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We propose an efficient circuit structure of variational quantum circuit Ansätze used for the variational
quantum eigensolver (VQE) algorithm in calculating gapped topological phases on the currently feasible noisy
intermediate-scale quantum computers. An efficient circuit Ansatz should include two layers: the initialization
layer and the variational layer. In the initialization layer, a fixed-depth circuit state with a compatible entangle-
ment structure to the target topological phase is constructed. The circuit state is further adjusted subsequently
to capture the details of the local correlations, which is dictated with the Hamiltonian, in the parametrized
variational layer. Based on this strategy, we design a circuit Ansatz to investigate the symmetry-protected topo-
logical Haldane phase in a nonexactly solvable alternating spin- 1

2 Heisenberg chain by VQE calculations. Main
characterizations of the Haldane phase, including the long-ranged string order, the fourfold nearly degenerate
ground states associated with four different localized edge-mode patterns for the system with open boundaries,
and the twofold degeneracy of the entanglement spectrum, are all observed for the optimized shallow circuit state
with only one-depth variational layer both in numerical simulations and on real quantum computers. We further
demonstrate that the computational capacity (i.e., expressibility) of this quantum circuit Ansatz is determined
not by the system size but only by the intrinsic correlation length of the system, thus implying that the scalable
VQE calculation is possible.
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I. INTRODUCTION

Exploring exotic phenomena that emerge in quantum
many-body systems is one of the prominent issues in mod-
ern condensed matter physics. However, because of their
exponentially increased complexity, one still lacks an effi-
cient theoretical tool to investigate these systems in general.
Quantum simulations [1], which have been proposed for a
long time [2], provide a promising solution by realizing
them in controllable synthetic quantum systems and exploring
their properties. Nevertheless, realizing such a well-controlled
artificial quantum device is also an extremely challenging
task [3].

Recently, quantum simulation has attracted increasing in-
terest since the successful realization of the analog quantum
simulators in cold-atom systems [4–6] and the digital quantum
simulators using programmable superconducting transomons
[7] and trapped ions [8]. Specially, the latter ones, i.e., circuit-
based quantum computers, have received particular attention
because of their flexibility to universal quantum computing,
although a generic quantum circuit with any depth cannot
be evolved with high fidelity on the current implementa-
tion, hence regarded as the noisy intermediate-scale quantum
(NISQ) device [9]. On the other hand, the algorithms suitable
for the NISQ device, which usually involves shallow circuits,
are currently under investigation [10].

Many interesting phases of matter have been realized on
the NISQ device, such as a symmetry-protected topological
(SPT) phase [11,12] and a topological quantum spin liquid

[13], by precisely constructing these states in shallow quantum
circuits. These exact circuit states usually correspond to some
exquisitely exactly solvable Hamiltonians, such as the cluster
model [14] (realized in Refs. [11,12]) and the Kitaev toric
code model [15] (realized in Ref. [13]). However, it is usually
impossible to obtain the exact solution of a more generic and
realistic many-body Hamiltonian.

Generally, a quantum many-body state, considered as the
ground state of some complex Hamiltonian, can be prepared
on the circuit-based quantum computer by performing digi-
tized adiabatic quantum computing (AQC) process [16–18]
(for a review, see Ref. [19]), which is also known as quantum
annealing (QA) [20] or adiabatic state preparation (ASP) [21].
However, the AQC usually requires deep circuits, thus chal-
lenging for the present NISQ device. Following the same spirit
of the quantum approximate optimization algorithm [22], the
quantum adiabatic path itself can be optimized variationally
to obtain the desired state with a relatively shallow circuit
[23–27], and various auxiliary techniques such as circuit re-
compiling [28,29] and counterdiabatic driving [30–33] have
also been proposed.

Apart from preparing a certain quantum state, we can
directly evaluate the ground state of the desired quantum
many-body Hamiltonian H by solving the related eigenvalue
problem on the NISQ device. One of the most extensively
studied algorithms for this purpose is the variational quantum
eigensolver (VQE) [34–36]. In the VQE scheme, a varia-
tional circuit Ansatz |�(θ)〉 parametrized with the variational
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parameters θ = (θ1, θ2, θ3, . . . ) is evolved on a quantum com-
puter to estimate the associated variational energy E (θ) =
〈�(θ)|H |�(θ)〉 as a cost function (for a considerable system,
it is almost unattainable on a classical computer), and the vari-
ational parameters θ are updated on a classical computer. This
quantum-classical loop is repeated until the variational pa-
rameters θ converge so as to minimize the variational energy
E (θ). The resulting |�(θ∗)〉 with the optimized variational
parameters θ∗ can be considered as a good approximation for
the ground state of H .

In principle, the VQE scheme asserts to solve the ground
state (as well as excited states) for any quantum many-body
Hamiltonian. Nevertheless, the practical applications are still
questioned. One of the main issues is how to design the
variational circuit Ansatz that can be evolved on the present
NISQ device with high fidelity. High fidelity implies that the
circuit should be designed with a shallow depth. However, the
circuit depth usually diverges with the problem size in
the circuit Ansatz currently applied widely, such as quantum
alternating operator Ansatz [37], which is also inspired by the
Trotterized quantum adiabatic transformation.

Here, we propose an efficient variational quantum circuit
structure for the VQE calculations of the ground state in
a gapped topological phase. The efficient variational quan-
tum circuit consists of an initialization layer where the basic
entanglement structure of the targeted topological phase is
built, followed by a variational layer which is adapted to fit
the model-parameter-specific fine correlation structure of the
ground state. We employ this Ansatz strategy to explore the
SPT Haldane phase in a realistic, not exactly solvable, model,
i.e., an alternating Heisenberg chain (AHC). We demonstrate
that a nearly exact ground state can be obtained by a very
shallow parametrized circuit Ansatz in a finite range of the
model parameter space. Furthermore, the fourfold nearly de-
generate ground states associated with different edge-mode
patterns are obtained in the circuit states by specifying the
initializations at the edges of the system. By implementing
these circuit states on IBM quantum computers, we reveal
that all the characteristic features of the SPT Haldane phase,
including the string order parameter, edge modes, and twofold
degenerate entanglement spectrum, can be clearly observed on
the real devices. Moreover, we numerically demonstrate that
(i) a deeper variational layer is necessary if the entanglement
structure is not correctly set up in the initialization layer and
(ii) the computational capacity of an appropriately constructed
circuit Ansatz is determined by the correlation length of the
system, not by the system size. Finally, we discuss that this
circuit Ansatz has the potential to achieve the quantum advan-
tage on the current NISQ device.

The rest of the paper is organized as follows. We first
briefly summarize the relation between quantum entangle-
ment and a topological phase, and propose an efficient
variational circuit structure in Sec. II. Next, we introduce the
AHC model, which is a realization of the SPT Haldane phase
in a spin- 1

2 system, and summarize the main characterizations
of the SPT Haldane phase in Sec. III. In Sec. IV, we develop
a specific variational circuit Ansatz for the VQE calculations
of the AHC model and examine its symmetry properties. We
also explain briefly the VQE scheme employed in this study,

including the optimization method and the parameter setup.
In Sec. V, using both numerical simulations and real quantum
devices, we characterize the features of the VQE optimized
circuit states. In Sec. VI, we discuss expressibility of the cir-
cuit Ansatz. Finally, we conclude this paper by summarizing
our results, and discuss several further extensions and the rele-
vance to the quantum advantage. Degeneracy of entanglement
spectrum of the parametrized circuit states introduced in this
study is further examined in Appendix A. The circuit Ansatz
depth dependence of the string order in the VQE simulations
of the SPT Haldane phase is discussed in Appendix B, and
the comparison with a generic circuit Ansatz without elaborate
structures is also provided in Appendix C.

