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Motivated by recent cold-atom experiments, we study the relaxation of spin helices in quantum XXZ spin
chains. The experimentally observed relaxation of spin helices follows scaling laws that are qualitatively
different from linear-response transport. We construct a theory of the relaxation of such spin helices, combining
generalized hydrodynamics with diffusive corrections and a generalized form of the local density approximation.
Although helices are far from local equilibrium, our hydrodynamic approach reproduces the experimentally
observed relaxational dynamics and also predicts the late-time relaxation, which is outside the experimentally
accessible timescales. In particular, our theory explains the existence of temporal regimes with apparent
anomalous diffusion, as well as the asymmetry between positive and negative anisotropy regimes at short and

intermediate times.
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I. INTRODUCTION

How interacting, isolated quantum systems relax from
far-from-equilibrium initial states is one of the basic prob-
lems in many-body physics. This problem is particularly
interesting in one dimension since many experimentally rel-
evant one-dimensional systems are approximately integrable.
Integrable systems support stable, ballistically propagating
quasiparticles even at high energy density. The presence
of ballistic quasiparticles might suggest that transport of
the conserved charges should be ballistic; however, because
of dressing effects due to interactions, this is not always
the case. In many systems, such as anisotropic XXZ spin
chains, spin transport can be either ballistic, diffusive, or even
superdiffusive depending on the anisotropy. The nature of
finite-temperature spin transport in the XXZ spin chain has
been studied extensively very recently, both experimentally
[1-6] and theoretically [7-18]. The theoretical analysis of
transport in nearly integrable systems relies on generalized
hydrodynamics (GHD) [19-21], a description of the asymp-
totic late-time dynamics that is expected to apply once the
system has locally approached a generalized Gibbs ensemble
(GGE) [22].

In cold-atom experiments, it is often more convenient to
prepare a pure initial state than a thermal (mixed) one. A class
of states that can straightforwardly be prepared is spin helices,
in which the spin orientation varies spatially in a periodic
manner with a given wavelength A [1]. These states are far
from local thermal equilibrium, so it is not a priori obvious
that GHD can describe their dynamics. On general grounds,
as spin helices are wave excitations with given momentum
q = 27 /A, we expect their magnetization to relax, (S;(1)) ~
e " with arate I' ~ A~%, with z a dynamical exponent which
need not coincide with the linear-response one since the spi-
ral is very far from equilibrium. Recent experimental results
[2] indicate a particularly rich behavior as a function of the
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anisotropy, different from linear-response GHD expectations,
which so far has eluded any theoretical explanation. The XXZ
spin—% chain is described by the Hamiltonian (in the follow-
ing, we shall set J = 1 and lattice spacing a = 1)

H =10 [SiSi,, +SIS),, + ASiSE, . )

Energy transport in the XXZ spin chain is purely ballistic
regardless of A, as the energy current is conserved under the
dynamics. Spin transport at half filling and high temperature,
however, depends much more nontrivially on the anisotropy
|A| (but not on its sign); see [16,23] for recent reviews. In
the easy-plane regime |A| < 1, spin transport has a ballistic
component [24-26], while for |A| > 1, it is believed to be
diffusive [27,28]. The isotropic point |A| = 1 corresponds to
a dynamical phase transition characterized by superdiffusive
transport with dynamical exponent z = 3/2 [3,4,15,28-30].
Experimental results pertaining to spin helices relaxation re-
veal a very different picture [1,2]: Spin helices appear to relax
(1) diffusively, I' ~ A~2, at the antiferromagnetic isotropic
point A = 1 [1], (2) subdiffusively (z > 2) at short times for
A > 1, (3) superdiffusively with 1 <z <2 for anisotropy
0 < A < 1, and (4) ballistically I" ~ 27! for A <0, with a
crossover to diffusive relaxation at longer times for A < —1.
Such a nature of the relaxation appears to be in sharp contrast
with what is predicted by linear-response results, possibly
suggesting that a different mechanism, possibly beyond hy-
drodynamics and/or of quantum mechanical nature, is at play.

