there is a net
charge flow generated. This feature does not exist in tradi-
tional Z2 QSH insulator.

In summary, we propose a general proposal to realize AFM
QSH insulators by stacking half-QAH insulators in a way
that preserves the PT symmetry. The obtained AFM QSH
insulators can have multiple pairs of dissipationless spin trans-
port channels, depending on the number of stacking layers,
which are characterized by a high Cs. Using two concrete
materials examples, Fe2BrMgP monolayer and TiTe bilayer,
we show that both intercalation and vdW stacks can be used
to realize the proposed AFM QSH insulators. The gapless
edge states and topological invariants (high Cs) of these ma-
terials have been proven to be robust through several tests,
demonstrating their resilience to diluted magnetic impurities
and weak magnetic fields. Furthermore, spin-chirality-spatial
locking of edge states in the proposed AFM QSH insulators is
revealed. The edge states and spin Hall conductances in these
systems can be effectively tuned by a z-direction electronic
field. These results are beneficial for realizing low-power and
high-efficiency topological spintronics devices with easy ma-
nipulation.
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APPENDIX A: PROOF FOR DOUBLE DEGENERACY
IN PT INVARIANT SYSTEMS

PT symmetry is an antiunitary symmetry with the product
(PT )2 = −1. Arbitrary k is invariant under PT , since P
and T both map k to −k. The Hamiltonian H (k) for a PT
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invariant system should satisfy

[H (k),PT ] = 0. (A1)

For an arbitrary eigenstate |ψ (k)〉 of H (k) with energy E (k),
its PT pair |φ(k)〉 = PT |ψ (k)〉 is also an eigenstate with k
and E (k):

H (k)|φ(k)〉 = H (k)(PT |ψ (k)〉) = PT (H (k)|ψ (k)〉)

= E (k)(PT |ψ (k)〉) = E (k)|φ(k)〉. (A2)

Furthermore, the PT symmetry yields that |ψ (k)〉 and |φ(k)〉
are orthogonal to each other, 〈ψ (k)|φ(k)〉 = 0, because

〈ψ (k)|φ(k)〉 = 〈PT φ(k)|PT ψ (k)〉
= 〈ψ (k)|(PT )2|φ(k)〉 = −〈ψ (k)|φ(k)〉.

(A3)

Therefore, every band in a PT invariant system must be
doubly degenerate.

It is noted that although k is invariant under PT , the
eigenstate |ψ (k)〉 of a PT invariant Hamiltonian is not the
eigenstate of PT due to its antiunitary property (PT trans-
forms the |ψ (k)〉 into its complex conjugate). Under the basis
of a PT doublet {ψ (k), (PT )ψ (k)}, we have

(PT )(ψ (k)) = (PT )ψ (k),

(PT )[(PT )ψ (k)] = (PT )2ψ (k) = −ψ (k). (A4)

Thus, the PT operator takes the form of −iσy = (0 −1
1 0 )

under this basis.

APPENDIX B: PROOF FOR GAP OPENING OF DIRAC
POINTS AT THE ˜C2x (˜C2y) INVARIANT k LINES

The transformation of space coordinates, spin moments s,
and momentum k under PT and C̃2x are listed below:

(x, y, z)
PT−→ (−x,−y,−z), (B1)

(sx, sy, sz )
PT−→ (−sx,−sy,−sz ), (B2)

(kx, ky, kz )
PT−→ (kx, ky, kz ), (B3)

(x, y, z)
C̃2x−→ (x + a/2,−y,−z), (B4)

(sx, sy, sz )
C̃2x−→ (sx,−sy,−sz ), (B5)

(kx, ky, kz )
C̃2x−→ (kx,−ky,−kz ). (B6)

From the transformation of spin moments s under PT , we
can obtain the relation between spin operator ŝz and PT ,

(PT )−1ŝzPT = −ŝz, (B7)

which means that ŝz and PT are anticommutative:
{ŝz,PT } = 0.

