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Effective one-band models for the one-dimensional cuprate Ba2−xSrxCuO3+δ

A. E. Feiguin
Physics Department, Northeastern University, Boston, Massachusetts 02115, USA

Christian Helman
Centro Atómico Bariloche and Instituto Balseiro, CNEA, GAIDI, 8400 San Carlos de Bariloche, Argentina

A. A. Aligia
Instituto de Nanociencia y Nanotecnología CNEA-CONICET, GAIDI, Centro Atómico Bariloche and Instituto Balseiro,

8400 San Carlos de Bariloche, Argentina

(Received 21 March 2023; accepted 12 July 2023; published 9 August 2023)

We consider a multiband Hubbard model Hm for Cu and O orbitals in Ba2−xSrxCuO3+δ similar to the
three-band model for two-dimensional cuprates. The hopping parameters are obtained from maximally localized
Wannier functions derived from ab initio calculations. Using the cell perturbation method, we derive both a
generalized t-J model HtJ and a one-band Hubbard model HH to describe the low-energy physics of the system.
HtJ has the advantage of having a smaller relevant Hilbert space, facilitating numerical calculations, while
additional terms should be included in HH to accurately describe the multiband physics of Hm. Using HtJ and the
density matrix renormalization group method, we calculate the wave-vector-resolved photoemission and discuss
the relevant features in comparison with recent experiments. In agreement with previous calculations, we find
that the addition of an attractive nearest-neighbor interaction of the order of the nearest-neighbor hopping shifts
the weight from the 3kF to the holon-folding branch. Kinetic effects also contribute to this process.
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I. INTRODUCTION

After more than three decades from the discovery of high-
Tc superconductivity, the pairing mechanism is still not fully
understood, although it is believed that it is related to spin
fluctuations originating from the effective Cu-Cu superex-
change J and complicated by the existence of several phases
competing with superconductivity [1–4]. However, there is
consensus that, for energies below an energy scale of the
order of 1 eV, the physics of the two-dimensional (2D) super-
conducting cuprates is described by the three-band Hubbard
model [5,6] H3b, which contains the 3dx2−y2 orbitals of Cu and
the 2pσ orbitals of O [7].

More recently, one-dimensional (1D) cuprates have at-
tracted a great deal of attention, in particular, because
numerical techniques in 1D are more powerful and also field-
theoretical methods like bosonization can be used [9–21].
Neudert et al. have studied experimentally and theoretically
the distribution of holes in the 1D cuprate Sr2CuO3 [9]. The
authors discuss several multiband models and the effect of
several terms. Recently, angle-resolved photoemission exper-
iments have been carried out in a related doped compound,
Ba2−xSrxCuO3+δ , and analyzed on the basis of a one-band
Hubbard model with parameters chosen ad hoc [15]. The
need to add nearest-neighbor attraction or phonons to fit the
experiment has been suggested [15,18,20,21]. Li et al. studied
a four-band and a one-band Hubbard model and noted that the
latter lacks the electron-hole asymmetry observed in resonant
inelastic x-ray scattering experiments [17].

The questions we want to address in this work are as fol-
lows: (i) Which is the appropriate multiband Hubbard model

Hm to describe Ba2−xSrxCuO3+δ? (ii) What are the physical
values of the parameters? (iii) To what extent can this model
be represented by simpler one-band ones?