In this paper, we show instead, by means of generalized
hydrodynamics, that the experimentally observed scalings are
simply short/intermediate-time artifacts. Generalized hydro-
dynamics indeed confirms the experimental observations on
such short time scales, but also clearly shows that it is only the
diffusive scaling I" ~ A2 that dominates at late times, for any
value of the anisotropy A # 0. Moreover, we show that the
associated spin diffusion constant on the helix state becomes
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FIG. 1. Easy-plane regime. GHD prediction for the time evolution of the contrast from the helix initial state in the regime 0 < A < 1 at

short times, plotted as a function of # /A. We see how, upon increasing A, the dynamics ceases to be purely ballistic at shorter times.

very small for small positive anisotropies A ~ 17, in sharp
contrast with the diffusion constant on an equilibrium thermal
state, where it is known to be diverging as A — 11 [27,28].

We employ a theory of spin helices relaxation using a local
density approximation (LDA) assuming local equilibration
and GHD equations including diffusive corrections. We as-
sume that spin helices first relax to local equilibrium and can
be described by a local GGE with spatially varying Lagrange
multipliers. The remaining time evolution is obtained from
GHD by numerical integration. Our theory reproduces all the
qualitative features observed in ultracold-atom experiments at
intermediate/short times, and clarify what is the real asymp-
totic long-time behavior.

II. HELICES AND LOCAL EQUILIBRIUM

We consider the initial helix state,

L

Vo) =®(cos— —i—sm—|¢) )

J:

@

where the angle spins over a length given by A as 6; =
B0 + (2m j)/A. This state is characterized by an initial proﬁle
of magnetization (SZ ) =1/2cos6; and energy e; = S7SF

i H—l
S7SY | + AS:S?,,, in the limit of large A, given by

i~i+1 i+1°

(ei) =[14+ A+ (A —T)cos(8))1/8. 3)

We aim at computing the spin contrast,

C@) =42COS(9j)<1/fo(t)IS§|1/fo(t)>, “
i

which quantifies the magnetization dynamics of the system
and was computed experimentally [1,2]. Let us first consider
the case of an initial homogeneous state [/ (6))) with 8; = 6y
for all j. When letting such initial state time evolve under
Hamiltonian (1), the system quickly reaches a local equi-
librium described by a generalized Gibbs ensemble (GGE)
[22,31-33], namely, for a generic local operator O at large
(microscopic) times,

(Yo (B0 OM)Y0(0o)) — Trlpcae(bo) O, &)

where pgge(0y) = e~ Lif' @2 /7 where Q; are all the con-
served total operators of Hamiltonian (1), such that [H, Q;] =
0, and with the chemical potentials 8/(6y) depending nontriv-
ially on the angle. While the helix state (2) is a pure state,

we expect that over a short timescale, it will first thermal-
ize locally, o) (Vo| = []; pcae(6:). This local equilibrium
assumption corresponds to a local density approximation
(LDA): the (pure) initial state is replaced by a local equilib-
rium state, which we expect to be valid for A > a, with a the
lattice spacing.

III. HYDRODYNAMICS

The resulting evolution at longer times from local to global
equilibrium is then controlled by the theory of hydrodynamics.
Notice that if the only conserved quantities of the system were
energy and magnetization, we would need to evolve the initial
energy and magnetization profiles (fixed from the initial state
from LDA) using a two-component hydrodynamic evolution.
However, since the XXZ spin chain is integrable, the number
of initial chemical potentials B’ is infinite and the correct
hydrodynamic evolution is the recently introduced general-
ized hydrodynamics (GHD) [13,19,20,28,34-49]. It works in
the following way: the initial profile of chemical potentials
can be recast into an initial profile of density of occupations
of quasiparticles psg’ (u). Different species of quasiparticles
are called strings and are labeled by the index s, and their
momentum k(u#) and energy e(u) are parametrized by the
rapidity parameter u. Their time evolution p,(u; x, t) is given
by the Navier-Stokes GHD equations, which read, in full
generality, as [50]