II. EFFICIENT VARIATIONAL CIRCUIT STRUCTURE

A. Quantum entanglement and topological phase

Exotic quantum phases, which cannot be described by the
Landau’s symmetry-breaking paradigm and are not character-
ized by local order parameters, are usually considered to hold
topological orders [38,39]. One of the primary characteristics
of a topological phase is the nontrivial quantum entanglement
structure, which distinguishes it from a trivial direct-product
state [40]. The nontrivial entanglement structure implies that it
cannot be easily disentangled to a direct-product state by local
unitary transformations. Therefore, the intrinsic (symmetry-
protected) topological phase can be defined, in an operational
way, as a state that cannot be connected to a direct-product
state by any (certain symmetric) finite-depth quantum circuit
composed of local gates in the thermodynamic limit. On the
other hand, two states can be connected by a quantum circuit
with finite depth in the thermodynamic limit when they are in
the same topological phase [41].

Generating a topological state in a quantum computer
can be considered as the inverse procedure of the above
operational definition. On the digital circuit-based quantum
computer, we start from a direct-product initial state, e.g.,
|0, 0, . . . , 0〉, and apply a quantum circuit to evolve the ini-
tial state to a topologically nontrivial final state. Therefore,
it is generally expected that the depth of a quantum circuit
increases with the system size in order to prepare an intrin-
sic topological phase [13] or an SPT phase (considering a
symmetry-preserved quantum circuit) [29].

B. Efficient circuit structure for a topological phase

From another perspective, the operational definition of a
topological phase described above provides an idea on how
to design an efficient variational circuit Ansatz to represent
a topological state. As the first step, we construct a quantum
circuit (as shallow as possible), which can transform the initial
product state to a state sharing the same nontrivial topological
characterization, i.e., in the same topological phase, as the
desired final state. This part of the circuit is referred to as
the initialization layer hereafter. For example, inspired by
the idea of the renormalization group, the fixed-point state
of the topological phase with zero correlation length is a
suitable choice to be constructed in the initialization layer,
such as the toric code state [42] and the cluster state [12].
However, a quantum circuit state representing the ground state
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FIG. 1. Flow chart of the calculation scheme proposed in this
study. The lower left block demonstrates the parametrized quantum
circuit (PQC) Ansatz comprising the initialization and variational
layers inspired by the topological nature of the target state and the
local details of the Hamiltonian, respectively.

of a more generic Hamiltonian cannot be obtained unless its
local correlations are further incorporated. We hence need a
second step, in which a parametrized circuit, referred to as the
variational layer, is introduced to correct the quantum circuit
state generated in the initialization layer. Since the quantum
circuit state generated in the initialization layer already has
the same entanglement structure as the desired topological
phase, we expect that the depth of the variational layer does
not increase with the system size. This is indeed the case, as
will be demonstrated in Sec. VI.

Therefore, an efficient variational circuit Ansatz has the
form

|�(θ)〉 = Ĉ(θ)Ĉ0|0〉, (1)

where Ĉ0 is the initialization layer and Ĉ(θ) represents the
variational layer with a set of variational parameters θ. |0〉 is
the initial state where all the quantum registers are set to be
zero. While the depth of Ĉ0 increases with the system size
if the target final state is an intrinsic topological phase, it is
independent of the system size if the target final state is an SPT
phase, assuming that the symmetry protecting its nontrivial
topology of the SPT phase is broken in the initialization layer.
On the other hand, the depth of Ĉ(θ) is always finite and
does not scale with the system size. Indeed, the number D of
layers in the circuit Ĉ(θ) is determined by the local correlation
length of the system. Figure 1 illustrates a flow chart of the
calculation scheme to utilize this circuit Ansatz for simulating
topological phases, which will be employed in the following
sections.

The circuit Ansatz in Eq. (1) can also be regarded as
an AQC process when the initialization layer constructs the
ground state of a Hamiltonian, for example, the fixed-point
Hamiltonian, which is adiabatically connected to the final
target Hamiltonian by tuning some model parameters. How-
ever, we should emphasize that the quantum circuit state

FIG. 2. (a) Schematic figure of the alternating Heisenberg chain
(AHC). Here, we assume L = 8 under open boundary conditions.
Lattice sites are indicated by solid circles and the intra-unit-cell
(inter-unit-cell) coupling J ′ (J) is denoted by solid (dashed) lines.
(b) Schematic phase diagram for the ground state of the AHC, setting
J = 1 as the energy unit.

constructed in the initialization layer can also be independent
of any related microscopic Hamiltonians and can be chosen
as, e.g., a topological spin-liquid state generated by projective
construction [43]. Hence, our construction can go beyond the
AQC scenario.

III. SPT HALDANE PHASE IN A SPIN- 1
2 SYSTEM

The original Haldane phase in the spin-1 Heisenberg chain
is hard to be implemented straightforwardly on most of the
currently available quantum computing platforms since a sin-
gle quantum bit is based on a spin- 1

2 object. Nevertheless, if
the Hamiltonian is allowed to break partially the translational
symmetry, the Haldane phase can also exist in a spin- 1

2 chain.
One of the examples is the AHC [44], which is considered in
this paper.

The AHC is described by the following Hamiltonian:

H =
L/2−1∑

i=0

(J ′S2i · S2i+1 + JS2i+1 · S2(i+1)), (2)

where L is the number of sites, assumed to be a multiple of
4, and Sk is the spin- 1

2 operator located at site k, enumer-
ated from 0 to L − 1 with SL = S0 under periodic boundary
conditions. Considering that neighboring two spins at sites 2i
and 2i + 1 form a unit cell labeled by i, the number of unit
cells is thus even for L being a multiple of 4 and J ′ (J) is the
intra-unit-cell (inter-unit-cell) spin coupling [see Fig. 2(a)].
Without losing generality, we fix J = 1 as the energy unit in
this paper.

The ground-state phase diagram of the AHC has been
well studied [44] and is shown schematically in Fig. 2(b). At
the J ′ = 1 point, the Hamiltonian H in Eq. (2) is restored
to the isotropic spin- 1

2 antiferromagnetic Heisenberg chain,
for which the ground state has a gapless spin excitation and
exhibits power-law decay of the spatial correlation function.
For J ′ > 1, the ground state is in a spin-singlet dimer phase
(i.e., a singlet dimer formed in each unit cell) with a trivial
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gap. The fixed point of this trivial dimer phase is at J ′ = ∞,
where no correlation is built between the neighboring unit
cells. For J ′ < 1, the ground state is a gapped SPT phase
sharing the same nature as the spin-1 Haldane phase [44]. The
AHC is equivalent to the spin-1 Haldane chain at the limit of
J ′ = −∞, where two spins in the unit cell are grouped to form
an effective spin-1 spin with an effective inter-unit-cell spin
coupling J/4. This SPT Haldane phase is protected by either
the Z2 × Z2 symmetry with respect to π rotations referring to
a pair of orthogonal axes [45], the time-reversal symmetry, or
the bond (in the AHC case, the bond connecting two neigh-
boring unit cells) centered inversion symmetry [39,46]. The
fixed point of this SPT phase is at J ′ = 0.

To characterize the nontrivial topological property of the
SPT Haldane phase, similar to the case for the spin-1 model,
we can define the corresponding nonlocal string operator for
the AHC:

Ostr (d ) = Sz
k

⎛
⎝

k+d−1∏
l=k+1

exp
(
iπSz

l

)
⎞
⎠Sz

k+d , (3)

where the spin operator Sz
k represents the z component of

the total spin in the kth unit cell, i.e., Sz
k = Sz

2k + Sz
2k+1.

