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Correlations at higher-order exceptional points in non-Hermitian models
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We investigate the decay of spatial correlations of PT -symmetric non-Hermitian one-dimensional models that
host higher-order exceptional points. Beyond a certain correlation length, they develop anomalous power-law
behavior that indicates strong suppression of correlations in the non-Hermitian setups as compared to the
Hermitian ones. The correlation length is also reflected in the entanglement entropy where it marks a change from
logarithmic growth at short distance to a constant value at large distance, characteristic of an insulator, despite
the spectrum being gapless. Two different families of models are investigated, both having a similar spectrum
constrained by particle-hole symmetry. The first model offers an experimentally attractive way to generate
arbitrary higher-order exceptional points and represents a non-Hermitian extension of the Dirac Hamiltonian
for general spin. At the critical point, it displays a decay of the correlations ∼1/x2 and 1/x3 irrespective of
the order of the exceptional point. The second model is constructed using unidirectional hopping and displays
enhanced suppression of correlations ∼1/xa, a � 2 with a power law that depends on the order of the exceptional
point.
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I. INTRODUCTION

According to quantum mechanics, a physical system is
described by the Hamiltonian, which is typically assumed
to be Hermitian. However, it has been understood for some
time that non-Hermitian Hamiltonians also provide valu-
able insights for the dynamics of open quantum systems, as
evidenced by numerous studies [1–5]. The motivation for
this development may be traced back to proposals that ex-
plore unique phenomena that challenge traditional quantum
mechanics. These include the existence of real spectra of
non-Hermitian Hamiltonians [6,7], the non-Hermitian skin
effect [8,9], unidirectional invisibility [10], and novel topolog-
ical classifications of noninteracting Hamiltonians [11–13].
Initially, the use of classical analogs of the Schrödinger
equation allowed us to achieve experimental control over
non-Hermitian Hamiltonians in optics and photonics [14–16].
Only recently have there been breakthroughs in accessing
genuine many-body non-Hermitian Hamiltonians in quantum
mechanics [17–20].

This study focuses on the occurrence and consequences
of exceptional points (EPs) in the energy spectra of non-
Hermitian Hamiltonians, which is a phenomenon with no
Hermitian equivalent [21–23]. At an EP, two or more
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eigenvalues become degenerate and the eigenvectors coalesce,
such that they no longer form a complete basis to represent
the wave function of the system [24]. The number of vectors
N that coalesce determines the order of the EP, with the most
common occurrence being N = 2. We will use the notation
EPN to refer to an EP of order N . The order N affects the
system’s response when its parameters are adjusted in the
vicinity of the non-Hermitian singularity. Consider, for ex-
ample, a noninteracting model described by a single-particle
non-Hermitian Hamiltonian. If a perturbation of amplitude ε

is applied at an EPN , it typically results in a change of the en-
ergy splitting on the order of N

√
ε, implying that EPs of higher

orders have larger energy splitting [25,26]. This enhancement
can be utilized to improve the sensitivity of sensors to small
perturbations. However, as noise is also amplified near EPs,
practical methods have been proposed to mitigate its effects
[27].

Recent experiments have extensively investigated EP2

realizations in various setups [28–32], as there is a rich
phenomenology predicted for second-order EPs. In these
experiments, unique effects such as the interchange of eigen-
vectors as the system is moved in parameter space around an
EP have been tested [33–36], with successful results [37–39].
However, the investigation of higher-order exceptional points
(HOEPs) with N > 2 poses additional challenges, as it is
necessary to tune several parameters for their realization. Nev-
ertheless, symmetries play a crucial role in stabilizing HOEPs
[40–42], and progress has been made in manufacturing them
in optical cavities [43,44], optics [45–47], optomechanics
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[48–51], and acoustics [52,53]. Unencumbered by experi-
mental limitations, theory has extended our understanding of
EPN ’s in regard to their classifications [54], the dynamics of
wave functions around an EPN [55–57], Landau-Zener tunnel-
ing at an EP [58,59], or interaction-induced EPs [60].

Exceptional points occur naturally in non-Hermitian PT -
symmetric systems [61]. These systems have a Hamiltonian
that is symmetric under the combined operation of time rever-
sal (T ) and parity symmetry (P). These systems exhibit two
distinct phases: The PT -symmetric phase where the spectrum
of the Hamiltonian is real, and a PT -broken phase where
the spectrum becomes complex [62]. The transition between
the two phases is marked by the occurrence of the EP. Re-
cently, there has been a growing interest in investigating the
properties of the system exactly at the EP [63–65]. In the
present work, we refer to the state at the exceptional point
as the critical state. In particular, Ref. [65] demonstrated that
the power-law behavior of spatial correlations near an EP2 is
characterized by anomalous exponents, which signify stronger
suppression of correlations in non-Hermitian setups compared
to the Hermitian models.

The aim of this work is twofold. First, it seeks to con-
tribute to the quest for natural ways to implement HOEPs in
simple lattices, which has been investigated in recent studies
[40,66,67]. To do this, we propose a quasi-one-dimensional
lattice with gain and loss, which may be used as a model to
generate EPN of arbitrary order. For that we employ a lat-
tice representation of a non-Hermitian Dirac Hamiltonian for
general spin S = (N − 1)/2. These systems exhibit a particle-
hole symmetry that enforces a flat band at the EP for integer
spin S or odd N . The second goal of the study is to investigate
the critical state of such systems reflected in the anomalous
power-law behavior of spatial correlations and the entangle-
ment entropy.

In our study, we thoroughly examine two distinct models,
both showcasing HOEPs. The first model is constructed on
a diamond lattice, with gain and loss incorporated into the
hoppings, and it is associated with a general spin Dirac model.
The second model is based on a ladderlike tight-binding struc-
ture with unidirectional couplings. Remarkably, our findings
reveal that while both models host HOEPs, they exhibit dif-
ferent power-law decay patterns in correlations. The precise
algebraic exponents for these models are illustrated in Fig. 1,
showing in both cases a suppression of correlations with re-
spect to the Hermitian one-dimensional free fermion systems.
The spin Dirac model displays a limited suppression in the
correlation ∼1/xα with α ∈ {2, 3}, irrespective of the order
of the EP, while for the unidirectional model the exponent
increases with the order of the EP.

This paper is structured as follows. In Sec. II, we present
the general spin Dirac model with arbitrary order EPN , and we
investigate the correlations and entanglement entropy within
it, with a particular focus on the EP3 case, which possesses a
flat band and is analytically tractable. In Sec. III, we introduce
and examine a second family of models with unidirectional
hopping, which exhibit an increasing suppression of correla-
tions with the order of the exceptional point. In Sec. IV, we
discuss the relationship between the two families of models in
the low-energy limit. The final section, Sec. V, presents the
conclusions of our study. Additionally, several Appendixes

FIG. 1. (a) Sketch of energy dispersion (blue lines) in PT -
symmetric models near an EPN . Flat bands occur only for odd N .
(b),(c) The exponents a that describe the algebraic decay ∼1/xa

for all N (N + 1)/2 possible combinations of real-space correlators
as a function of the order N of the EP. Exponents are extracted
numerically from fitting the large distance x behavior of the corre-
sponding Green’s functions in the two classes of models studied.
(b) Suppression of correlations is limited to 1/x2 and 1/x3 decay
in the model implementing the non-Hermitian general spin Dirac
Hamiltonian irrespective of the order of the EP. (c) Correlations
display a general 1/xa decay, with a � 2 that depends on the order
of the EP in the unidirectional model.

clarify various points in the main text, such as defining
conventions for correlation functions (Appendix B), demon-
strating the role of particle-hole symmetry in models with a
flat band (Appendix C), or providing examples in computing
correlation functions (Appendix E).

II. LATTICE MODEL SUPPORTING EPN AND
THE GENERAL SPIN DIRAC HAMILTONIAN

In this section, we systematically construct a family of
lattice models that host higher-order exceptional points. These
are non-Hermitian models with balanced gain and loss that
display a real spectrum due to their PT -symmetry.

We start with a known one-dimensional tight-binding
model introduced before [64,65] that has a regular EP2, and
we demonstrate that combining N such chains produces a
quasi-one-dimensional lattice featuring a single EPN point
while maintaining PT symmetry. By tuning the chemical
potential and hoppings in the chains, we ensure that the low-
energy dispersion is characterized by a non-Hermitian Dirac
Hamiltonian for spin S = (N − 1)/2. Using models with EPN ,
we examine the physical implications of the spatial correlation
functions that develop.

Our focus is on studying the ground state of the systems
at zero temperature, where all energy levels are filled up to
the energy associated with the EPN . Due to the real spectrum
of the critical non-Hermitian model, the filling of the states
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is defined in the order of increasing energy. We examine the
critical state using correlation functions and find that instead
of the typical ∼1/x decay, characteristic of one-dimensional
noninteracting fermions [68], there are anomalous power-law
decay laws ∼1/xa, with a > 1. Additionally, we observe a sig-
nificant density charge imbalance in the model and a persistent
ground-state current.