atps+a (U pS - <Z©SS ' xps) (6)

with initial condition p,(u;x,1) = pf‘:j (u). We stress that
given the periodicity of the initial state, we can rescale space
and time by A, studying, in this way, Eq. (6) in the system x €
[0, 1] with periodic boundary conditions and with the diffu-
sive right-hand side rescaled by 1/A. The effective velocity of
the quasiparticles is defined as their group velocity v (u) =
&'(u)/k'(u) (which depends nontrivially on the density), and
the diffusion kernel ®; ¢ (u, u’) gives the effective diffusion of
each quasiparticle due to their local microscopic scatterings
[27,50,51]. Equation (6) is therefore strongly nonlinear and it
can be solved by simple generalizations of midpoint or back-
ward Euler methods. The quasiparticle content is drastically
different in the easy-axis regimes |A| > 1 and the easy plane.
We shall first consider the latter, which also includes the free
fermionic point A = 0.
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FIG. 2. Easy-plane regime. GHD prediction for the time evolution of the contrast (4) from the helix initial state in the regime 0 < A < 1.
(a),(b) The time evolution of the logarithm of the contrast under XXZ Hamiltonian with A = cos /6 ~ 0.87, showing exponential decay at
long times for any finite value of the helix wavelength L. The ballistic time dependence as ¢ /A is violated in the displayed timescales, whereas
rescaling time as #/A'.43 leads to a near collapse of the data on this timescale, which can be interpreted as superdiffusive intermediate-time
behavior. The inset of (b) displays the approximate exponent « in /A% fitted for different values of A, showing an approach to diffusion
o =z=2as A — 1. (c) Time evolution of the contrast at the free fermion point A = 0, where the hydrodynamic prediction is written in
a closed form in terms of a Bessel function, C(¢) = Jy(4m¢t/A), signaling exact ballistic dynamics. Exact numerical simulations at different

values of X are presented, showing very good agreement with the hydrodynamic predictions already for intermediate values of A.

IV. EASY-PLANE REGIME

We focus here on the regime |A| < 1, see Figs. 1 and 2.
Let us first consider the free fermions case A = 0, as also
recently studied in [52]. The Hamiltonian in this case can
be mapped via Jordan-Wigner transformation into the tight-
binding model,

H =Y clcj+He, (7

J

with fermionic operator {c;, c;} = §;;. The initial helix state is

a Gaussian state and its correlation matrix G;; = (¢0|c:fc o)
can be computed exactly,

Cij = 8;jcos*(0;/2) + (1 — 8;;)sin*(6,/2) cos*(6;/2), (8)

which can be evolved with the single-particle Hamiltonian to
obtain exact numerical simulations. The hydrodynamic limit
can be obtained by computing the momentum occupation
function n(k) = (czck) =2mp(k) at each point x =i, and

then its GHD time evolution,
on(k; x, t) + vden(k; x, t) = 0, 9

is simply solved by n(k;x, t) = nlk;x — v(k)t], with v(k) =
sin k, which reads

nk;x,t) = cos* (M)

2

+ 278 (k) sin? (M) cos? (M)

(10)

with 6(x) = 2 x/A. The contrast is then given by

- [l [ B ()
=, x 5~ _,T27rn (X — sin .
1 T A T 4wt .
=5 - dk 1 cos |:5 + - s1n(k)]
= Jo(dmt/N), an

which decays to zero algebraically as #~'/2, and not expo-
nentially as assumed in Ref. [2] (we shall see in this paper
how polynomial decay is only a feature of A = 0). The
comparison between the exact simulations (see Fig. 2) and the
hydrodynamic predictions shows a very good agreement even
for relatively small A ~ O(10), confirming the validity of the
hydrodynamic approach.