The string order parameter Ostr can be defined as Ostr ≡
limd→∞〈Ostr (d )〉 in the thermodynamic limit, where 〈. . . 〉
implies the expectation value over the ground state. For a
finite system, we can evaluate the expectation value of the
string operator at the longest reachable distance d in the
system, approximating the string order parameter. In addi-
tion, for the system under open boundary conditions (OBC),
localized edge modes provide a fourfold nearly degenerate
ground state, which is also an essential characterization of the
Haldane phase. Moreover, this SPT phase is further character-
ized uniquely by the twofold degeneracy of its entanglement
spectrum [45,46]. To demonstrate all these three main features
of the SPT Haldane phase, we will focus on the finite AHC
under OBC [see Fig. 2(a)] in the following calculations.

IV. VQE SETUP DETAILS

Following the strategy for the efficient circuit construction
described in Sec. II, here we first design a variational quantum
circuit Ansatz with eSWAP gates for the VQE calculations of
the AHC. We then discuss comprehensively the symmetry of
this Ansatz to verify that it is appropriate for the calculation
of the AHC. Furthermore, we briefly explain the natural gra-
dient descent optimization method with its parameter setup,
which will be employed in the VQE calculations given in
Sec. V A.

A. Variational quantum circuit Ansatz

Inspired by the circuit structure in Eq. (1), we construct the
quantum circuit Ansatz for the AHC by separately designing
the initialization layer and the variational layer. For the initial-
ization layer, we consider the following six circuit states:

Ĉs
0|0〉 = |s〉1,2|s〉3,4 . . . |s〉L−1,0 ≡ |φs〉, (4)

Ĉ00
0 |0〉 = |0〉0|s〉1,2|s〉3,4 . . . |s〉L−3,L−2|0〉L−1 ≡ |φ00〉, (5)

Ĉ01
0 |0〉 = |0〉0|s〉1,2|s〉3,4 . . . |s〉L−3,L−2|1〉L−1 ≡ |φ01〉, (6)

Ĉ10
0 |0〉 = |1〉0|s〉1,2|s〉3,4 . . . |s〉L−3,L−2|0〉L−1 ≡ |φ10〉, (7)

Ĉ11
0 |0〉 = |1〉0|s〉1,2|s〉3,4 . . . |s〉L−3,L−2|1〉L−1 ≡ |φ11〉, (8)

Ĉd
0 |0〉 = |s〉0,1|s〉2,3 . . . |s〉L−2,L−1 ≡ |φd〉, (9)

where |0〉i (|1〉i) is the local state at qubit i, corresponding
to site i in the AHC, with Ẑi|0〉i = |0〉i (Ẑi|1〉i = −|1〉i) and
Ẑi being the Pauli Z gate at qubit i, and |s〉i, j indicates a
singlet state formed by two spin- 1

2 spins located at sites i and
j. The first five initialization layers initialize the circuit state
to a product of singlets connecting two neighboring unit cells
(except for |s〉L−1,0 being associated with sites 0 and L − 1),
which are all the ground states of the Hamiltonian in Eq. (2)
with J ′ = 0 (i.e., the fixed-point state for the SPT Haldane
phase), recalling that the singlet pair formed at sites 0 and
L − 1 across the boundaries in Ĉs

0|0〉, referred to as |φs〉, does
not affect the energy expectation value under OBC. Notice
also that among the states generated in the initialization layers
Ĉ00

0 |0〉, Ĉ01
0 |0〉, Ĉ10

0 |0〉, and Ĉ11
0 |0〉, simply referred as |φ00〉,

|φ01〉, |φ10〉, and |φ11〉, respectively, only the local states at
the boundary sites 0 and L − 1 are distinct and |φs〉 can be
indeed obtained by a linear combination of |φ10〉 and |φ01〉,
i.e., |φs〉 = 1√

2
(|φ10〉 − |φ01〉). In contrast, the last one Ĉd

0 |0〉
in Eq. (9), referred to as |φd〉, initializes the circuit state to a
product of singlets within each unit cell, which is the J ′ = ∞
ground state, i.e., the fixed-point state for the trivial dimer
phase.

In detail, the spin singlet |s〉i, j formed at sites i and j, which
appears in Eqs. (4)–(9), can be generated by the two-qubit
unitary Û s

i j , i.e.,

|s〉i, j = Û s
i j |0〉i|0〉 j (10)

with

Û s
i j = ˆCX i jĤiX̂ j X̂i, (11)

where X̂i (Ĥi) is the Pauli X (Hadamard) gate at qubit i and
ˆCX i j is the controlled-NOT gate with qubit i being the control

qubit, resulting in |s〉i, j = 1√
2
(|0〉i|1〉 j − |1〉i|0〉 j ). The quan-

tum circuits for these six initialization layers in Eqs. (4)–(9)
are explicitly shown in Fig. 3. We choose the initialization
layer depending on the target phase. In Fig. 3, the first five
circuits are used in the SPT Haldane phase. Especially, within
these five initialization circuits, the last four are employed to
target the fourfold degenerate ground state for the 1D AHC
under open boundary conditions. The sixth circuit is adopted
in the trivial dimer phase.

Note that the proper basic entanglement structure can be
established by the corresponding initialization layers for spe-
cific phases because |φs〉, |φ00〉, |φ01〉, |φ10〉, and |φ11〉 in
Eqs. (4)–(8) are all the fixed-point states for the SPT Haldane
phase, and |φd〉 in Eq. (9) is the fixed-point state for the trivial
dimer phase. Indeed, as shown in Appendix A, these circuit
states already exhibit the degeneracy of entanglement spec-
trum expected for these two phases. We should also emphasize
that this can be achieved with the depth of the circuit that does
not scale with the system size, although the number of gates
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FIG. 3. Six different initialization layers, Ĉs
0, Ĉ00

0 , Ĉ01
0 , Ĉ10

0 , Ĉ11
0 , and Ĉd

0 , introduced in Eqs. (4)–(9). Here, all the quantum registers
{q0, q1, . . . , qL−1} are initially set to be zero to generate the states |φs〉, |φ00〉, |φ01〉, |φ10〉, |φ11〉, and |φd 〉.

apparently increases linearly with the system size. Notice also
that the four edge-mode patterns in the SPT Haldane phase
can be engineered by implementing their precursors in the
initialization layer, as in |φ00〉, |φ01〉, |φ10〉, and |φ11〉, which
are mutually orthogonal.

For the variational layer, we consider a group of brick-
wised eSWAP gates [47–52], which are repeated D times,
hence the depth of the circuit Ansatz being represented by
D. As shown in Fig. 4, the explicit arrangement of eSWAP
gates depends on the initialization layer, acting them first on
the pairs of qubits in which the singlets are not formed in the
initialization layer. A single eSWAP gate acting at qubits i and
j is defined by the two-qubit unitary Ûi j (θ ) as [52]

Ûi j (θ ) = exp(−iθ P̂i j/2)

= cos(θ/2)Î − i sin(θ/2)P̂i j, (12)

FIG. 4. The first unit of the variational layer Ĉ(θ) for (a) the first
five initialization layers in Fig. 3 and (b) the last initialization layer
in Fig. 3. Here, we assume L = 8 and the elementary unit containing
seven eSWAP gates (denoted by “e”) is repeated D times in the
variational layer. Note that the variational parameters θ in different
eSWAP gates, given by θ

(d )
i j for the eSWAP gate acting on qubits i

and j in the dth unit (d = 1, 2, . . . , D), are treated as independent
parameters.

where P̂i j is the SWAP gate acting at qubits i and j, and θ is
a variational parameter assumed real. Therefore, each eSWAP
gate contains a single variational parameter, denoted by θ

(d )
i j

for the eSWAP gate acting at qubits i and j in the dth unit of
the variational layer Ĉ(θ) (see Fig. 4), and these variational
parameters θ are treated as independent variables.