Due to the large Hilbert space of Hm, different low-energy
reduction procedures have been used to obtain simpler effec-
tive Hamiltonians for the 2D cuprates [22–28]. Most of them
are based on projections of Hm onto the low-energy space of
Zhang-Rice singlets (ZRS) [29]. In spite of some controversy
remaining about the validity of this approach [30–35], the
resulting effective models seem to describe well the physics
of the 2D cuprates. However, the effect of excited states above
the ZRS, often neglected, can have an important role [17,36].
For example, if one considers the Hubbard model as an ap-
proximation to Hm (as done in Ref. [15]), it is known that it
leads, in second-order in the hopping t , to a term which in one
dimension takes the form

Ht ′′ = t ′′ ∑
iσ

(c†
i+2σ̄ c†

i+1σ ci+1σ̄ ciσ − c†
i+2σ ni+1σ̄ ciσ + H.c.),

(1)

with t ′′ = t2/U > 0, where niσ = c†
iσ ciσ and σ̄ = −σ. This

term is an effective repulsion and inhibits superconductivity in
one dimension, while as expected, it favors superconductivity
if the sign is changed [37,38]. Interestingly, some derivations
of the generalized t-J model for 2D cuprates suggest that
t ′′ can be negative for some parameters of Hm [28,39], and
a very small term t ′′ = −t/20 can have a dramatic effect
favoring d-wave superconductivity [40]. Even if the realistic
t ′′ is positive, it is expected to be smaller than that derived
from the Hubbard model and might explain why studies of the
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superconductivity in the one-band Hubbard model conclude
that part of the pairing interaction is missing [4].

Therefore, a discussion on the appropriate model to de-
scribe the 1D cuprates and, in particular, Ba2−xSrxCuO3+δ

seems necessary. In this work we calculate the hopping pa-
rameters of the multiband model for this compound and use
this information to derive simpler one-band models.

The paper is organized as follows. In Sec. II we explain
the multiband Hubbard model Hm and derive its hopping
parameters using maximally localized Wannier functions
(MLWF). In Sec. III we describe the resulting generalized
t-J model obtained from Hm by a low-energy reduction pro-
cedure explained briefly in the Appendix. In Sec. IV we
explain the corresponding results for the one-band Hubbard
model. In Sec. V we calculate the photoemission spectrum us-
ing the time-dependent density-matrix renormalization-group
method [41–44] and we compare it with previous experimen-
tal and theoretical results. In addition to the difference of
parameters between one and two dimensions, it is known that
the 1D case is also characterized by Luttinger-liquid behavior
and spin-charge separation, which is clearly manifested in the
spinon and holon branches seen experimentally and discussed
in detail in Sec. V. Section VI contains a summary and dis-
cussion.

II. THE MULTIBAND HUBBARD MODEL

We use the following form of the Hamiltonian:

Hm = Ud

∑
i

d†
i↑di↑d†

i↓di↓ +
∑

iσ

{
εCud†

iσ diσ

+ εO

2

∑
δ

p†
i+δσ pi+δσ + ε

ap
O

∑
γ

p†
i+γ σ pi+γ σ

+
[

d†
iσ

(
t x
pd

∑
δ

pi+δσ + t y
pd

∑
γ

pi+δγ

)

− tpp

∑
δγ

p†
i+δσ pi+γ σ + H.c.

]}
, (2)

where d†
iσ (p†

jσ ) creates a hole with spin σ at Cu (O) site i
( j). We choose the chain direction as x (a in Fig. 1) and δ =
±ax̂/2 denotes the vectors that connect a Cu atom with their
nearest O atoms in the chain direction, where a is the Cu-Cu
distance that we take as 1 in what follows. γ has a similar
meaning for the apical O atoms, displaced from the chain in
the y direction (c in Fig. 1). The relevant O orbitals are those
pointing towards their nearest Cu atoms. To simplify the form
of the Hamiltonian, we have changed the signs of half of the
orbitals in such a way that the signs of the hopping terms do
not depend on direction and t x

pd , t y
pd , tpp > 0 [45].