We now turn to the interacting case, focusing on the values
A = cos(m /¢) with £ > 2 because the quasiparticle content is
simpler at these points: for A = cos(;r /£), one has £ quasipar-
ticle species, each of them with their associated p,(u) [53-55],
and the magnetization profile at time ¢ is given by

)4
(S°(x, 1)) = 1/2 — Zs/du oszx,0).  (12)
s=1

The GGE corresponding to the initial state can be found
using the transfer-matrix-based approach introduced in [53].
Relative to A =0, the key new feature of the interacting
case is that the ballistic propagation of quasiparticles is
convolved with diffusive spreading due to elastic collisions
[27,50,51]. For an initial state of fixed A, this convolution
transforms into a product, and the contrast goes as C(A,t) =
f(t/))exp[—Dt/(212)], where D is an effective spin diffusion
constant. In the Euler scaling limit ¢+ — oo, A ~ ¢, the dif-
fusive correction becomes irrelevant and therefore, at short
times, one sees purely ballistic spreading; see Fig. 1. However,
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the late-time limit for fixed A is dominated by this diffusive
correction. If we attempt a fit of the data over intermediate-
time ranges (compatible with accessible experimental time
windows) we find an, only apparent, superdiffusive collapse
C(t) = g(t/A*) with 1 < a < 2, consistent with what is ob-
served in the experiment. However, our analysis shows that
this is merely a finite-time effect and indeed the exponent «
can be seen to drifts toward 2 as we fit later times. Moreover,
as £ — oo (i.e., A — 17), this apparent « drifts toward 2,
as D diverges in this limit and the contrast is increasingly
dominated by the diffusive correction: in order to recover
the ballistic scaling, one would need to go to inaccessibly
late times and long wavelengths. We will return below to the
limiting behavior at A = 1.

V. EASY-AXIS REGIME

The regime |A| > 1 is characterized by an infinite num-
ber of quasiparticles, normalized such that their integrated
sum gives the value of the absolute value of the magneti-
zation, [(S%)|=1/2 -, sfdu,os(u). As quasiparticles can
only provide the absolute value of magnetization, it is clear
that the full magnetization field requires some extra informa-
tion, namely, the sign of the magnetization. As first introduced
in [27,56], the positions of the domain walls where the sign of
the magnetization changes are given by the positions x(t)
of the largest quasiparticles, with label s — oo, the so-called
giant magnons, which move with effective velocity v, =

v and which need to be treated separately. The inclusion

[o.¢]
of diffusion gives a Gaussian spreading to the position of
the largest quasiparticles, given by the diagonal element of
the diffusion kernel, Dgpin = lim,_, o Dy, s, Which can then be

evolved via the equation
atf + vspinaxf - %8X(Dspin8xf)v (13)

with initial condition | = sgn[(S*(x, #))]. Then magnetization
is obtained by evolving this together with (6) and computing
(S*(x, 1))y =F(x, )[1/2—= > s f dups(u; x, t)]. We evolve the
Egs. (6) and (13) from the initial GGE fields, using the expres-
sion for the densities already being found explicitly in [57].

Let us first focus on the regime A = 1 + €. In this case,
the initial helix state is locally close to the ferromagnetic
vacuum, where energy density is equal to 1/4. Such thermo-
dynamic states are characterized by vanishing spin velocity
and very small spin diffusion constant, which eventually goes
to zero at A = 1. For any A > 1, the dynamics is diffusive
with a relativity small diffusion constant, which we believe
is responsible for the apparent finite-time subdiffusive scaling
observed experimentally in that regime [2]; see Fig. 3. Note
that our hydrodynamic equations do not include subdiffusive
corrections, but they predict asymptotically diffusive relax-
ation, albeit with a minute diffusion constant.