The transformation of the square of C̃2x is given as

(x, y, z)
C̃2x−→ (x + a/2,−y,−z)

C̃2x−→ (x + a, y, z), (B8)

thus, the square of C̃2x yields a unit vector translation along
the x direction,

C̃2
2x = −T (100) = −eikx , (B9)

where the minus sign of −T (100) originates from the 2π

rotation of spin. So, the eigenvalues of C̃2x are g± = ±ieikx/2.
By successively applying the symmetry operators C̃2x and

PT , we have

(x, y, z)
C̃2x−→ (x + a/2,−y,−z)

PT−→ (−x − a/2, y, z),

(B10)

(sx, sy, sz )
C̃2x−→ (sx,−sy,−sz )

PT−→ (−sx, sy, sz ), (B11)

(x, y, z)
PT−→ (−x,−y,−z)

C̃2x−→ (−x + a/2, y, z), (B12)

(sx, sy, sz )
PT−→ (−sx,−sy,−sz )

C̃2x−→ (−sx, sy, sz ). (B13)

Therefore, the communication relation between C̃2x and
PT satisfies

C̃2x(PT ) = eikx (PT )C̃2x. (B14)

The eigenstate |ψ (k)〉 labeled with a C̃2x invariant k can
carry the eigenvalues g± = ±ieikx/2 of C̃2x. Without loss of
generality, let the eigenvalue of |ψ (k)〉 be g+ = +ieikx/2. Then
one can show the PT partner |φ(k)〉 = (PT )|ψ (k)〉 is the
eigenstate of C̃2x with g− = −ieikx/2 eigenvalue as well:

C̃2x[(PT )|ψ (k)〉] = eikx (PT )[C̃2x|ψ (k)〉]
= eikx (PT )[ieikx/2|ψ (k)〉]
= eikx (−ie−ikx/2)[(PT )|ψ (k)〉]
= g−[(PT )|ψ (k)〉]. (B15)

Clearly, in the C̃2x invariant k path, |φ(k)〉 and |ψ (k)〉 carry
different representations. As a result, any band crossing (a
fourfold Dirac point) on the C̃2x invariant k path is generally
unstable and can be gapped by SOC. The argument above
applies to C2x, C2y, and C̃2y as well.

For a PT -symmetric system with the symmetries of n-fold
rotation (Cn), the eigenstate |ψ (k)〉 of the system labeled with
a Cn invariant k can carry the eigenvalues (−1)1/nei2π/n =
ei3π/n of Cn. Since Cn communicates with PT [Cn,PT ] = 0,
the PT partner of the |ψ (k)〉 is also the eigenstate of Cn:

Cn[(PT )|ψ (k)〉] = (PT )[Cn|ψ (k)〉]
= (PT )[ei3π/n|ψ (k)〉]
= e−i3π/n[(PT )|ψ (k)〉]. (B16)

The phase difference between the eigenvalues of |ψ (k)〉 and
its PT partner is 	 = 2π (3/n). So long as 3/n /∈ Z , then the
|ψ (k)〉 and its PT partner have different eigenvalues and thus
belong to different irreducible representations. As a result, the
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Dirac points located at the Cn invariant k points are usually not
stable and can be gapped by SOC for n = 2, 4, 6.

APPENDIX C: THE CALCULATION FOR NEEL
TEMPERATURE

To evaluate the Neel temperature of the Fe2BrMgP mono-
layer, a Heisenberg model is built as:

H0 = −J1

∑
<i, j>

Si ·Sj −J2

∑
<<i, j�

Si·Sj

− Jc

∑
<<<i, j�>

Si ·Sj −D
∑

i

|Se
i |2,

(C1)

where Si is the spin vector, Se
i is the spin component along the

easy axis, D is the strength for anisotropy, Jc and Ji (i = 1, 2)
denote the strengths for the exchange interactions parallel and
perpendicular to the z direction, respectively. The values of Ji

(i = 1, 2), Jc and D can be extracted from the first-principles
calculations with the equations

TABLE II. The relative total energy (meV per unit cell) for the
Fe2BrMgP monolayer with different magnetic state shown in Fig. 3,
and the calculated magnetic coupling parameters of J1, J2, and Jc

(meV), anisotropy parameter D (meV per Fe atom) and Neel temper-
ature TN (K).

FM AFM-1 AFM-2 AFM-3 J1 J2 Jc D TN

57.16 0 683.54 807.97 25.25 8.74 −7.15 2.69 125

EFM = E0 − 32J1|S2| − 32J2|S2| − 8Jc|S2|, (C2)

EAFM1 = E0 − 32J1|S2| − 32J2|S2| + 8Jc|S2|, (C3)

EAFM2 = E0 + 32J2|S2| + 8Jc|S2|, (C4)

EAFM3 = E0 + 32J1|S2| − 32J2|S2| + 8Jc|S2|. (C5)

The corresponding magnetic configurations in the above equa-
tions are shown in Fig. 3. The obtained values of parameters
and the energy for different magnetic configurations are listed
in Table II.
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