The physical insight of employing the eSWAP gate comes
from its relation to the resonating valence bond (RVB) state
[53,54], known as a very faithful variational state to ap-
proximate various many-body ground states of quantum spin
systems [55]. A series of eSWAP gates acting on a particular
direct product of many singlets which covers the lattice, i.e.,
a valence bond solid (VBS) state, can mix up these singlets to
create an RVB state, although the coefficients of each valence
bond are correlated in some way [52]. For the simplest exam-
ple, considering one eSWAP gate acting on two singlets, we
have

Ûjk (θ )|s〉i, j |s〉k,l = cos(θ/2)|s〉i, j |s〉k,l − i sin(θ/2)|s〉i,k|s〉 j,l ,

(13)

thus generating different two singlets. The eSWAP cir-
cuit Ansatz has been applied to the VQE calculations of
the one-dimensional (1D) spin- 1

2 isotropic antiferromagnetic
Heisenberg model and obtained very accurate results [52].

Having constructed the explicit form of the variational
quantum circuit Ansatz, we shall now discuss its symmetry
properties. For the initialization layer, its building block Û s

i j
breaks the time-reversal symmetry and the Z2 × Z2 symmetry
with respect to π rotations referring to a pair of orthogo-
nal axes. Accordingly, Ĉ0 also breaks these two symmetries.
When we consider the inversion, which refers to the bond
(connecting neighboring unit cells) center, the Û s

i j located
on that bond will change the sign, i.e., Û s

i j = −Û s
ji with i =

L/2 − 1 and j = L/2. Therefore, Ĉ0 in |φ00〉, |φ01〉, |φ10〉, and
|φ11〉 also breaks the bond central inversion symmetry (i.e.,
odd parity), while Ĉ0 in |φd〉 preserve this symmetry (i.e., even
parity), assuming that L is a multiple of 4 [56].

Considering now the variational layer, it is straightforward
to verify that Ûi j (θ ) preserves the bond central inversion
symmetry, i.e., Ûi j (θ

(d )
i j ) = Ûji(θ

(d )
ji ) with j = L − 1 − i, pro-

vided that θ
(d )
i j = θ

(d )
ji , and the Z2 × Z2 symmetry with respect

to π rotations referring to a pair of orthogonal axes, i.e.,
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Ûi j (θ
(d )
i j )

Z2×Z2−→ Ûi j (θ
(d )
i j ), but breaks the time-reversal sym-

metry, i.e., Ûi j (θ
(d )
i j )

T−→ Ûi j (−θ
(d )
i j ). Consequently, as the

product of a serial of eSWAP gates, the variational layer
preserves the Z2 × Z2 symmetry (for any case) and the bond
central inversion symmetry (for the case with reflectable pa-
rameters {θ (d )

i j }) but breaks the time-reversal symmetry. We
should note that the entanglement structure implemented in
the initialization layer is not destroyed by these eSWAP gates
in the variational layer, regardless of the values of variational
parameters θ, provided that the number D of layers is not large
enough to propagate the quantum information throughout the
whole system, i.e., D < L/4 (see Appendix A).

Finally, it is instructive to explicitly give an example show-
ing that the SPT state can indeed be connected to a trivial
state by a finite-depth quantum circuit that breaks certain
symmetries. For instance, we can construct a specific circuit
Ĉ′, which evolves the SPT state |φ00〉 to the trivial dimer state
|φd〉, i.e.,

|φd〉 = Ĉ′|φ00〉 (14)

with

Ĉ′ = Ĉd
0

(
Ĉ00

0

)−1
. (15)

Ĉ′ has a finite depth not scaling with the system size and
breaks all symmetries which protect the SPT Haldane phase.
In contrast, we will numerically demonstrate in Sec. VI that
a finite-depth circuit cannot perform a similar deformation
when the circuit preserves at least one of the symmetries
protecting the SPT phase (also see Appendix A).

B. Optimization method

The variational parameters θ in Ĉ(θ) are optimized by
employing the natural gradient descent (NGD) method [57].
The variational parameters at the kth iteration, θk , are updated
from θk−1 as

θk = θk−1 − α
1

ReG(θk−1)
∇E (θk−1), (16)

where E (θ) = 〈�(θ)|H |�(θ)〉 is the variational energy and α

is the descent step. G(θ) is the metric tensor [58] of the pa-
rameter space θ associated with the variational wave function
|�(θ)〉, whose matrix element reads as

[G(θ)]i j = 〈∂θi�(θ)|∂θ j �(θ)〉
−〈∂θi�(θ)|�(θ)〉〈�(θ)|∂θ j �(θ)〉. (17)

Here, |∂θi�(θ)〉 is the partial derivate of |�(θ)〉 with respect
to θi. The NGD optimization has been successfully applied
in the previous VQE study of the 1D Heisenberg model [52].
Moreover, relevant numerical methods sharing the same idea
with the NGD method [59–61] have been widely used to study
quantum many-body systems.

In the calculation of ∇E (θ) and G(θ), we need to fre-
quently calculate the partial derivative |∂θi�(θ)〉. Here, we
employ the parameter-shift rule [52,62–65], and apply it as

|∂θi�(θ)〉 = 1
2 |�(θ + π î)〉, (18)

where î is the unit vector for the ith dimension in the parameter
space.

For the numerical simulations in Sec. V, we choose
the initial variational parameters θ0 = 0 since we deliber-
ately start the optimization of the variational parameters
in the variational layer that is applied onto the fixed-point
state constructed in the initialization layer. We fix α = 0.01
and perform 1000 steps of optimization to reach the well-
converged state.

V. EXPLORING SPT HALDANE PHASE

With the help of the circuit Ansatz constructed on the basis
of the strategy introduced above, we can obtain the ground
state of the AHC with high accuracy by the VQE calculations.
In this section, we demonstrate this by showing that the SPT
Haldane phase in the AHC can be fully represented by the
shallowest circuit state with D = 1 both in numerical simula-
tions and on real quantum devices.

A. Numerical simulations

We simulate the VQE calculations for the ground state of
the L = 16 AHC under OBC using the state-vector method
provided by QISKIT [66]. Furthermore, the ground state and
the low-lying excited states are also obtained by performing
the exact diagonalization (ED) calculations. In the following
simulations, we always adopt |φs〉 as the circuit state in the
initialization layer, unless otherwise stated.

1. Ground-state energy and wave-function fidelity

The ground-state energy deviations of the VQE optimized
circuit state with D = 1 from the exact ground state are sum-
marized in Fig. 5(a). For comparison, the energy gap obtained
by the ED method is also plotted in the same figure. Here,
as the energy gap, we consider for J ′ < 1 the Haldane gap
given approximately by the excitation energy to the fourth
excited state because of the fourfold ground-state degeneracy
in the SPT phase. For J ′ > 1, the trivial gap of the system is
estimated as the excitation gap to the first excited state.

As shown in Fig. 5(a), the energy deviations are smaller
than the energy gap for −2.1 � J ′ � 0.7, indicating that the
circuit Ansatz is a suitable variational Ansatz for the SPT
Haldane phase in a finite parameter region. In particular, the
energy deviations are significantly small (<10−3) in the region
near the J ′ = 0 fixed point.