A. Lattice model with EP2

Let us first discuss the PT -symmetric tight-binding model
hosting an EP2 [64,65],

H =
∑

j

(−1) jμc†
j c j + t − i(−1) jγ

2
(c†

j c j+1 + c†
j+1c j ), (1)

with c†
j (c j) denoting the fermion creation (annihilation) op-

erator at site j. There are two atoms in the unit cell, an ≡ c2 j

and bn ≡ c2 j+1, with cell index n. There is an alternating gain
and loss on neighboring links modeled by the rate γ > 0. The
chemical potential μ is real, and without loss of generality,
the hopping integral is henceforth considered positive, t > 0.
In momentum space,

H =
∑

k

c†
khkck, (2)

with c†
k = (a†

k, b†
k ). The Bloch Hamiltonian reads

hk =
(

μ fk

f−k −μ

)
, (3)

with

fk = t cos(k/2) + γ sin(k/2), (4)

and k in (0, 2π ). The lattice constant is set throughout to 1 and
h̄ = 1. This gauge choice of momentum-dependent phases
on the hoppings results in a Bloch Hamiltonian that is 4π -
periodic, while the dispersion remains 2π -periodic. The two
energy bands are characterized by the dispersion

E±(k) = ±
√

t2 cos(k/2)2 + μ2 − γ 2 sin(k/2)2. (5)

Consequently, a single exceptional point develops at k = π

for μ = ±γ .
An expansion near the EP, k = π + p, for small momenta

p, provides an approximation of the model close to the EP2,
as the effective Hamiltonian becomes

h(p) =
(

μ −pt/2 + γ

−pt/2 − γ −μ

)
. (6)

Performing a rotation in the pseudospin space, the continuum
Hamiltonian near the EP2, e.g., for μ = γ , reads

h̃(p) =
(

vp �

0 −vp

)
, (7)

with v = t/2 and � = 2γ . This continuum model was ana-
lyzed in detail in Ref. [65]. Labeling the field operators for
right- and left-moving particles as ψ1(x) and ψ2(x), respec-
tively, it was found that the correlations behave as

〈ψ†
1 (x)ψ1(0)〉 = i�

2πv
×

{
v

�x , x � v
�

,

−(
2v
�x

)3
, x 	 v

�
,

〈ψ†
2 (x)ψ2(0)〉 = −〈ψ†

1 (x)ψ1(0)〉, (8)

〈ψ†
1 (x)ψ2(0)〉 = �

4πv
×

{
ln

(
�x
2v

)
, x � v

�
,(

2v
�x

)2
, x 	 v

�
,

with propagators computed in the ground state (see Ap-
pendixes B and C for details). The non-Hermitian term
� is not present in the spectrum, but it influences the
eigenvectors and the correlation functions. Crucially, it intro-
duces a correlation length scale ξ = v/� which marks the
crossover from an almost Hermitian regime to the anoma-
lous long-range behavior of correlations. In the short-distance
regime, x � ξ , the system behaves as in the Hermitian case,
� = 0 [〈ψ†

1 (x)ψ1(0)〉 = −〈ψ†
2 (x)ψ2(0)〉 ∼ i/2πx], with only

a logarithmic correction to the off-diagonal propagator
〈ψ†

1 (x)ψ2(0)〉, which is otherwise zero in the Hermitian case.
In the large-distance limit, x 	 ξ , the correlations decay with
an anomalous power law, 1/x2 or 1/x3. The suppression was
interpreted as due to the quantum Zeno effect [69,70].

B. Generalization to EPN

The tight-binding model introduced in Eq. (1) consists of a
single chain described by a nearest-neighbor hopping with al-
ternating gain and loss, and a chemical potential that depends
on the site. When connecting N of these one-dimensional
chains, each of which supports an EP2, it is possible to create a
quasi-one-dimensional structure in the form of a diamondlike
lattice that hosts an EPN . A simple way to understand the
concept is by starting with a Bloch Hamiltonian expressed
in momentum space, which resembles Eq. (3), but extending
the model from a spin S = 1/2 representation to a spin of
arbitrary value S [71],

hk = t cos(k/2)Sx + iγ sin(k/2)Sy + μSz. (9)

For a larger spin, we construct the N × N matrices Si that
form a representation for the spin operators Ŝi using the basis
states |S = 1

2 (N − 1), m〉 (see details in Appendix A). The
spin quantum number m takes N values, ranging from −S to
S. The energy spectrum reads

Em = m
√

t2 cos(k/2)2 + μ2 − γ 2 sin(k/2)2, (10)

where m is the spin quantum number. For |μ| > γ , the spec-
trum is real and gapped. For |μ| < γ , the spectrum becomes
imaginary for some momenta k. Exactly at |μ| = γ , there is
a real-to-complex transition marked by an EPN , N = 2S + 1,
located at k = π . In this case, the dispersion simplifies to

Em = m
√

t2 + γ 2| cos(k/2)|, (11)

with N bands crossing at the EPN . Moreover, for integer spin
S, there are an odd number N of bands including a flat band,
corresponding to m = 0. To investigate the physics of the
EPN , we consider the zero-temperature limit and a fixed filling
such that the Fermi level corresponds to the energy of the EPN .
In particular, in the case of integer S, the model contains either
an empty or a full flat band (see Appendix C). Similar to the
EP2 model discussed in Sec. II A, it is fruitful to develop a
low-energy description of the model as it encompasses the
relevant physics. In accordance with the same procedure, the
momentum near the EP is expanded as k = π + p, yielding
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FIG. 2. The Dirac Hamiltonian with spin S is realized on a di-
amond lattice that hosts EPN , where N is equal to 2S + 1. Losses
and gains in hoppings are denoted by blue and red arrows, respec-
tively, with the coefficients of the hoppings α j being proportional to
(t − iγ ) for losses and α∗

j to (t + iγ ) for gains. The unit cell, which
is highlighted by a dotted line, contains N atoms, and the sites have
chemical potentials μ j . The amplitudes of the chemical potentials
and hoppings α j in each row j are tuned according to Eq. (14).

an effective non-Hermitian continuum model,

h(p) = − pt

2
Sx + iγ Sy + μSz. (12)

When the parameters are set such that μ = ±γ , the system
exhibits a linear dispersion near the EPN , Em = mpt/2. In
Fig. 1(a), we display the linear dispersion alongside the for-
mation of flat bands that define the spectrum of Eq. (12)
for different N . Essentially, Eq. (12) can be regarded as a
non-Hermitian Dirac Hamiltonian due to the linear rates of
dissipation. Moreover, the Hamiltonian at p = 0 is analyzed
to confirm that it describes an EPN with N coalescing eigen-
vectors (see Appendix D). The Hamiltonian in real space that
corresponds to the model (9) is given by

H =
L∑

n=−L

⎡
⎣ N∑

j=1

μ jc
†
j,nc j,n +

N−1∑
j=1

α j (c
†
j,nc j+1,n + H.c.)

⎤
⎦

+
L−1∑

n=−L

N−1∑
j=1

α∗
j (c†

j,n+1c j+1,n + H.c.), (13)

where

μ j = μSz
j, j, α j = t − iγ

2
Sx

j, j+1, (14)

where μ is a constant chemical potential, and Sx,z representing
the spin matrices (Appendix A). The creation (annihilation)
operators c†

j,n (c j,n) are identified by integers n, which rep-
resents the unit cell, and j, which specifies the site within
the unit cell n. The Hamiltonian is constructed on a quasi-
one-dimensional diamond lattice, where alternating gain and
loss rates γ are applied, as shown in Fig. 2. Throughout
this work, we typically consider infinite or periodic lattices,
where L → ∞ with open boundary conditions or finite L with
periodic boundary conditions. The width of the stripe in terms
of sites is set by the order N of the EPN .

The Hamiltonian in Eq. (13) exhibits PT symmetry
despite the breaking of conventional time-reversal symme-
try. When time reversal is applied, the gain and loss rates
are interchanged, which corresponds to taking the complex

conjugate of Eq. (13). Since the time-reversal operator for
spinless fermions is T = K, with K being the complex conju-
gation operator (KiK = −i), the Hamiltonian is not invariant
under T . However, the application of a reflection operation
P , which changes x → −x along the stripe of the diamond
lattice, interchanges the rates again, and it makes the Hamil-
tonian invariant under the joint PT symmetry operations. For
instance, by choosing the reflection line to be normal to x and
passing through the first atom of cell n = 0, the effect of P
on fermion operators is determined as Pc j,nP−1 = c j,−n+1− j .
Therefore, the tight-binding Hamiltonian (13) for L → ∞
becomes indeed invariant under the application of PT
symmetry.

C. Correlations in the EPN models

In the present sections, the main emphasis is on the two-
point correlation functions in models that have EPN , with
N > 2. These functions play a crucial role in describing the
universal properties at the critical point and in determining
the charge density and currents. The case in which N = 3 is
particularly intriguing because it is the simplest one that ex-
tends beyond the known results and still admits an analytical
solution. What is interesting about this case is that it involves
a flat band, and the correlations are computed analytically by
assuming the flat band to be either completely empty or filled.