In comparison with previous approaches [9,17], two terms
are missing: the intratomic O repulsion Up and the interatomic
Cu-O repulsion Upd . Although the former is rather sizable
(Up ∼ 4 eV has been estimated in 2D cuprates [46]), we find
that it has very little influence on the parameters of the one-

FIG. 1. Unit cell of Ba2CuO3. The gray, blue, and green balls are
Ba, Cu, and O, respectively. The lattice parameters are a = 3.85 Å,
b = 4.17 Å, and c = 13.18 Å. The CuO chains are along the a direc-
tion with a distance between them of 4.14 Å.

band models because of the low probability of double hole
occupancy at the O sites. The value of Upd is difficult to deter-
mine from spectroscopic measurements [47] and its effect on
different quantities can be absorbed in other parameters [9].
We obtain a better agreement with the measured photoemis-
sion spectra assuming Upd = 0. We also take Ud = 10 eV and
� = εO − εCu = 3.5 eV from calculations in the 2D cuprates
[46], and ε

ap
O − εO = −0.4 eV was determined as the value

that leads to a ratio of 1.225 between the occupancy of apical
and chain O atoms, very similar to what was determined
experimentally in Sr2CuO3 [9]. The values of the hopping
parameters t x

pd = 1.10 eV, t y
pd = 1.04 eV, and tpp = 0.60 eV

were determined from density functional theory (DFT) cal-
culations along with the MLWF method.

For the DFT calculations, we use the QUANTUM ESPRESSO

code [48,49], with the generalized gradient approximation for
the exchange and correlation potential and PAW-type pseu-
dopotentials. The energy cut for the plane waves is 80 Ry,
and the mesh used in reciprocal space is 15 × 15 × 5. The
unit cell is an orthorhombic structure with lattice parameters
a = 3.85 Å, b = 4.17 Å, and c = 13.18 Å, and it contains two
formula units (see Fig. 1).

We consider the spin unpolarized case and obtain the bands
shown in Fig. 2. The MLWF procedure involves band fitting
of the DFT results, as shown in blue in Fig. 2. The energy
window selected to project the Wannier orbital is between
3.75 and 10.75 eV, and the orbitals are centered in Cu and O
atoms with d and p character, respectively. Other convergence
parameters are also successfully evaluated, as suggested in
Ref. [50]. Finally, the hopping parameters are extracted from
the Hamiltonian expressed in the Wannier basis.
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FIG. 2. Band structure for the Ba2CuO3 obtained for unpolarized
DFT calculation. In blue, the bands from the MLWF procedure are
superposed with the DFT ones.

III. THE GENERALIZED t-J MODEL

Using the cell-perturbation method [25,26], with appro-
priate modifications for this 1D compound, we find that the
system can be described with the following generalized t-J
model:

HtJ = −t
∑

iσ

(c†
iσ ci+1σ + H.c.)

−t2
∑

iσ

(c†
iσ ci+2σ + H.c.)

+
∑

i

(JSi · Si+1 + V nini+1) + Ht ′′ , (3)

with t2 = t/5. Minor terms of magnitude below 0.04 eV were
neglected. The parameters of the model are given by analytical
expressions in terms of the eigenstates and energies of a cell
Hamiltonian, which are obtained after solving a 6 × 6 matrix
and two 3 × 3 matrices. A summary of the method is included
in the Appendix.

For the parameters of the multiband model described
above, we obtain t = 0.443 eV, J = 0.314 eV, V =
−0.143 eV, and t ′′ = 0.068 eV. Interestingly, our values
for J and t ′′ without adjustable parameters are similar to those
corresponding to the Hubbard model chosen to explain the
experiments by Chen et al. [15].

The larger values of t and J compared to the 2D cuprates
(for example, t = 0.37 meV and J = 0.15 meV for T-CuO
[33]) are expected due to the larger overlap between the nor-
malized O orbitals

∑
δ pi+δσ that hybridize with the Cu for

nearest-neighbor Cu positions. This leads to a larger overlap
between nonorthogonal ZRSs [28,51] and to a larger exten-
sion of the orthogonal oxygen Wannier functions centered at
the Cu sites (see the Appendix). For Sr2CuO3, the reported
values of J ∼ 0.24 meV [9–13] are also larger than those of
2D cuprates. The resulting value of t is somewhat smaller than
that used in Ref. [15], but is is compensated by the hopping to
second nearest-neighbors. The fact that the nearest-neighbor
attraction V is larger than J/4 as expected for the mapping
from the Hubbard to the t-J model is due to the contribution
of excited local triplets absent in the Hubbard model.