In addition to the variational energy, the wave-function
fidelity between the circuit state |�(θ)〉 and the exact ground
state |�0〉, defined as

F = |〈�(θ)|�0〉|, (19)

is also a crucial evaluation for the circuit Ansatz. Compatible
with the variational energy results, we find in Fig. 5(b) that the
wave-function fidelity F are always larger than 0.9 for −2 �
J ′ � 0.6, implying a high-quality approximation to the ground
state. Note also that the wave-function fidelity F decreases
rapidly when J ′ approaches further closely to the critical point
J ′ = 1 and exhibits a very small value ∼0.25 once it crosses
the critical point in the trivial dimer phase, where this circuit
Ansatz fails to describe the ground state.
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FIG. 5. (a) Energy difference per site and (b) wave-function fi-
delity F between the ground state |�0〉 of the L = 16 AHC under
OBC and the corresponding VQE optimized circuit state |�(θ)〉 with
D = 1. In (a), the blue solid line represents the Haldane (trivial) gap
for J ′ < 1 (J ′ > 1). The Haldane (trivial) gap is estimated by the ED
method as the excitation energy to the fourth (first) excited state. The
dashed line highlights the critical coupling J ′ = 1. E0 is the exact
ground-state energy, while E = 〈�(θ)|H |�(θ)〉 is the corresponding
variational energy.

2. String order parameter

To measure the nonlocal string operator 〈Ostr (d )〉 in the
present finite systems, we fix the reference point to the left
end of the system and consider the string order parameter
as Ostr = 〈Ostr (d = L/2 − 1)〉. Without losing generality, we
choose four typical values of J ′, i.e., J ′ = −2.1, −0.9, 0.1,
and 0.5, in the SPT Haldane phase and display the spatial
dependence of the string operator in Fig. 6(a). The results
for the VQE optimized circuit states with D = 1 are in good
quantitative agreement with the exact results, although a slight
deviation is observed for J ′ = −2.1, which is close to the
boundary of the region where the ground state is faithfully
expressed by the D = 1 circuit Ansatz (see Fig. 5). In all of
these four different J ′ values, the string operator does not
obviously decay, indicating the long-range string order.

Figure 6(b) shows the string order parameter Ostr as a func-
tion of J ′. We find that these results for the VQE optimized
circuit state with D = 1 are also quantitatively compatible
with the exact results, except for the region close to the critical
point J ′ = 1. Therefore, we conclude that the shallow circuit
state with D = 1 can already represent the string-type corre-
lation rather well.

3. Ground-state degeneracy and edge modes

One of the hallmarks of the SPT Haldane phase is the
fourfold degeneracy of the ground state associated with edge
modes when the system has open boundaries. Using the
eSWAP circuit Ansatz with the circuit states |φ00〉, |φ01〉, |φ10〉,
and |φ11〉 in the initialization layer, we can obtain all these
fourfold degenerate ground states in the corresponding opti-
mized circuit states.

FIG. 6. String order in the SPT Haldane phase. (a) The expecta-
tion value of the string operator 〈Ostr (d )〉 as a function of distance d
for the VQE optimized circuit state |�(θ)〉 with D = 1 (solid circles).
For comparison, the corresponding exact results are also shown by
dashed lines with the same color. The reference point is fixed at the
left edge of the system, i.e., k = 0 in Eq. (3). (b) The string order
parameter Ostr = 〈Ostr (d = L/2 − 1)〉 as a function of J ′ for the VQE
optimized circuit states with D = 1 (red circles) and the exact ground
states (blue circles). Here, the system size is L = 16.

In practice, since Ĉ(θ)|φ00〉 [Ĉ(θ)|φ01〉] and Ĉ(θ)|φ11〉
[Ĉ(θ)|φ10〉] are related by a global unitary transformation

ÛX =
L−1∏
i=0

X̂i, (20)

i.e., ÛX Ĉ(θ)|φ00〉 = −Ĉ(θ)|φ11〉 and ÛX Ĉ(θ)|φ01〉 =
−Ĉ(θ)|φ10〉 for L being a multiple of 4, and ÛX HÛX = H ,
we only perform the VQE simulations for the circuit Ansätze
with |φ00〉 and |φ01〉 in the initialization layer and reuse the
optimized parameters to generate the optimized circuit states
with |φ11〉 and |φ10〉 in the initialization layer.

As in the case of the string order in Fig. 6, we consider the
four typical J ′ values, i.e., J ′ = −2.1, −0.9, 0.1, and 0.5, in
the SPT Haldane phase. For all these different J ′ values, we
find that the ground-state energies obtained for the VQE op-
timized circuit states, containing only a D = 1 layer, with the
four different circuit states in the initialization layer are nearly
degenerate, and their deviations from the exact ground-state
energies are always smaller than the corresponding Haldane
gap. Furthermore, these four states are orthogonal with each
other; the VQE optimized circuit states Ĉ(θ)|φ00〉 [Ĉ(θ)|φ01〉]
and Ĉ(θ)|φ11〉 [Ĉ(θ)|φ10〉] are exactly orthogonal by construc-
tion and the wave-function fidelities among other circuit states
are found numerically to be <10−9. Therefore, we have four
mutually orthogonal nearly degenerate states in the ground-
state manifold.
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FIG. 7. The spatial distribution profile of the onsite magnetiza-
tion 〈Sz

i 〉 for the VQE optimized circuit states containing a D = 1
layer with different initializations in the SPT Haldane phase at J ′ =
−2.1, −0.9, 0.1, and 0.5 (solid circles and triangles). [(a), (b)] The
circuit states |φ00〉, [(c), (d)] |φ01〉, [(e), (f)] |φ10〉, and [(g), (h)] |φ11〉
are employed in the initialization layer. For comparison, the exact
results are also shown by dashed lines with the same color. Note that
although the results in (a) and (b) [(c) and (d)] are exactly related
to those in (g) and (h) [(e) and (f)], respectively, because of the
construction of the circuit states (see the text) and ÛX Sz

i ÛX = −Sz
i ;

here we show these results for completeness.

To further explore the properties of these four VQE opti-
mized circuit states, we probe the edge mode by evaluating the
onsite magnetization 〈Sz

i 〉. As shown in Fig. 7, we indeed find
distinct edge-mode patterns associated with the specific ini-
tialization. It is also confirmed that the localization length of
the edge mode is shorter when J ′ is closer to 0. The results for
the VQE optimized circuit states are in good agreement with
the exact results, although they are slightly deviated from the
exact values for J ′ = −2.1, which is close to the expressibility
limit of the D = 1 variational circuit state (see Fig. 5). These
results clearly demonstrate that the properly constructed vari-
ational quantum circuit state with shallow circuit layers can
capture the details of exotic quantum many-body phases, such
as the edge modes of an SPT phase by engineering four edge-
mode patterns in the initialization layer.

B. Real quantum device demonstration

To demonstrate that the circuit Ansatz is also suitable for
the real quantum devices, here the VQE optimized circuit
states obtained classically by the numerical simulations are

FIG. 8. (a) Qubit allocation (marked by red circles) used for the
L = 4 and 8 systems in the IBM quantum devices ibmq_manila

(left) and ibm_kawasaki (right). (b) Decomposition of the eSWAP
gate exp(−iθ P̂i j/2) into single-qubit gates and CNOT gates for real
quantum device demonstration. Here, “RX (Z )” is the single-qubit
rotation gate about the x(z) axis acting on qubit i, i.e., R̂X (Z )(λ) =
exp[−iλX̂i(Ẑi )/2] with the rotation angle λ indicated in the figure,
and “P” is the phase gate given as the diagonal matrix P̂(λ) =
diag[1, eiλ] with the phase λ indicated in the figure.

evolved on the real quantum devices. As a demonstration,
we consider the L = 8 system with J ′ = 0.15 and the VQE
optimized circuit states with D = 1 for evaluating the string
order and the spatial distribution of 〈Sz

i 〉. By performing the
quantum tomography for the L = 4 system, we also evaluate
bipartite entanglement spectra in the SPT Haldane phase at
J ′ = 0.1 and the trivial dimer phase at J ′ = 10 using the VQE
optimized circuit states with D = 1.