The lattice hosting EP3 is realized by connecting two
N = 2 chains shifted by half a lattice constant. The chemical
potentials are fixed to μ, 0, and −μ. Thus, the model consists
of only the two upmost rows of hoppings in Fig. 2. The alter-
nating hoppings are (t ± iγ )/2

√
2. Consequently, the Bloch

Hamiltonian from Eq. (9) explicitly reads

hk =

⎛
⎜⎝

μ 1√
2

fk 0
1√
2

f−k 0 1√
2

fk

0 1√
2

f−k −μ

⎞
⎟⎠, (15)

with fk from Eq. (4).
The spectrum of the Hamiltonian which realizes an EP3 for

μ = ±γ consists of three bands crossing at k = π with a flat
band E0 = 0 and two dispersing bands

E± = ±
√

t2 + γ 2| cos(k/2)|. (16)

There are six distinct correlation functions,

Ci, j (n) = 〈c†
i,nc j,0〉, i � j, i, j ∈ {1, 2, 3}. (17)

First, we investigate the case in which the filling is ν =
1/3, which implies that the flat band is completely empty.
The numerical results are presented in Figs. 3(a) and 3(c).
In the asymptotic large-distance limit n 	 t/γ , the same
correlations are computed analytically by integrating over
the occupied eigenstates of the Bloch Hamiltonian (see Ap-
pendix E). The diagonal correlations are in the asymptotic
limit,

〈c†
1,nc1,0〉 ∼

√
t2 + γ 2

4πγ

cos(πn)

n2
,

〈c†
2,nc2,0〉 ∼ − it

√
t2 + γ 2

2πγ 2

cos(πn)

n3
, (18)

〈c†
3,nc3,0〉 ∼ −

√
t2 + γ 2

4πγ

cos(πn)

n2
,
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FIG. 3. Correlation functions in the diamond lattice at EPs, μ =
γ . Correlations for N = 3, γ = 0.2t at filling (a) ν = 1/3 and (b)
ν = 2/3 from numerics (colored symbols) follow closely the analyt-
ical lattice results (colored dashed lines) at large n from Eqs. (18) and
(19). (c) Short-distance behavior for N = 3, ν = 1/3, at γ = 0.005t
is qualitatively given by the continuum results in Eqs. (21) and (22).
The matching color of a symbol from numerics and the dashed line
from analytics identify the same correlation function. (d) For N = 4,
ν = 1/2, and γ = 0.2t , correlations still decay at large distance as
1/n2 or 1/n3 (the dashed black lines are guidelines). Panels (a), (b),
and (c) share the legend.

and the off-diagonal correlations,

〈c†
1,nc2,0〉 ∼ −

√
2t2 + 2γ 2

8πγ

cos(πn)

n2
,

〈c†
1,nc3,0〉 ∼ − it

√
t2 + γ 2

4πγ 2

cos(πn)

n3
, (19)

〈c†
2,nc3,0〉 ∼

√
2t2 + 2γ 2

8πγ

cos(πn)

n2
.

The numerical results, depicted in Fig. 3(a), are in excellent
agreement with the analytical calculation. The correlations
display an anomalous decay pattern similar to that of the
N = 2 case, with the correlation decaying at large distances
with ∼1/n2 and ∼1/n3. The same results are obtained when
considering a filled flat band with ν = 2/3. Exploiting the
particle-hole symmetry in the system simplifies the process
of determining the correlation functions based on the ν = 1/3
results (see Appendix C),

Cν=2/3
i, j (n) = (−1)i+ j+1Cν=1/3

4− j,4−i(n), (20)

where the filling is denoted explicitly in the superscript. Nu-
merical results shown in Fig. 3(b) substantiate this claim
and confirm that the results at ν = 2/3 are unchanged with
respect to the ν = 1/3 case when taking the absolute value
of the correlation functions. The continuum Hamiltonian (12)
at the exceptional point, e.g., μ = γ , allows one to compute

correlations analytically both in the large-distance and short-
distance limits. The diagonal correlations read

〈ψ†
1 (x)ψ1(0)〉 ∼ 1

4πξ
×

{
4 ln(x/ξ ), x � ξ,

ξ 2/x2, x 	 ξ,

〈ψ†
2 (x)ψ2(0)〉 ∼ − 1

2πξ
×

{
π, x � ξ,

iξ 3/x3, x 	 ξ,
(21)

〈ψ†
3 (x)ψ3(0)〉 ∼ − 1

4πξ
×

{
4 ln(x/ξ ), x � ξ,

ξ 2/x2, x 	 ξ,

and the off-diagonal ones,

〈ψ†
1 (x)ψ2(0)〉 ∼ −

√
2

8πξ
×

{
2iξ/x, x � ξ,

ξ 2/x2, x 	 ξ,

〈ψ†
1 (x)ψ3(0)〉 ∼ − 1

4πξ
×

{
π, x � ξ,

iξ 3/x3, x 	 ξ,
(22)

〈ψ†
2 (x)ψ3(0)〉 ∼

√
2

8πξ
×

{−2iξ/x, x � ξ,

ξ 2/x2, x 	 ξ .

These results indicate that the anomalous decay regime is
determined by a natural correlation length that depends on
the dissipation rates, ξ = t/γ . It should be noted that the
continuum Hamiltonian, valid to first order in p, fails to
replicate the actual Fermi velocity obtained from the lattice
model

√
t2 + γ 2, which is given in Eq. (16). By performing

a more detailed calculation up to O(p2), a better approxi-
mation is achieved, and t is replaced by

√
t2 + γ 2, as given

by Eqs. (18) and (19). The natural correlation length in this
case is ξ =

√
t2 + γ 2/γ . Nonetheless, the continuum analysis

accurately captures the correlations’ large-distance behavior
with anomalous power laws described in Eqs. (18) and (19).

For short distances x � ξ , the correlations decay at least as
fast as the conventional 1/x decay rate, and they exhibit qual-
itative agreement with the numerical results [see Fig. 3(c)].
Note that short distance is defined relative to the correla-
tion length, and n can be large, as shown in the figure, as
long as ξ 	 n. The short-distance behavior may be linked to
the Hermitian limit, which is obtained by setting γ → 0 or
ξ → ∞. In the Hermitian limit, only two correlations remain
nonvanishing, specifically,

〈ψ†
1 (x)ψ2(0)〉 = 〈ψ†

2 (x)ψ3(0)〉 = −i
√

2/4πx. (23)

When considering N > 3, only numerical simulations are
used to investigate the power-law decay of correlations. To
generate higher EPs, a strip of the diamond lattice with
increasing width is utilized, with the weights of hopping,
dissipation rates, and chemical potential adjusted accordingly
[as given by Eq. (13)]. For instance, the Bloch Hamiltonian of
the model accommodating EP4 is expressed as

hk =

⎛
⎜⎜⎜⎜⎜⎝

3
2μ

√
3

2 fk 0 0√
3

2 f−k
1
2μ fk 0

0 f−k − 1
2μ

√
3

2 fk

0 0
√

3
2 f−k − 3

2μ

⎞
⎟⎟⎟⎟⎟⎠, (24)

with fk from Eq. (4), and μ = ±γ . The spectrum has four
bands Em (10), with spin quantum number m ∈ {± 1

2 ,± 3
2 }.
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FIG. 4. Charge-density imbalance with increasing rates γ in the
diamond lattice with EP3 at (a) ν = 1/3, (b) ν = 2/3, and (c) with
EP4, ν = 1/2. The charge density is shown on each site in the unit
cell numbered according to the convention shown in Fig. 2.

In Fig. 3(d) we show the expected 1/n2 and 1/n3 decay of
correlations in the large-distance limit.

We compute numerically all distinct N (N + 1)/2 correla-
tions characteristic for an N model with N = 2, . . . , 7, and
we fit them with a power law which allows us to extract the
decay exponents. A representation of our findings is shown in
Fig. 1(b). The results indicate that the power-law critical be-
havior persists at higher-order exceptional points. Moreover,
correlations are never suppressed more than 1/n3. Beyond
N = 7, calculations indicate the same conclusion, but numer-
ical errors in fitting the large-distance behavior are enhanced.

D. Charge and current densities

The charge density is obtained from the diagonal correla-
tion functions evaluated at n = 0 or x = 0, and it has the same
profile in every unit cell in the infinite or periodic lattice due
to translation symmetry. However, with increasing gain-loss
rates γ , the charge density varies within the unit cell. This
is a consequence of the model being tuned to the EP, which
results in the chemical potential being pinned to the dissipa-
tion rates |μ| = γ , causing the chemical potential to change
sign from positive to negative within the unit cell, as described
by Eq. (14). As a result, a charge imbalance between the two
sides of the diamond lattice stripes is generated.

In continuum, the correlators in Eq. (21) in the limit x → 0
are divergent. The imbalance between the density at sites in
the unit cell is determined in continuum at x = 0 by consider-
ing a cutoff 1/δ, which plays the role of lattice spacing. Then
the density at μ = γ is approximated to leading terms in 1/δ,

〈ψ†
1,3(0)ψ1,3(0)〉 ∼ 1

4πδ
± 1

πξ
ln

(
2δ

ξ

)
. (25)

This shows that from an initial equiprobable charge distri-
bution on the two edge sites of the lattice in the Hermitian
system γ → 0, an imbalance develops at finite γ . The nu-
merical evolution of charge density in a lattice unit cell as γ

increases is displayed in Figs. 4(a) and 4(b) for ν = 1/3 and
2/3, respectively, and it corroborates the analytical result at
large ξ , small γ .

At N > 3, charge densities at large rates γ obtained from
correlation functions continue to show charge imbalanced in
the unit cell. A numerical example is shown in Fig. 4(c) for the

N = 4 case. From an initial equiprobable distribution of two
particles on four sites in the Hermitian γ = 0 model’s unit
cell, a strong imbalance develops at finite γ with a density
migrating to the negative chemical potential lattice edge.