The regime A < —1 presents some surprises; see Fig. 3.
From linear-response results, we expect that no spin ballis-
tic transport should be present at zero net magnetization in
the system. However, in this regime, we witness short-time
ballistic dynamics given by an effective thermoelectric effect.
The initial energy density is not flat, contrary to the case
A ~ 17; see (3). This is true for most of the initial densities
of conserved quantities, but we can restrict ourself to energy
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FIG. 3. Easy-axis regime. GHD prediction for the time evolu-
tion of the contrast (4) from the helix initial state in the regime
|A] > 1. (a) The time evolution under the XXZ Hamiltonian with
A = 1.1, showing exponential decay with diffusive scaling ¢/1?
for the different values of A reported in (b) and (c). The inset
displays the numerically extracted value of relaxation time 7 =
—1/21im,_, 5 (t/22)~" In C(t) compared with the infinite time predic-
tion of Dy, in Eq. (13), which becomes flat in x; see Fig. 4. (b) The
same time evolution, but with a negative value of A = —1.1, as a
function of #/A, showing an approximated, ballistic rescaling # /X at
short times, with the long-time diffusive decay with ¢ /A dependence
shown in (c).

density in order to explain the main physical effects. Such an
initial unbalance is initially ballistically redistributed [given
their finite velocities vfff (u)] by the small s ~ O(1) quasipar-
ticles in the system, which are spin uncharged. Such a flow
of small quasiparticles in the system induced a finite velocity
for the largest quasiparticle, vspin, Which is pushed by chiral
scatterings with the lighter ones; see Fig. 4. At short times, we
thus see signatures of ballistic transport, although ultimately
the contrast decays diffusively as C(t) ~ e 2/ with a
prefactor D given by the spin diffusion constant of the global
equilibrium final state; see Fig. 4. This short-time ballistic
dynamics for A < —1 was also observed experimentally [2]
and had remained unexplained until now: note that this result
is particularly surprising from the point of view of linear
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FIG. 4. Short-time effects. Time evolution of (a) spin velocity
and (b) diffusion constant in Eq. (13), plotted as a function of position
j/A at different times and for two different values of A, i.e., one
positive A = 1.1 (red lines) and one negative A = —1.1 (blue lines).
We show how, for positive A, velocity and diffusion constant remain
constantly very small (consistent with apparent subdiffusion at short
times). For negative A, the diffusion constant is finite and converges
at large times to a constant function in x, while the spin velocity also
grows in time [from its initial condition vy, (x, # = 0) = 0], to then
later decay again to zero, explaining short-time ballistic dynamics.

response since high-temperature transport does not depend
on the sign of A. This asymmetry between the A > 1 and
A < —1 regimes relies entirely on the special nature of the
helix initial state and on thermoelectric effects.

VI. DISCUSSION AND THE POINT A =1

We have developed a hydrodynamic description of the
relaxation of spin spirals in the XXZ spin chain, based on
imposing local equilibrium using the local density approxima-
tion. This description captures all the experimentally observed
relaxation phenomena, with one important exception: the case
of A = 1. Here, the local density approximation incorrectly
predicts that a long-wavelength spin spiral does not relax at

all since it is locally in the quasiparticle vacuum. In fact,
experiments see relaxation with dynamical exponent z = 2
[1]. To describe this case, one must go beyond the local den-
sity approximation. We briefly outline how the z = 2 scaling
follows from GHD. We imagine cutting the system up into
hydrodynamic cells on a much larger length scale than A,
and assuming that each cell equilibrates. Because the initial
condition is smoothly modulated at A, its quasiparticle content
will be dominated by strings of size s ~ A (this is the crucial
distinction between the helix and a thermal state, which has a
string population involving all sizes). Relaxation occurs when
these dominant strings cross a distance A. Since at A =1, a
s = A-string has in general a velocity v ~ 1/s = 1/A [7],
at large A, the associated timescale scales as A%, yielding
z = 2. Incorporating this physics more quantitatively in our
framework remains a task for future work.

More generally, our results suggest that GHD (sup-
plemented with diffusive corrections) remains a powerful
framework for describing the dynamics of initial states that
are far from local thermal equilibrium. It would be interest-
ing to extend our framework to other far-from-equilibrium
states—e.g., those following interaction quenches or the
Newton’s cradle setup [58,59]—and to incorporate experi-
mental features such as trap-induced inhomogeneity and other
integrability-breaking perturbations.
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