For this purpose, we employ the quantum devices
(ibmq_manila and ibm_kawasaki) provided by IBM Quan-
tum [67]. The qubit allocations in the quantum devices used
for the L = 4 and 8 systems are shown in Fig. 8(a). As shown
in Fig. 8(b), the eSWAP gate defined in Eq. (12) is further de-
composed into eight single-qubit gates and three CNOT gates
in general [68,69] (up to a global phase factor). After the tran-
spilation using QISKIT, the number of CNOT gates contained
in the VQE optimized circuit state with D = 1 is as many as
24 (10) for the L = 8 (4) system in total when the circuit state
|φ00〉, |φ01〉, φ10〉, or |φ11〉 is employed in the initialization
layer. However, note that additional SWAP gates, which are
converted with additional CNOT gates, are required when |φs〉
is employed in the initialization layer. Each experiment runs
8192 shots to collect the data. To estimate the statistical error,
the same experiment with 8192 shots is repeated 10 times.

1. String order

We should first notice that because of eiπSz
j = iẐ j , the ex-

pectation value of the string operator Ostr (d ) in Eq. (3) can be
evaluated simply by measuring all the bit strings in the com-
putational basis on the quantum device. Furthermore, since
the z component of the total spin, Sz

tot = ∑
j Sz

j , is conserved
in the circuit Ansatz, the ideal measurement of each set of all
bit strings in the computational basis must also conserve the
total spin Sz

tot at every single experiment. This implies that
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FIG. 9. The expectation value of string operator 〈Ostr (d )〉 as a
function of distance d in the SPT Haldane phase at J ′ = 0.15 (green
solid squares) and the trivial dimer phase at J ′ = 10 (green open
squares) evaluated on the IBM quantum device (ibm_kawasaki).
Here, the system size is L = 8 and the VQE optimized circuit state
containing a D = 1 layer with |φs〉 (|φd〉) in the initialization is used
for the SPT Haldane (trivial dimer) phase. The error-mitigated results
by postselecting shots only satisfying Sz

tot = 0 are also plotted by
triangles. The error bars are estimated as the standard error of the
mean from 10 independent sets of the same experiments with each
having 8192 shots. For comparison, the numerical results obtained
for the same VQE optimized circuit states (indicated as “ideal”) are
also shown by blue circles. Note that the three results for the trivial
dimer phase are indistinguishable in this scale.

the real device noise can be mitigated in each experiment by
postselecting only those shots which respect Sz

tot = 0 (or any
particular value) [29]. For comparison, we also evaluate the
string order in the trivial dimer phase at J ′ = 10 using the
VQE optimized circuit state containing a D = 1 layer with
|φd〉 in the initialization layer.

As shown in Fig. 9, even in the small system with L = 8,
the distinction between the SPT Haldane phase and the trivial
dimer phase can be clearly identified by measuring the string
operator. In the real device experiments, the string operator
shows a smaller value with a slightly faster decay as compared
with the numerical one in the SPT Haldane phase due to the
noise, while it is close to zero in the trivial dimer phase. After
postselecting the shots respecting Sz

tot = 0, the string operator
becomes flatter in the SPT Haldane phase, clearly demonstrat-
ing that these two circuit states can be distinguished on the real
quantum hardware.

2. Edge modes

Similar to the numerical simulations in Sec. V A 3, the
fourfold nearly degenerate ground states can also be generated
on the real quantum device by constructing the VQE opti-
mized circuit states containing a D = 1 layer with the four
different circuit states |φ00〉, |φ01〉, |φ10〉, and |φ11〉, in the ini-
tialization layer. Here, we evolve these four optimized circuit
Ansätze on the real device and evaluate the spatial distribution
profile of 〈Sz

i 〉 by a series of measurements of individual qubits
in the computational basis. As shown in Fig. 10, the profiles
of 〈Sz

i 〉 exhibit four clearly distinguished patterns, depending
on the different settings in the initialization layer, and they

FIG. 10. The spatial distribution profile of the onsite magneti-
zation 〈Sz

i 〉 in the SPT Haldane phase at J ′ = 0.15 for the fourfold
nearly degenerate ground states represented by the VQE optimized
circuit Ansätze containing a D = 1 layer with the four different
circuit states (a) |φ00〉, (b) |φ01〉, (c) |φ10〉, and (d) |φ11〉, in the
initialization layer (green solid circles). The error bars are estimated
as the standard error of the mean from 10 independent sets of the
same experiments with each having 8192 shots. For comparison,
the corresponding numerical results obtained for the same VQE
optimized circuit states (indicated as “ideal”) are also shown by blue
solid circles.

are also consistent with the numerical results obtained for the
same VQE optimized circuit states.

3. Entanglement spectrum

The SPT phase can also be characterized against the trivial
product state by exploring the degeneracy of the entanglement
spectrum

ξ (i) = − ln(λi ), (21)

where λi is the ith largest eigenvalue of the reduced density
matrix for the ground state by tracing out half of the degrees
of freedom in the real space of the system, and hence ξ (i) is
ordered in the ascent order. The entanglement spectra of the
SPT Haldane phase exhibit at least twofold degeneracy for
each spectrum level [46]. In contrast, this degeneracy is split
generally in the trivial dimer phase.

The reduced density matrix for a circuit state can be eval-
uated by quantum tomography [70]. Since a direct procedure
of the quantum tomography involves the measurements of all
Pauli strings referring to the target segment of the system, the
system size which can be treated on the real device is strongly
limited. Therefore, we only consider the L = 4 system. Here,
we evolve the two VQE optimized circuit Ansätze with D = 1,
which refer to the SPT Haldane phase at J ′ = 0.1 (having
|φ00〉 in the initialization layer) and the trivial dimer phase
at J ′ = 10 (having |φd〉 in the initialization layer), on the
real device and perform the quantum tomography to obtain
the reduced density matrices. Figures 11(b) and 11(d) show
the obtained entanglement spectra for the SPT Haldane phase
and the trivial dimer phase, respectively. For comparison, the
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FIG. 11. Entanglement spectrum ξ (i) referring to left half of the
system with L = 4 in [(a), (b)] the SPT Haldane phase at J ′ = 0.1 and
[(c), (d)] the trivial dimer phase at J ′ = 10 evaluated from the VQE
optimized circuit states containing a D = 1 layer with [(a), (b)] |φ00〉
and [(c), (d)] |φd 〉 in the initialization layer. The results in (a) and
(c) are calculated by numerical simulations and those in (b) and
(d) are evaluated on the IBM quantum device (ibmq_manila) where
the device noise is mitigated by postselecting only the real part of
the reduced density matrix. For comparison, the corresponding exact
results are also shown in (a) and (c) by black dots. Note that the exact
results for i = 2 and 3 in (a) are located larger than this scale but they
are confirmed numerically to be doubly degenerate.

corresponding numerical results for the same VQE optimized
circuit states as well as the exact results are also shown in
Figs. 11(a) and 11(c).

We observe that although the spectrum levels slightly
deviate from the numerical results, these two circuit states
exhibit a distinguishable entanglement spectrum even on the
real device. Namely, the first and second spectrum levels are
quasidegenerate in the SPT Haldane phase [see Fig. 11(b)],
while only a single leading spectrum level is observed in
the trivial dimer phase [see Fig. 11(d)], indicating that the
state in the latter is close to a direct-product state. Based on
these results, we confirm that the SPT Haldane phase hosted in
the AHC can be fully captured by the shallowest circuit states
on a real quantum device.