The local charge density ρ(x, t ) varies in time according to
the non-Hermitian Heisenberg equation for expectation values
[72–74],

i∂t 〈ρ〉 = 〈Hρ − ρH†〉 − 〈H − H†〉〈ρ〉, (26)

where the expectation value is taken with respect to the ground
state of the system. The right-hand side (RHS) in Eq. (26) is
decomposed into a unitary and a nonunitary evolution,

i∂t 〈ρ〉=
〈[

H + H†

2
, ρ

]〉
+
〈{

H − H†

2
, ρ

}〉
− 〈H − H†〉〈ρ〉,

(27)

where commutators and anticommutators are denoted with the
usual symbols [· · · ] and {· · · }, respectively. The last two terms
represent the nonunitary evolution and enter the continuity
equation as source-sink terms s,

∂t 〈ρ〉 = −∇〈 j〉 + s. (28)

Therefore, the current in the ground state at t = 0 is deter-
mined as

∇〈 j〉 = i

〈[
H + H†

2
, ρ

]〉
. (29)

Discretizing the equation on a lattice, using the tight-binding
model from Eq. (13), yields

〈
j j j−1
nn+1 − j j+1, j

n−1,n + j j j+1
nn − j j−1, j

nn

〉 = i

〈[
H + H†

2
, c†

j,nc j,n

]〉
,

(30)

where the left-hand side (LHS) represent the bond current
densities. The respective bond is specified by using lower
indices to denote the unit cells and upper indices to denote the
sites in the unit cell. After solving the commutation relation
on the RHS, one identifies the following currents inside the
unit cell and between near-neighbor unit cells:

〈
j j j+1
nn

〉 = itSx
j j+1

2
〈c†

j+1,nc j,n − H.c.〉,
〈
j j j−1
nn+1

〉 = itSx
j j−1

2
〈c†

j−1,n+1c j,n − H.c.〉, (31)

respectively.
Numerical results for N = 3 and 4 lattices are displayed

in Fig. 5 and are generic for EPN diamond lattice models. As
expected, currents in the Hermitian limit γ = 0 are zero. At
finite γ , one may well understand the results by considering
the lattice made of parallel chains of the EP2 models. A
current in the ground state develops in each chain, flowing
to the right for almost all γ . Moreover, the bond currents
are identical in each chain j j j+1

nn = j j+1, j
nn+1 for each chain j.

For even N , additional reflection symmetries lead to identical
currents on chains on opposite sides of the lattice, as seen
for N = 4. This is also expected from the symmetrical charge
imbalance seen in even N models that are always at half-filling
[e.g., Fig. 4(c)].
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FIG. 5. Bond current densities in the ground state as a function
of dissipation rates γ for (a) N = 3, ν = 1/3; (b) N = 3, ν = 2/3;
and (c) N = 4, ν = 1/2. Currents j and rates γ are in units of t .

E. Entanglement entropy

Typically, for a Hermitian system at a quantum critical
point, the bipartite entanglement entropy exhibits a logarith-
mic increase as the size of a subsystem grows [75,76]. This
picture is different in a non-Hermitian PT symmetric sys-
tem supporting an EP2 [65] as it was shown that there is a
crossover from a logarithmic growth to a constant entangle-
ment defined by the correlation length. This difference occurs
due to the quantum Zeno effect, which arrests the propagation
of correlation due to continuous monitoring from the environ-
ment in the non-Hermitian case. This results in correlations
that decay faster than in critical noninteracting Hermitian
models beyond the non-Hermitian correlation length. As a re-
sult, regions separated by distances larger than the correlation
length become disentangled. The only entangled degrees of
freedom remain at the subsystem’s borders. Since the model
is one-dimensional, the border is zero-dimensional, and the
entropy is expected to become constant, S ∼ l0, with l 	 ξ

the subsystem size. In this section, we expand the study to
investigate the case of a PT -symmetric system supporting
HOEPs, and we demonstrate that similar conclusions can be
drawn.

We study the entanglement entropy in the tight-binding
models (13) with periodic boundary conditions as a function
of the size of a subsystem in a model hosting EPN . The
subsystem is separated out by cutting parallel to a unit cell
(see Fig. 2), and then enlarged by adding unit cells to the right.
The entanglement entropy S is then computed as a function
of subsystem size in unit cells n based on the eigenvalues of
the correlation functions [77] obtained in the previous section.
More quantitatively,

S(n) = −
nN∑

m=1

ζ (n)
m ln

(
ζ (n)

m

) + (
1 − ζ (n)

m

)
ln

(
1 − ζ (n)

m

)
, (32)

with ζ (n)
m the mth eigenvalue of the correlation matrix Ci, j (n)

of size nN × nN .
For models with EPN , where N ranges from 2 to 7, the

entanglement entropy is computed numerically, and the out-
comes are illustrated in Fig. 6. The overall trend in all the
cases is the logarithmic increase in entropy with the system’s
size, up to a scale of ξ ∼ t/γ , beyond which the entropy
reaches saturation. The crossover is observed to rise with

FIG. 6. (a) Entanglement entropy as a function of the subsystem
size in unit cells n at μ = γ = 0.1t . The lattice models host an
EPN , where N ranges from 2 to 7. (b) Evolution of the entangle-
ment entropy for N = 4 and for different rates γ . (c) Entanglement
entropy for n � t/γ (symbols) is fitted with Eq. (33) (dashed lines)
at μ = γ = 10−3t . (d) Saturation entropy (symbols) as a function of
dissipation rates γ for n 	 t/γ is fitted with Eq. (34) (dashed lines).
The legend is shared for all panels, and γ is in units of t .

the value of N , indicating that a better estimation for the
correlation length is ξ ∼ Nt/γ .

As shown in the previous sections, at short distances, n �
ξ , the system behaves almost as a noninteracting Hermitian
fermionic model [76] with S(l ) ∼ c

3 log(l ), with l the sub-
system size and with c the central charge. The entropy is
well-approximated by

S(n � ξ ) ≈ �N/2�
3

log(nN ) + N

3
, (33)

as is shown in Fig. 6(c), and �x� yields the greatest integer
less than or equal to x. Equation (33) indicates that the central
charge c = N/2 for even N , while for odd N with a flat band,
c = (N − 1)/2. The effective size of the subsystem is given
by the number of cells n times the number of sites per unit
cell N .

On the other hand, when the subsystem size becomes large,
n 	 ξ , the entropy saturates and displays a characteristic be-
havior similar to an insulator [76],

S(n 	 ξ ) ≈ �N/2�
3

ln(ξ ) + const. (34)

A fit with a single free parameter, the additive constant,
is shown in Fig. 6(d). The odd N models deviate slightly
from this law. For ξ−1 > 1, the saturation entropy reaches its
minimum value and becomes constant.
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III. UNIDIRECTIONAL MODEL HOSTING EPN

In this section, we introduce a new model, characterized by
the continuum Hamiltonian near the EPN ,

H =
N∑

i, j=1

∫
dxψ†

i (x)hi j (x)ψ j (x), (35)

where h has the structure

hi j (p) = vi pδi, j + �δi+1, j (36)

in momentum space. Indices i, j take values from 1 to N ,
and δi, j is the Kronecker symbol. The energy spectrum of the
model consists of N bands, featuring an EPN at momentum
p = 0, as illustrated in Fig. 1(a). While the energies are real,
the model is non-Hermitian due to the presence of the off-
diagonal term �, which is reflected only in the eigenstates
and not in the eigenenergies. The particle-hole symmetry of
the model implies that only �N/2� velocities are independent,
with vi = −vN+1−i. Moreover, for odd N , a flat band with zero
velocity v(N+1)/2 = 0 must exist, as required by the symmetry.
We choose, without loss of generality, the linearly indepen-
dent velocities vi with i < �N/2� to be positive and different
from each other to avoid line degeneracies. This makes the
spectrum qualitatively similar to the dispersion of the previous
model in Eq. (10).

While our primary emphasis is on the continuum Hamil-
tonian, it is worth noting that the model has a lattice
implementation. The proposed lattice Hamiltonian is advan-
tageous for numerical computations, providing a means to
verify the analytical findings in the continuum model, de-
spite being more challenging to achieve experimentally. The
tight-binding Hamiltonian presented below defines a lattice
non-Hermitian model with real energy bands,

H =
L∑

n=−L

[
N∑

i=1

ti(c
†
i,nci,n+1 + H.c.) +

N−1∑
i=1

t0c†
i,nci+1,n

]
. (37)

Creation (annihilation) operators c†
i,n (ci,n) are labeled by the

index i, denoting the site inside the unit cell that contains N
sites, and by the index n designating the unit cell. Unidirec-
tional hopping t0 occurs inside the unit cell, while reciprocal
hopping ti, i > 0, occurs between sites belonging to different
unit cells. A lattice representation of the model is displayed in
Fig. 7. Such a model may be regarded either as stacking unit
cells of “one-way” Hatano-Nelson models [78,79] of finite
size N , or as a non-Hermitian coupling through t0 of N Hermi-
tian tight-binding hopping chains. The model (37) is also PT
symmetric, but in contrast to the previous Hamiltonian (13),
the model is also time-reversal T = K symmetric.

The Hamiltonian (37) with periodic boundary conditions
is diagonalized in momentum space, and it has an energy
spectrum composed of N bands with energies

Ei = 2ti cos(k) for 1 � i � N, (38)

where the lattice constant between neighboring sites is set to
1, and the spectrum is independent of t0. As in the continuum
case, the particle-hole symmetry dictates that ti = −tN+1−i,
which means that for odd values of N , the central hopping
term t(N+1)/2 becomes zero, resulting in the formation of a

FIG. 7. Tight-binding lattice model (37) hosting exceptional
points EPN . Reciprocal hoppings are drawn as bidirectional red ar-
rows, while blue arrows denote unidirectional couplings of uniform
amplitude t0. The sites encircled by a dotted line form a unit cell. The
sites in the unit cell are counted from the top.

flat band in the model. If each hopping term ti is distinct,
the model’s spectrum will feature two N-fold degeneracies
at momenta k = ±π/2. The low-energy behavior near ei-
ther of these degeneracies is characterized by the continuum
Hamiltonian given in Eq. (36). For example, at k = π/2, the
parameters of the continuum and lattice models are related as
vi = 2ti and � = t0.