VI. EXPRESSIBILITY OF CIRCUIT ANSATZ

In the previous section, we have demonstrated that a shal-
low circuit Ansatz with D = 1 can already correctly describe
the details of the characteristic features of the SPT Haldane
phase in a finite range of the model parameter J ′. Here, in this
section, we discuss the expressibility of this circuit Ansatz and
in particular show that, as in the definition of a SPT phase, a
deeper circuit Ansatz is indeed required to connect the SPT
Haldane phase to the trivial dimer phase if the Ansatz pre-
serves the symmetry protecting the SPT phase. We also show
that the expressibility (i.e., computational capacity) of the
fixed-depth circuit Ansatz with the appropriate initialization
is insensitive to the system size and scales with the spin cor-
relation length. Therefore, the scalable VQE calculations for
a gapped topological phase can be achieved once the circuit
representation of a fixed-point state in the gapped topological
phase is first correctly constructed in the initialization layer.

A. Connecting the Haldane phase to the dimer phase

In order to test how deep a circuit is necessary to connect
an SPT state to a trivial state, we perform numerically the

FIG. 12. The first 10 entanglement spectra ξ (i) of the VQE
optimized circuit Ansätze with D = 1 (squares), 2 (circles), and 3
(triangles) in the trivial dimer phase at J ′ = 5 for L = 12. Here, the
circuit state |φs〉, i.e., a fixed-point state of the SPT Haldane phase,
is used in the initialization layer. For comparison, the exact results
obtained by the ED method are also shown.

VQE calculations for the L = 12 system in the trivial dimer
phase at J ′ = 5 employing the circuit Ansatz with |φs〉, i.e., a
fixed-point state of the SPT Haldane phase, in the initializa-
tion layer. Since the variational layer preserves the symmetry
which protects the SPT Haldane phase, we expect that a trivial
state cannot be obtained in the optimized circuit when its
depth is too shallow. Here, we employ the degeneracy of the
entanglement spectrum to differentiate the SPT Haldane phase
from the trivial dimer phase.

Figure 12 shows the low-lying entanglement spectra eval-
uated from the reduced density matrix of the VQE optimized
circuit states with different depths. Here, the reduced density
matrix is obtained by bipartitioning the system exactly at half
about the center. We find that the lowest four spectrum levels
are always degenerate when the circuits are too shallow (D �
2), indicating these circuit states still host a SPT state. As a
sharp difference, the entanglement spectrum of the optimized
circuit Ansatz with D = 3 is highly consistent with the exact
result, especially in the lowest-lying part of the entanglement
spectrum, suggesting that the evolution from an SPT state to
a trivial product state is accomplished. Indeed, the number
of layers composed of local unitary operators necessary to
convert two states with different topological indices should
scale with the system size L [40], and in this particular system
with L = 12, the D = 3 layers correspond exactly to the point
where the causality cone set by the Lieb-Robinson bound
for propagating the information via the local two-qubit gates
exceeds the system size [27]. More discussion on the degener-
acy of entanglement spectrum for the circuit states considered
here is found in Appendix A.

B. Expressibility vs correlation length

One measure for the expressibility of a particular circuit
Ansatz for a ground state is to simply monitor the energy devi-
ation of the circuit Ansatz with the optimized parameters from
the exact ground-state energy. Although the spin correlation
length is hard to determine straightforwardly in a small finite
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FIG. 13. The energy deviation of the VQE optimized circuit
Ansatz with D = 1 from the exact ground-state energy E0 versus the
spin correlation function at a fixed distance from the edge, 〈Sz

0Sz
3〉,

evaluated for the exact ground state. The circuit state |φs〉 is used
in the initialization layer of the VQE optimized circuit Ansatz. The
system sizes considered are L = 8 (circles), 12 (squares), and 16
(triangles). The values of J ′ considered are −1.1, −0.9, −0.7, −0.5,
−0.3, −0.1, 0.1, 0.3, and 0.5, which are all in the SPT Haldane phase.
The dashed lines are guide for the eye.

system, we can use the spin correlation function at a fixed
distance from the edge as a reasonable approximation.

Figure 13 shows the relation between the expressibility of
the circuit Ansatz with D = 1 and the spin correlation function
for the SPT Haldane phase in the AHC. The result clearly
reveals that the expressibility for different system sizes has the
same scaling behavior with the correlation length, implying
that the expressibility of the circuit Ansatz with a fixed depth
considered here is dictated not by the system size but rather by
the correlation length. Moreover, since the energy deviation
does not increase with the system size, the computational
complexity of the VQE calculations with a given accuracy
scales only linearly with the system size (not because of the
increase of the circuit depth, but simply because of the in-
crease of the number of qubits). When performing the Ansatz
on a real quantum device, the number of CNOT gates in
the variational layer is 3 × (L − 1) × D, i.e., always linearly
scaling with the system size.

VII. CONCLUSION AND DISCUSSION

In summary, we have proposed a strategy to efficiently
construct a variational circuit Ansatz for calculating a ground
state of a gapped topological phase on NISQ devices. To prop-
erly handle both the nontrivial basic entanglement structure
contained in the topological phase and the fine structure in
the energy landscape depending on the details of the Hamil-
tonian, an efficient circuit Ansatz should be designed in a
two-layer structure. In the first layer (i.e., the initialization
layer), the basic entanglement structure is constructed by a
shallow circuit with a fixed depth that does not scale with the
system size (or a circuit with a well-designed structure for an
intrinsic topological phase). For the SPT Haldane phase in the
AHC, the initialization layer constitutes the ground state of
the fixed-point Hamiltonian with J ′ = 0. In the second layer

(i.e., the variational layer), a parametrized circuit inspired by
the Hamiltonian itself is considered to further optimize the
state to fit the finite correlations determined by the Hamil-
tonian parameter away from the fixed point. In the AHC, a
brick-wised eSWAP circuit is adapted to respect the SU(2)
symmetry of the Hamiltonian and preserve one of the symme-
tries protecting the SPT Haldane phase. All the main features
of the SPT Haldane phase, including the long-range string
order parameter, the fourfold nearly degenerate ground states
corresponding to edge-mode patterns in the open system, and
the twofold degenerate entanglement spectrum, have been
captured correctly by the optimized circuit state with a very
shallow depth (D = 1) both in numerical simulations and on
real quantum devices. Moreover, we have demonstrated that
the computational capacity is only sensitive to the correlation
length and is independent of the system size. Therefore, the
scalable VQE calculation is achieved in this system.

Although we have only considered the simplest 1D SPT
phase in this paper, the circuit Ansatz structure proposed
here can be directly applied to higher-dimensional cases.
Especially for a two-dimensional (2D) SPT phase, whose
fixed-point wave function is easily constructed by a very shal-
low circuit [71], a similar variational layer that preserves the
symmetry protecting the SPT phase can also be constructed
straightforwardly to treat a fine structure of the Hamiltonian.
The same idea can also be applied to a gapped topological spin
liquid, for which further investigation is, however, required as
to how to generally construct a circuit state for a particular
spin-liquid phase.

Moreover, recalling that the depth of the variational layer
does not increase with the system size to represent a gapped
topological phase with a given accuracy, we realize the po-
tential of achieving the quantum advantage by employing
the scheme proposed here. At first glance, the computational
complexity for the VQE calculation scales linearly with the
system size. However, we should point out that, in principle,
all the computation components, such as the calculation of
the partial derivative for each parameter and the procedure
of energy measurement, can be fully parallelized. In contrast,
the computational complexity of the current state-of-the-art
tensor network algorithms [72], which are considered to be the
most efficient classical methods to simulate quantum many-
body systems, increases at least linearly with the system size.
Therefore, the quantum advantage can be achieved when the
system size is very large in one dimension or simply when a
2D system is considered.
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FIG. 14. Low-lying entanglement spectra ξ (i) for the circuit
Ansätze with the circuit state |φ00〉 in the initialization layer (cor-
responding to a fixed-point state for the SPT Haldane phase) and
varying the depth D in the variational layer composed of the eSWAP
gates for which the variational parameters θ are chosen randomly.
The system size is set to L = 12 and the the entanglement spectrum
is evaluated by numerically diagonalizing the reduced density matrix
of the system bipartitioned exactly half. Note that the results shown
here are obtained for a single set of random parameters, but we
have checked that qualitatively the same results are obtained for
other sets of random parameters. For comparison, the results for the
same circuit state with D = 1 having the same random variational
parameters θ, but containing an additional single CNOT gate acting
on qubits 5 and 6 are also plotted by solid diamonds in (b).
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APPENDIX A: ENTANGLEMENT SPECTRUM
OF THE CIRCUIT ANSATZ

In this Appendix, we shall examine the degeneracy of
the entanglement spectrum extracted from the circuit Ansatz
proposed in Sec. IV A. Without losing generality, we fix the
system size to L = 12 and choose the circuit state |φ00〉 in the
initialization layer (a fixed-point state for the SPT Haldane
phase). For comparison, we also consider a circuit state with
|φd〉 in the initialization layer, corresponding to a fixed-point
state for the trivial dimer phase. After applying different
number D of layers in the variational layer composed of the
eSWAP gates with randomly chosen variational parameters θ,
we evaluate the entanglement spectrum of the resulting circuit
state by numerically diagonalizing the reduced density matrix
for the left half of the system.

For the circuit states initialized to the fixed-point state of
the SPT phase, the entanglement spectrum shows robust (at
least) twofold degeneracy when the depth D of the variational
layer is smaller than L/4 [see Figs. 14(a)–14(c)]. Note that

FIG. 15. Same as Fig. 14 but the circuit state |φd 〉, corresponding
to a fixed-point state for the trivial dimer phase, is adopted in the
initialization layer.

the number of nontrivial entanglement spectral levels (i.e.,
nonzero eigenvalues of the reduced density matrix) increases
with D as 2 × 4D. In sharp contrast, this twofold degeneracy is
lifted entirely once the depth of the variational layer D � L/4,
as shown in Figs. 14(d)–14(f). This clearly demonstrates that
a sufficiently deep circuit is required to transform an SPT
state to a trivial state if the circuit respects the symmetry
protecting the SPT phase. In order to support this assertion,
we also consider exactly the same circuit state with D = 1
but with an additional single CNOT gate, which breaks the
symmetry protecting the SPT phase, acting after the eSWAP
gate on qubits 5 and 6 [see, e.g., Fig. 4(a) for L = 8], and
find that only a single CNOT gate is enough to generally lift
the twofold degeneracy of the entanglement spectra, as shown
in Fig. 14(b) by solid diamonds. We should also note that
the circuit depth D = L/4 corresponds exactly to the point
where the causality cone set by the Lieb-Robinson bound for
propagating the information via local two-qubit gates reaches
the system size L [27]. It is also interesting to notice that only
the circuit states having D = L/4 layers or more can describe
all 2L/2 entanglement spectral levels of the reduced density
matrix for a general 1D quantum state when it is bipartitioned
exactly half.

On the other hand, as shown in Fig. 15, the circuit states
initialized to the fixed-point state of the trivial dimer phase
exhibit a distinguishable single leading entanglement spectral
level when D < L/4, while this feature disappears in general
when D � L/4. Note that the number of the nontrivial entan-
glement spectral levels in this case increases with D as 4D.

APPENDIX B: D DEPENDENCE OF STRING ORDER

In Sec. V, we demonstrate that the shallow D = 1 Ansatz
can faithfully describe the SPT Haldane phase in a wide
parameter region. Here, we examine numerically how the
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FIG. 16. Same as Fig. 6 but for the VQE optimized circuit An-
sätze |�(θ)〉 with D = 1, 2, and 3. In (a), the results for different
values of D are denoted by different shaded color intensities propor-
tional to D. The results for D = 1 are the same as those in Fig. 6(a).
In (b), the system size is L = 12.

accuracy of the VQE calculation is further improved with
increasing the circuit Ansatz depth D. Figure 16(a) shows
the expectation value of string operator 〈Ostr (d )〉, evaluated
numerically for the VQE optimized circuit Ansätze |�(θ)〉
with D = 1, 2, and 3. We can indeed confirm that, for a fixed
J ′, it approaches to the exact value with increasing D. Ac-
cordingly, as shown in Fig. 16(b), the string order parameter
Ostr also becomes closer to the exact value, even for J ′ away
from J ′ = 0 within −2.5 < J ′ < 1, indicating that more fine
correlations of the ground state can be captured quantitatively
by a deeper circuit Ansatz.

APPENDIX C: COMPARISON WITH GENERIC
BRICK-WALL ANSATZ

In this Appendix, we compare the results for the circuit
Ansatz |�(θ)〉 with those for a generalized brick-wall-type

FIG. 17. The energy deviation of the VQE optimized cir-
cuit Ansätze |�(θ)〉 and the VQE optimized SO(4) brick-wall
Ansätze|
(ψ, θ, φ, α,β, γ )〉 with D = 1, 2, and 3 from the exact
ground-state energy E0 as a function of the number of variational
parameters, which increases with D as (L − 1)D for |�(θ)〉 and
6(L − 1)D for |
(ψ, θ, φ,α, β, γ )〉. These results are obtained for
the L = 12 AHC under OBC with four different values of J ′ indicated
in the figure.

Ansatz without considering the topological nature of the SPT
Haldane phase. The latter Ansatz constructs a variational state

|
(ψ, θ,φ,α,β, γ )〉

=
D∏

d=1

∏
{i, j}d

V̂i j
(
ψ

(d )
i j , θ

(d )
i j , φ

(d )
i j , α

(d )
i j , β

(d )
i j , γ

(d )
i j

)|0〉, (C1)

where V̂i j (ψ
(d )
i j , θ

(d )
i j , φ

(d )
i j , α

(d )
i j , β

(d )
i j , γ

(d )
i j ) ∈ SO(4) repre-

sents a generic parametrized real rotation gate acting on
qubits i and j at the dth depth. Note that each SO(4)
two-qubit gate V̂i j is characterized with six real parameters
ψ

(d )
i j , θ

(d )
i j , φ

(d )
i j , α

(d )
i j , β

(d )
i j , and γ

(d )
i j . The arrangement of

these gates within the dth depth is the same as that shown in
Fig. 4(a). We denote this circuit Ansatz as SO(4) brick-wall
Ansatz. The number of parameters in SO(4) brick-wall Ansatz
scales with D as 6 × (L − 1) × D. Note that since the ground
state of the AHC can always be represented by a real wave
function, utilizing a real state |
〉 as an Ansatz, instead of a
circuit Ansatz based on more general SU(4) two-qubit gates,
is advantageous for reducing the variational search space.

We perform VQE simulations for typical values of J ′ in the
SPT Haldane phase using SO(4) brick-wall Ansätze with D =
1, 2, and 3, and the results of the ground-state energy are com-
pared with those for the VQE optimized circuit Ansätze|�(θ)〉
with D = 1, 2, and 3 in Fig. 17. While the SO(4) brick-wall
Ansatz has more variational parameters, the VQE optimized
circuit Ansatz|�(θ)〉 consistently obtains better energy with
the deviation from the exact value at least one order of mag-
nitude smaller than the SO(4) brick-wall Ansatz. Moreover,
the convergence to the exact value with increasing D, i.e., the
number of the variational parameters, is much faster for the
circuit Ansatz |�(θ)〉. This comparison clearly demonstrates
the superiority of the circuit Ansatz |�(θ)〉 proposed in this
paper, which properly considers the nontrivial topology of the
target state in the VQE for correlated topological phases.
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