A. Correlations in EP2 model

The continuum Hamiltonian (36) for N = 2, with v ≡ v1,
is precisely the one reviewed in the previous section [see
Eq. (7)], with correlations (8). Additionally, we compute here
the correlation functions on the lattice for the Hamiltonian
(37) in the limit of large n unit cells,

〈c†
1,nc1,0〉 ∼ +32t2

1

πt2
0

sin(nπ/2)

n3
,

〈c†
2,nc2,0〉 ∼ −32t2

1

πt2
0

sin(nπ/2)

n3
, (39)

〈c†
1,nc2,0〉 ∼ − 4t1

πt0

cos(nπ/2)

n2
.

The power-law decay of correlations corroborates the con-
tinuum results in Eq. (8). The above results concur with the
findings in Ref. [65], where the one-dimensional tight-binding
model had a single EP2 in the Brillouin zone (BZ). A com-
parison for the correlation functions computed numerically
in a lattice model (37) and the analytical results (39) in the
large-distance limit are presented Fig. 8, showing the expected
1/n2 and 1/n3 behavior.

B. Correlations in EPN model

The first HOEP model that corresponds to N = 3 features
a zero-energy flat band and is analyzed analytically. Similarly
to the model in Sec. II C, the non-Hermitian system exhibits
critical behavior that manifests as a power-law decay of corre-
lations, but with anomalous power-law exponents. However,
the inclusion of a third energy level results in even stronger
suppression of correlations compared to the case in which
there are only two energy levels.
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FIG. 8. (a) Bands of the tight-binding model realizing two EP2.
(b) The spatial variation, in unit cells n, for the three correlation
functions Ci, j (n) in the N = 2 model (37). The symbols represent
the numerical results, while the dashed lines denote the analytical
results for the corresponding Ci, j (n) in Eqs. (39).

The continuum model (36) for EP3 reads

h =
⎛
⎝vp � 0

0 0 �

0 0 −vp

⎞
⎠. (40)

Diagonalizing the matrix Hamiltonian, the energies are E1 =
vp, E2 = 0, and E3 = −vp, respectively. In an equivalent
Hermitian model with � = 0, the three energy bands are
uncoupled. The only existing correlations are between the
right-moving fields 〈ψ†

1 (x)ψ1(0)〉 and the left-moving fields
〈ψ†

3 (x)ψ3(0)〉. Moreover, there are no correlations in the flat
band, as 〈ψ†

2 (x)ψ2(0)〉 equals zero. As a result, the correlation
functions are either zero or exhibit the conventional 1/x decay
in one dimension.

In the non-Hermitian model, the non-Hermitian mass �

couples all the bands, leading to nontrivial correlations among
all fields ψi. In the following, we calculate correlation func-
tions for both 1/3 or 2/3 filling, corresponding to an empty or
filled flat band, respectively.

At 1/3 filling, the diagonal correlation functions read

〈ψ†
1 (x)ψ1(0)〉 = i�

2πv
×

{ v
�x , x � v

�
,

−(
2v
�x

)3
, x 	 v

�
,

〈ψ†
2 (x)ψ2(0)〉 = i�

2πv
×

{√
2π
4i , x � v

�
,(

2v
�x

)3
, x 	 v

�
,

(41)

〈ψ†
3 (x)ψ3(0)〉 = − i�

2πv
×

{ v
�x , x � v

�
,

3
(

2v
�x

)5
, x 	 v

�
,

and the off-diagonal ones,

〈ψ†
1 (x)ψ2(0)〉 = �

4πv
×

{−1, x � v
�

,(
2v
�x

)2
, x 	 v

�
,

〈ψ†
1 (x)ψ3(0)〉 = �

4πv
×

{√
2π
4 , x � v

�
,

i
(

2v
�x

)3
, x 	 v

�
,

(42)

〈ψ†
2 (x)ψ3(0)〉 = �

4πv
×

{
2 ln( �x

v
), x � v

�
,

−3
(

2v
�x

)4
, x 	 v

�
.

Instead of the conventional 1/x decay, the correlations are
further suppressed in the non-Hermitian model. At short
distances, 〈ψ†

2 (x)ψ2(0)〉 and the off-diagonal correlators
〈ψ†

i (x)ψ j �=i(0)〉 vanish similar to the Hermitian limit, as � →
0.

At ν = 2/3 filling, the diagonal correlations are

〈ψ†
1 (x)ψ1(0)〉 = i�

2πv
×

{ v
�x , x � v

�
,

3
(

2v
�x

)5
, x 	 v

�
,

〈ψ†
2 (x)ψ2(0)〉 = − i�

2πv
×

{√
2π
4i , x � v

�
,(

2v
�x

)3
, x 	 v

�
,

(43)

〈ψ†
3 (x)ψ3(0)〉 = i�

2πv
×

{− v
�x , x � v

�
,(

2v
�x

)3
, x 	 v

�
,

while the off-diagonal ones read

〈ψ†
1 (x)ψ2(0)〉 = �

4πv
×

{
2 ln( �x

v
), x � v

�
,

−3
(

2v
�x

)4
, x 	 v

�
,

〈ψ†
1 (x)ψ3(0)〉 = �

4πv
×

{
−

√
2π
4 , x � v

�
,

−i
(

2v
�x

)3
, x 	 v

�
,

(44)

〈ψ†
2 (x)ψ3(0)〉 = �

4πv
×

{−1, x � v
�

,(
2v
�x

)2
, x 	 v

�
.

When the filling is ν = 2/3, two bands in the Fermi sea are
filled up the zero energy corresponding to EPN , namely a
dispersing mode and the flat band. Since the Hamiltonian is
non-Hermitian, the corresponding right eigenvectors are not
orthogonal. Consequently, an orthogonalization procedure is
required on the eigenvectors in the Fermi sea to compute
expectation values correctly and then take the trace over the
occupied states [74,80]. Alternatively, it is more convenient
to use the particle-hole symmetry to directly determine the
correlations from the known ν = 1/3 case (see Appendix C),

Cν=2/3
i, j (x) = (−1)i+ j+1Cν=1/3

4− j,4−i(x). (45)

The lattice model is analytically solved in the limit of large
distances, making it possible to compare directly the decay of
the correlations with those of the continuum model. We find
diagonal correlators at ν = 1/3 filling over a distance of n unit
cells,

〈c†
1,nc1,0〉 ∼ −32t2

1

πt2
0

sin(nπ/2)

n3
,

〈c†
2,nc2,0〉 ∼ +32t2

1

πt2
0

sin(nπ/2)

n3
, (46)

〈c†
3,nc3,0〉 ∼ −1536t4

1

πt4
0

sin(nπ/2)

n5
.

The off-diagonal correlators read

〈c†
1,nc2,0〉 ∼ − 4t1

πt0

cos(nπ/2)

n2
,

〈c†
1,nc3,0〉 ∼ +16t2

1

πt2
0

sin(nπ/2)

n3
,

075133-9



STICLET, MOCA, AND DÓRA PHYSICAL REVIEW B 108, 075133 (2023)

FIG. 9. The spatial variation, in unit cells n, of the six correlation
functions Ci, j (n) in the N = 3 model (37) at filling (a) ν = 1/3
and (b) ν = 2/3 for t0 = t . Symbols represent the numerical results,
while the dashed lines are the analytical results for the corresponding
Ci, j (n) in Eqs. (46), (47), and (20). Correlations at ν = 1/3 for t0 =
10−3t , in the short-distance limit, are fitted with the corresponding
continuum model results Eqs. (41) and (42). The legend is shared
among panels (a), (b), and (c). The matching color of a symbol from
numerics and the dashed line from analytics identify the same cor-
relation function. (d) All 15 distinct correlation functions for N = 5
exhibit stronger suppression in the large-distance limit, from 1/n2 up
to 1/n7, as indicated by the dashed line.

〈c†
2,nc3,0〉 ∼ +192t3

1

πt3
0

cos(nπ/2)

n4
. (47)

The correlations at ν = 2/3 are obtained either by direct eval-
uation or by using the same particle-hole symmetry present in
the model. In Appendix E, we explicitly demonstrate that the
two approaches converge in obtaining a correlator.

As in the previous Sec. II, the analytical results clearly
demonstrate the emergence of a correlation length ξ � v/�,
which indicates a transition from an almost Hermitian behav-
ior when � → 0 to a large-distance regime x 	 ξ where the
correlations decay according to a power law. In contrast to
the models discussed in Sec. II, the anomalous decay expo-
nent in the power laws is proportional to the EP order. For
instance, the most suppressed correlator at ν = 1/3 follows
C3,3(x) ∼ 1/x5. This correlation decays faster than the ones
observed in the previous section.

Figures 9(a), 9(b), and 9(c) compare the numerical calcula-
tion of correlations with the analytical results described above.
The large-distance behavior x 	 �/v (or n 	 t0/2t1 on the
lattice) is evident in Figs. 9(a) and 9(b) at ν = 1/3 and 2/3,
respectively. The analytical lattice results (46) and (47) accu-
rately predict the power-law decay of correlations with 1/xa,
where a is in the set {2, 3, 4, 5}. The panels also illustrate the
expected interchange in the behavior of correlation functions

FIG. 10. The dependence of the charge density on the ampli-
tude t0 of the unidirectional hopping. Here, t0 is measured in units
of the maximal reciprocal hopping amplitude t . Panels (a) and
(b) present the case N = 3 at filling ν = 1/3 and 2/3, respectively,
while (c) shows the case N = 4, ν = 1/2.

under the particle-hole symmetry that relates cases with filling
ν = 1/3 to 2/3. The short-distance x � �/v behavior of cor-
relations is shown in Fig. 9(c). Here, the comparison is made
with the analytical results in the continuum model at ν = 1/3
[Eqs. (41) and (42)]. The latter results describe a single EP3,
and, since the lattice hosts two EPN , the correlations in the
lattice are double the results in the continuum limit.

Numerical computations of correlations for the lattice
model (37) are performed for N > 3. The N hoppings ti are
uniformly distributed in the interval [−t, t], and the compu-
tations are done in units of t . In numerics, t0 is on the order
of t , making the asymptotic large-distance n 	 t/t0 regime
quickly attainable after a few sites. An instance of N = 5 at
ν = 2/5 is displayed in Fig. 9(d), where correlations are seen
to be suppressed with different power laws 1/na, with a an
integer in between 2 and 7. For general N , the correlations’
evolution is fitted with the power-law decay 1/na, and the
decay exponents are extracted and displayed in Fig. 1(c). The
results reveal an increasing suppression of correlations with
the order of the EP. In all cases, the most suppressed correlator
when the flat band is empty, ν = (N − 1)/2N , is the one
corresponding to sites on the chain N that is most depleted
by particles. The power-law exponent varies linearly with N
as

〈ψ†
N (x)ψN (0)〉ν= N−1

2N
∼

{
x−N−2, N odd,

x−N−1, N even.
(48)

For a filled flat band, the most suppressed correlators always
include 〈ψ†

1 (x)ψ1(0)〉.

C. Charge and current densities

We examine the charge density of the system using the
correlation functions, as in Sec. II. Because of translational
symmetry, the density profile is the same in all unit cells.
Similar to the diamond lattice previously discussed, charge
imbalance arises in the non-Hermitian system. However, un-
like in the diamond lattice, this is not due to a chemical
potential difference between the lattice’s sides, but rather to
the unidirectional hopping t0.

In Figs. 10(a) and 10(b), we present the results for the N =
3 lattice. To obtain the charge imbalance analytically, we take
the limit x → 0 in the diagonal correlation functions, with a

075133-10



CORRELATIONS AT HIGHER-ORDER EXCEPTIONAL … PHYSICAL REVIEW B 108, 075133 (2023)

cutoff 1/δ curing the divergent correlations. For ν = 1/3, the
charge density on the edges of the lattice, sites one and three
in the unit cell, is determined by the two leading terms in 1/δ,

〈ψ†
1 (0)ψ1(0)〉 ∼ 1

2πδ
+

√
2�

16v
,

〈ψ†
3 (0)ψ3(0)〉 ∼ 1

2πδ
− 3

√
2�

16v
. (49)

Together with 〈ψ†
2 (0)ψ2(0)〉 = √

2�/8v from Eq. (41), it is
apparent that analytics correctly describe the linear depen-
dence of the density on the unidirectional hopping, at weak
� or t0, from Fig. 10(a). The phenomenon of charge-density
imbalance due to unidirectional hopping t0 is observed in the
charge density of the lattice at N > 3 as well. This is in line
with the behavior expected from the unidirectional Hatano-
Nelson model that characterizes the unit cell. However, the
presence of transversal hopping ti, with larger values at the
edges of the lattice, can lead to the charge density having a
maximum away from the last site of the lattice, as seen in
Fig. 10(b) for the N = 4 lattice. Nonetheless, for sufficiently
large unidirectional hopping t0 	 t , the transversal skin effect
becomes more prominent, and the charge density is maximal
at the edge sites.

The bond charge current densities are determined accord-
ing to the theory in Sec. II D,〈

j j j+1
nn

〉 = it0
2

〈c†
j+1,nc j,n − H.c.〉,〈

j j j
nn+1

〉 = it j〈c†
j,n+1c j,n − H.c.〉, (50)

with 〈 j j j+1
nn 〉, the transverse current inside a given unit cell

n, and 〈 j j j
nn+1〉, the longitudinal current between sites j in

near-neighbor unit cells. It is noteworthy that, as also seen in
analytics, the lattice correlation matrix is real and symmetric
(Hermitian), leading to cancellation of the two terms in each
Eq. (50). Therefore, in contrast to the previous models in
Sec. II, there are no currents in the ground state.

D. Entanglement entropy

In this section, we examine the entanglement entropy of the
ground state for Hamiltonians (37) with fillings up to the EP
energy. We present the results in Fig. 11, which shows the en-
tanglement entropy as a function of the number of cells in the
subsystem, denoted as n. Panel (a) depicts a typical evolution
of the entanglement entropy for various values of N . Similar
to the diamond lattice case, the entanglement entropy displays
a transition from logarithmic growth below the correlation
length to a saturation behavior characteristic of an insulator
above it. The crossover point shifts towards higher values for
larger N and smaller t0 (as shown in Fig. 11), which supports
the notion that the correlation length varies as ξ ∼ Nt/t0.

In the short-distance limit, for t0 � t , the entropy is repre-
sented in Fig. 11(c) and is approximated by

S(n � ξ ) ≈ 2�N/2�
3

ln(8n). (51)

The results suggest that the central charge for the non-
Hermitian Hamiltonians (37) is the same as that in the
Hermitian system, i.e., c = N/2 for even N , and (N − 1)/2 for
odd N , where the factor of 2 in (51) arises due to the presence

FIG. 11. (a) Entanglement entropy as a function of the subsystem
size in unit cells n at t0 = 0.5t . The lattice models host an EPN , with
N in between 2 and 7. (b) Typical evolution of the entropy when
N = 4 for different t0 values. (c) Entanglement entropy for n � t/t0

(symbols) is fitted with Eq. (51) (dashed lines) at t0 = 10−3t . (d) Sat-
uration entropy (symbols) as a function of t0 for n 	 t/t0 is fitted
with Eq. (52) (dashed lines). The legend is shared for all panels, and
t0 is in units of t .

of two EPs in the Brillouin zone. This can be understood
in the Hermitian limit t0 = 0, where the models with odd N
consist of N − 1 chains disconnected from each other, with
each chain having entropy S(n) ∼ c

3 log(n) and c = 1. The re-
maining central chain, responsible for the flat band, becomes
a collection of isolated sites, and contributes nothing to S, as
all entanglement among its sites is lost. For larger values of t0,
as seen in Fig. 11(a), odd N models start to deviate from the
above-mentioned growth law. At large distances n 	 ξ , the
entropy eventually saturates and is approximated as

S(n 	 ξ ) ≈ 2�N/2�
3

ln(ξ ) + const. (52)

The numerical results presented in Fig. 11(d) are well de-
scribed by Eq. (52). However, it should be noted that this
equation is only valid at smaller t0, and as t0 approaches
the maximal reciprocal hopping amplitude t , the entropy in
the large-N models decreases faster than ln(ξ ) towards zero.
This can be attributed to the presence of a transverse skin
effect induced by the unidirectional hopping t0. As t0 becomes
stronger than the intrachain hopping, the entanglement en-
tropy approaches zero, indicating that all the particles have
moved to one side of the lattice.

IV. COMMENT ON THE RELATION
BETWEEN THE TWO MODELS

In this section, we aim to investigate the connection be-
tween the two types of Hamiltonians. Specifically, we focus
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on the case of N = 3 models, although our analysis applies
equally to N > 3. Although the Bloch Hamiltonians repre-
senting the two models yield different correlation functions,
their counterparts in the continuum limit are identical, except
for a rotation in the pseudospin space. Therefore, it is essential
to understand the relationship between the correlation func-
tions and their asymptotic behavior in the two models.

A unitary transformation U = exp(−iπSy/2) transforms
the Hamiltonian (9) into the same basis as Hamiltonians (37),
h̃ = UhU †,

h̃(1)
k = −t cos(k/2)Sz + γ Sx + iγ sin(k/2)Sy. (53)

Here we introduce the superscript notation to distinguish the
models in Sec. II from those in Sec. III with (1) and (2),
respectively. The correlations in the transformed basis exhibit
the same behavior for correlations, which at large distance
still retain the anomalous power laws 1/n2 and 1/n3. This
is because in this new basis, the new correlators remain a
linear combination of correlation functions found before, e.g.,
Eqs. (18) and (19). The second Hamiltonian, lacking the alter-
nation in gain-loss rates, reads

h(2)
k = 2t cos(k)Sz +

√
2t0Sx + i

√
2t0Sy, (54)

and has the power-law dependence 1/na, a ∈ {2, 3, 4, 5}. Per-
forming a similar rotation of h(2)

k and its eigenstates enables
one to calculate the correlation function in the new basis and
determine the power-law exponents a ∈ {2, 3}. This suggests
that the two models are not directly related by a rotation, de-
spite the second model being able to replicate the correlations
of the first model. This can be attributed to the subdomi-
nance of the a = 4, 5 correlations in the linear combination
of correlations. To understand this phenomenon, we study
the low-energy continuum limit of the models near an EP.
Expanding h̃(1)

k to first order in momentum k = π + p for
small p produces the Hamiltonian

h̃(1)(p) = pt

2
Sz + γ Sx + iγ Sy, (55)

which is identical to h(2)(p) (40) under the identification v =
t/2, � = √

2γ . Consequently, the correlation functions will
acquire the power-law dependence 1/xa, a ∈ {2, 3, 4, 5}.

A rotation back of h̃(1)(p) to h(1)(p) from Eq. (12) re-
produces the correlations from Eqs. (21) and (22). This is
possible since in the asymptotic limit, in the linear com-
bination only the dominating term remains. Performing the
rotation h̃(1)(p) → h(1)(p) yields the following dependence in
the correlations:

C(1)
1,1(x) ∼ ξ

4πx2
+ iξ 2

4πx3
− 3ξ 3

8πx4
− 3iξ 4

16πx5
,

C(1)
2,2(x) ∼ − iξ 2

2πx3
− 3iξ 4

8πx5
,

C(1)
3,3(x) ∼ − ξ

4πx2
+ iξ 2

4πx3
+ 3ξ 3

8πx4
− 3iξ 5

16πx5
,

C(1)
1,2(x) ∼ −

√
2ξ

8πx2
+ i

√
2ξ 2

8πx3
− 3

√
2ξ 3

16πx4
− 3

√
2iξ 4

16πx5
,

C(1)
1,3(x) ∼ − iξ 2

4πx3
− 3iξ 4

16πx5
,

C(1)
2,3(x) ∼

√
2ξ

8πx2
+ i

√
2ξ 2

8πx3
+ 3

√
2ξ 3

16πx4
− 3

√
2iξ 4

16πx5
. (56)

If we keep only the dominant term in 1/x for each equation,
we recover Eqs. (21) and (22). However, it is important to
note that rotating back from Eqs. (21) and (22) cannot repro-
duce the higher power terms a = 4, 5 in Eqs. (41) and (42)
for the model h(1)(p). This is because correlations computed
for h(1)(p) must also include subdominant terms in 1/x, as
we saw earlier. We have checked that including terms up to
1/x5 reproduces the correlations C(2)

i, j (x) in the second class of
models, as it should.

Our findings reveal that the two lattice Hamiltonians ex-
hibit different power-law decay of correlations due different
implementation of the non-Hermitian term, and they are not
related by a unitary transformation. Therefore, the two models
are distinct. However, in the continuum limit and to leading
order in momentum near the exceptional point, the physics is
identical, as they are related by a rotation in pseudospin space.
To reveal this relation for correlation functions, one needs
to go beyond the leading order in the asymptotic analysis of
correlations in both models.

V. CONCLUSIONS

This study demonstrates the existence of exceptional points
with arbitrary order N in a PT -symmetric diamond lattice
implementation of a non-Hermitian Dirac Hamiltonian with
general spin S = (N − 1)/2. These EPs mark a transition
from real to imaginary eigenvalues, which is reflected in the
system’s critical phase and the power-law decay of spatial
correlations. The gain and loss rates in the lattice introduce
a correlation length ξ , beyond which correlations are further
suppressed with anomalous exponents of 1/x2 and 1/x3. Ad-
ditionally, the lattice exhibits a charge-density accumulation
at its edge due to a chemical potential difference between
the edges. Nonzero charge currents in the ground state also
accompany this effect.

The study also explores another class of systems built out
of unidirectional Hatano-Nelson models instead of involving
balanced gain and loss. Although both types of models are
PT symmetric, the system in Sec. II breaks time-reversal
symmetry, while the models in Sec. III obey both parity
and time-reversal symmetry separately. These models exhibit
power-law suppression of correlations, with an exponent pro-
portional to the order of EP. The unidirectional hopping in the
lattice creates a skin effect, which transfers charge to one side
of the lattice stripe, resulting in a similar charge imbalance
to the one observed in the previous lattice models. However,
unlike the previous models, no charge currents were observed
in the ground state.

Despite their differences, the models exhibit several similar
characteristics. The effective low-energy models, developed
near the exceptional point energy, are identical after a unitary
transformation, and their correlation functions are related.
Additionally, both models are subject to a particle-hole sym-
metry, which causes models with EPN and N odd to have a
flat band. In the critical state, there is a general relationship
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between correlation functions Ci, j for an empty and a filled
flat band,

C
ν= N+1

2N
i, j (n) = (−1)i+ j+1C

ν= N−1
2N

N+1− j,N+1−i(n), (57)

with filling ν = (N + 1)/2N and (N − 1)/2N for an occupied
and an empty flat band, respectively. Moreover, both models
display similar behavior in terms of entanglement entropy.
The correlation length ξ marks the transition from conven-
tional critical behavior to insulating-like behavior, even if the
spectrum has no gap. In the short-distance limit (x � ξ ) that
connects to the Hermitian limit as ξ → ∞, the entropy grows
logarithmically with the subsystem size. However, in the long-
distance limit (x 	 ξ ), the entropy saturates similarly to a
gapped system and depends on the correlation length ξ .
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APPENDIX A: MATRIX REPRESENTATION
FOR GENERAL SPIN OPERATORS

The spin operators in a basis {|S, m〉} have the conventional
matrix representation

〈S, m|Ŝx|S, m′〉 = 1

2

√
S(S + 1) − mm′(δm,m′+1 + δm,m′−1),

〈S, m|Ŝy|S, m′〉 = i

2

√
S(S + 1) − mm′(δm,m′+1 − δm,m′−1),

〈S, m|Ŝz|S, m′〉 = mδm,m′ , (A1)

with m and m′ ∈ {−S,−S + 1, . . . , S}, and S denoting an
arbitrary (half-)integer.

APPENDIX B: CORRELATION FUNCTIONS

The central object of study are the correlation functions

Ci, j (n) = 〈c†
i,nc j,0〉, (B1)

which capture the correlations between sites i and j (with
i, j from 1 to N internal degrees of freedom in the unit cell)
at a distance of n unit cells. The expectation value 〈 · · · 〉 is
taken with respect to the ground state of the non-Hermitian
system. For all our computations, we assume an electronic
filling where all the energy levels up to the one associated
with the exceptional point are occupied, and this exceptional
point energy is typically set to zero. To obtain the expected
value, we utilize the right-eigenvectors of the Hamiltonian.
The latter are not generally orthogonal to each other and

therefore an orthogonalization is performed when there is
more than a single occupied eigenstate [80]. This procedure
ensures that the trace implied when taking the expectation
value over the occupied states is well-defined. Since Hamil-
tonian right-eigenvectors are used in 〈 · · · 〉, the correlation
matrix (B1) [C(n)]i, j , indexed by internal degrees of freedom
i, j, is a Hermitian matrix. It implies that in the tight-binding
models considered in this work, for spinless fermions with N
sites in the unit cell, there are N (N + 1)/2 distinct correlation
functions to determine. We referred throughout to the N Ci,i

as the diagonal correlations and to the N (N − 1)/2 Ci, j �=i as
the off-diagonal correlations.

In continuum models, the convention is that correlation
functions have a position x argument (instead of unit cell n),

Ci, j (x) = 〈ψ†
i (x)ψ j (0)〉, (B2)

and the indices i, j are flavors of the field operators ψi(x).

APPENDIX C: PARTICLE-HOLE SYMMETRY
AND THE FLAT BAND

For odd N models there is a zero-energy flat band crossing
through the EPN . For models filled to the EP, there are two
relevant correlation functions, corresponding to the case of an
empty or filled flat band, which amounts to a difference in the
total filling of 1/N .

In the present case, the two sets of correlation functions
are related by a particle-hole symmetry. That allows us to
determine the correlation functions when including a filled
flat band from the usually simpler case of an empty flat band.
The proof of the previous statement starts by noting that the
lattice Hamiltonians in Eqs. (13) and (37) are invariant under
the particle-hole symmetry C,

Cc†
i,nC−1 = (−1)icN+1−i,−n. (C1)

This assumes an inversion center in the middle of the unit cell
n = 0, which is true for our PT symmetric models. The filling
of the model without the flat band is ν = N−1

2N , while in the
presence of a filled flat band, ν = N+1

2N . The respective ground
states at zero temperature are related under the transformation
C,

C
∣∣ν = N + 1

2N

〉 = ∣∣ν = N − 1

2N

〉
. (C2)

They are both eigenstates of H with the same energy, since the
flat band is pinned at zero energy. Then, using Eqs. (C1) and
(C2), any correlation function for filling up to EPN , including
a filled flat band, is obtained from correlations with an empty
flat band,

C
ν= N+1

2N
i, j (n) = (−1)i+ j〈cN+1−i,−nc†

N+1− j,0〉ν= N−1
2N

= (−1)i+ j+1C
ν= N−1

2N
N+1− j,N+1−i(n), (C3)

with the filling ν denoted explicitly, and the last equality
follows under the translation symmetry.

In the continuum limit, the particle-hole transformation of
the field operators reads

Cψ
†
j (x)C−1 = (−1) jψN+1− j (−x). (C4)
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It can be immediately seen that continuum Hamiltonians in the
main text, H = ∑

i, j

∫
dxψ†

i (x)hi j (x)ψ j (x), are also invariant
with respect to it.

APPENDIX D: PROOF THAT THE EPS ARE ORDER N

Here we prove that the Hamiltonian at the EP in the dia-
mond lattice Eq. (12) describes an EPN by showing that there
are N degenerate eigenvectors at the EP. For the choice μ = γ ,
the Hamiltonian at p = 0 reads

h(0) = iγ Sy + γ Sz, (D1)

with a single zero-energy eigenvalue and algebraic multiplic-
ity N . A unitary transformation does not change the order of
the EP. Performing such a rotation with an angle π/2 around
the y axis gives

h̃(0) = γ S+, S+ = Sx + iSy. (D2)

To prove that the geometric multiplicity is 1, i.e., there are N
degenerate eigenvectors, we demonstrate that the Hamiltonian
or the ladder operator S+ is nilpotent of index N . Using
Eqs. (A1) for Sx and Sy, it follows readily that the matrix
elements of powers of S+ read

〈m|(S+)n|m′〉 =
n−1∏
i=0

√
S(S + 1) − (m + i)(m + i + 1)δm,m′−n.

(D3)

There are two cases to consider for n. If n = N , then
δm,m′−N = 0 for m and m′ ∈ {−S,−S + 1, . . . , S}, and

(S+)N = 0. (D4)

If 1 � n < N , then there is at least one matrix element that is
nonzero with m = −S. For this element, back in Eq. (D3), it
follows readily that√

S(S + 1) − (−S + i)(−S + i + 1) > 0 for any i < N − 1.

(D5)
Therefore,

(S+)n �= 0 for n < N, (D6)

which completes the proof that S+ is nilpotent of index N .
Hence, S+, and by extension h(0), describe an EP of order
N [24,67]. The same analysis holds for the choice μ = −γ ,
where S− is nilpotent of index N .

APPENDIX E: ILLUSTRATIVE CALCULATION
OF CORRELATIONS

This Appendix provides examples for calculating correla-
tion functions, which are representative of the non-Hermitian
setup. We have selected a few examples that highlight the
unique features of this setup. Specifically, we will derive a
correlation function for the N = 2 continuum model (36),
the N = 3 continuum model (12), and a more complex ex-
ample for the N = 3 lattice model (37). This latter example
also demonstrates how particle-hole symmetry can be used to
determine correlation functions at ν = 2/3 based on those at
ν = 1/3. The remaining correlation functions in the main text
can be straightforwardly determined using the same approach.

Example 1. The Hamiltonian (36) for N = 2 has the fol-
lowing eigenvalues and eigenstates:

E1 = vp, φ1 = (1, 0)T ,

E2 = −vp, φ2 = ( − �sgn(p), 2v|p|)T√
�2 + 4v2 p2

, (E1)

with T denoting transpose. As an example, we compute the
off-diagonal propagator C1,2(x) = 〈ψ†

1 (x)ψ2(0)〉, which exists
only in the non-Hermitian case, due to the coupling � be-
tween left and right movers,

C1,2(x) = − 1

2π

∫ ∞

0
d pe−ipx 2vp�

�2 + 4v2 p2
. (E2)

The integral is solved by ensuring its convergence with a
cutoff δ, x → x − iδ, which is safely set to zero in the final
result [68]. In the large-distance limit x 	 v/�, the integral
behaves as

C1,2(x) ∼ v

π�x2
. (E3)

In the short-distance limit x � v/�, integration by parts in
Eq. (E2) allows one to single out the diverging contribution at
the origin, yielding

C1,2(x) ∼ �

4πv
ln

(
�x

2v

)
+ i�

8v
+ γ�

4πv
∼ �

4πv
ln

(
�x

2v

)
,

(E4)

where the first two contributions come from the bound-
ary term, and we neglected terms O(x), and γ is the
Euler-Mascheroni constant. In the final result, we keep the
dominating contribution at x � v/�. The vanishing right-left
correlators in the Hermitian limit are obtained as the non-
Hermitian coupling is � → 0.

Example 2. Let us consider the N = 3 continuum model
(12) at ν = 1/3. Since the flat band is empty, in order to de-
termine the correlations, it is sufficient to know the occupied
eigenstates and their corresponding eigenvalues,

E1 = pt/2, φ1 = 1

2
(1,−

√
2, 1)T ,

E3 = −pt/2, φ3 = 1

2
(1,

√
2, 1)T

− 2ptγ

p2t2 + γ 2

(
1,

2
√

2γ

pt
,−1

)T

. (E5)

As an example, we look at the correlator

C1,2(x) = −
√

2

8π

∫ 0

−∞
d pe−ipx

+
√

2

8π

∫ ∞

0
d pe−ipx (pt − 2γ )2(p2t2 − 4γ 2)

(p2t2 + 4γ 2)2
.

(E6)

The divergent integrals are regularized with a positive cutoff δ,
x → x + iδ for p < 0, and x → x − iδ for p > 0. In the large
distance limit, x 	 t/γ , and taking the limit δ → 0 gives the
first integral −i

√
2/8πx. The second integral is expanded to
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next order in 1/x, yielding

i
√

2

8π

[
1

x
+ it

γ x2
+ t2

γ 2x3
+ · · ·

]
. (E7)

The first term cancels between the two integrals, and keeping
the dominant term in the large distance limit yields the result
in the main text, with ξ = t/γ ,

C1,2(x 	 ξ ) ∼ −
√

2ξ

8πx2
. (E8)

In the short-distance limit, x � ξ , one takes δ → 0, x > δ.
The first integral is divergent and with the same expression as
above. The second one is solved in the limit of small δ, and
the same dominant behavior is found as in the first integral.
Adding the two terms yields

C1,2(x � ξ ) ∼ − i
√

2

4πx
, (E9)

which is usual for a one-dimensional Hermitian system, but
here it happens only below the correlation length.

Example 3. Let us consider the lattice model (37) for
N = 3. The three eigenvalues and eigenstates of the lattice
Hamiltonian are, respectively,

E1 = −2t1 cos(k), φ1 = (1, 0, 0)T ,

E2 = 0, φ2 = (−t0sgn( cos(k)), 2t1| cos(k)|, 0)T√
t2
0 + 4t2

1 cos(k)2
, (E10)

E3 = 2t1 cos(k), φ3 =
(
t2
0 ,−4t0t1 cos(k), 8t2

1 cos(k)2
)T

t2
0 + 8t2

1 cos(k)2
.

(E11)

First, at ν = 1/3 filling, we consider Cν=1/3
1,1 (n) = 〈c†

1,nc1,0〉,

Cν=1/3
1,1 (n) = 1

2π

∫ π/2

0
dke−ikn

+ 1

2π

∫ π

π/2
dke−ikn t4

0[
t2
0 + 8t2

1 cos(k)2
]2

+ (n → −n). (E12)

The first integral is immediate and, together with (n → −n)
contribution, yields sin(nπ/2)/n. The second one can be
solved asymptotically by first moving the contour of integra-
tion in the complex plane on the path {π/2, π/2 − is, π −
is, π}, where the path is straight between the vertices denoted
before. The parameter s is real and is sent to infinity. Then
taking the limit of large distance n, one expands to first orders
in 1/n. The 1/n term in the second integral cancels exactly the
first integral, leaving the dominating behavior

Cν=1/3
1,1 (n) ∼ −32t2

1

πt2
0

sin(nπ/2)

n3
. (E13)

An example of a lattice correlator at ν = 2/3 filling shows
some distinct features of the non-Hermitian problem. To take
expectation values or determine correlations which involve
taking a trace over all states, it is necessary to orthogonalize
the eigenstates in the Fermi sea. This can still be performed
analytically, since for the N = 3 case there are at most two
occupied eigenstates at zero temperature. The orthogonaliza-
tion procedure gives the occupied eigenvectors,

φ1 = (1, 0, 0)T , φ̃2 = (0, 1, 0)T , k ∈
(
−π

2
,
π

2

)
,

φ2 = (t0,−2t1 cos(k), 0)T√
t2
0 + 4t2

1 cos(k)2
, φ̃3 =

(
2t2

0 t1 cos(k), t3
0 ,−4t1 cos(k)

[
t2
0 + 4t2

1 cos(k)2
])T√

t2
0 + 4t2

1 cos(k)2
[
t2
0 + 8t2

1 cos(k)2
] , k ∈

[
−π,−π

2

)
∪
(

π

2
, π

]
, (E14)

where tilde denotes that the respective eigenvector was modified to become orthogonal to the other one. Then, an example of a
simple correlation function is

Cν=2/3
3,3 (n) = 1

2π

∫ π

π/2
dke−ikn 16t2

1 cos(k)2
[
t2
0 + 4t2

1 cos(k)2
]

[
t2
0 + 8t2

1 cos(k)2
]2 + (n → −n). (E15)

Moving the integration contour in the complex plane on the path {π/2, π/2 − is, π − is, π} as s → ∞, and taking the limit of
large n, gives the result

Cν=2/3
3,3 (n) ∼ 16it2

1

πt2
0 n3

e−iπn/2 + (n → −n) = 32t2
1

πt2
0

sin(nπ/2)

n3
. (E16)

For the N = 3 model, such a cumbersome calculation is shortened by using the particle-hole symmetry (C1) and the previously
determined correlation function at ν = 1/3 in Eq. (E13),

Cν=2/3
3,3 (n) = (−1)7Cν=1/3

1,1 (n) = 32t2
1

πt2
0

sin(nπ/2)

n3
. (E17)
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[46] R. Huang, Ş. K. Özdemir, J.-Q. Liao, F. Minganti, L.-M.
Kuang, F. Nori, and H. Jing, Laser Photon. Rev. 16, 2100430
(2022).

[47] Y. Zuo, R. Huang, L.-M. Kuang, X.-W. Xu, and H. Jing,
Phys. Rev. A 106, 043715 (2022).

[48] H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Nature (London)
537, 80 (2016).
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