For other parameters of Hm, in particular, increasing
the ratio tpp/tpd and the difference between O and Cu

on-site energies, t ′′ changes sign as expected from calcula-
tions in 2D cuprates [28,39]. For example, increasing tpp to
1 eV and both on-site energy differences to 7 eV (unreal-
istic for Ba2−xSrxCuO3+δ but near to the values expected
for nickelates), we obtain t = 0.531 eV, J = 0.105 eV, V =
−0.096 eV, and t ′′ = −0.019 eV, due to the increasing rela-
tive importance of excited triplets.

IV. THE EFFECTIVE ONE-BAND HUBBARD MODEL

The generalized t-J model discussed above describes the
movement of ZRSs (two-hole states) in a chain of singly
occupied cells. If the cells with no holes are also considered
(for example, if one is interested in higher energy scales), one
can also derive a one-band Hubbard-like model using the cell
perturbation method. A simple version of this model has the
form [22–24]

HH = −t
∑

iσ

(c†
iσ ci+1σ + H.c.)[tAA(1 − niσ̄ )(1 − ni+1σ̄ )

+ tBBniσ̄ ni+1σ̄ + tAB(niσ̄ + ni+1σ̄ − 2niσ̄ ni+1σ̄ )]

+U
∑

i

ni↑ni↓. (4)

As for HtJ , we map the ZRSs into empty states of HH . Then
tAA coincides with t of HtJ . From the mapping procedure we
obtain tAA = 0.443 eV, tAB = 0.421 eV, tBB = 0.369 eV, and
U = 2.083 eV. The model is electron-hole symmetric if and
only if tAA = tBB, while the photoemission of Hm is asymmet-
ric in general [17]. The phase diagram of the model at half
filling has been studied in Ref. [52] and including nearest-
neighbor (NN) repulsion has been studied in Ref. [53].

Another shortcoming of HH is that, if the model is reduced
to a generalized t-J one by eliminating double-occupied
sites, the effective J = 4t2

AB/U = 0.376 eV and t ′′ = J/4 =
0.094 eV are overestimated with respect to the values obtained
in the previous section: J = 0.314 eV and t ′′ = 0.068 eV.
Instead, the NN attraction −J/4 is underestimated (V =
−0.143 eV above). This is due to the neglect of the triplets
in HH (see the Appendix and Ref. [39]). Therefore, HtJ is
more realistic to describe the photoemission spectrum of hole-
doped 1D cuprates, unless additional terms are added to HH .

V. PHOTOEMISSION SPECTRUM OF HtJ

A. Photoemission intensity as a function of wave vector

While the effective Hamiltonian HtJ is enough to accu-
rately describe the energy spectrum of Hm at low energies, this
is not the case for the spectral intensity since one needs to map
the operators for the creation of Cu and O holes in Hm to the
corresponding ones of the effective low-energy Hamiltonian
that one uses [54,55].

In the 2D cuprates, it has been found by numerical diag-
onalization of small clusters that the photoemission intensity
due to O atoms at low energies can be well approximated by
the expression [55]

IO = 1.22Z (k)[sin2(kx/2) + sin2(ky/2)], (5)

where Z (k) is the quasiparticle weight of the generalized t-J
model. The dependence on the wave vector can be understood
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from the fact that, at k = 0, the O states which point towards
their nearest Cu atoms are odd under the reflections through
the planes perpendicular to the orbitals, while the low-energy
orbitals that form the ZRSs are even under those reflections.
Comparison of this expression to experiment is very good
[31]. A variational treatment of a spin-fermion model for
the cuprates also leads to a vanishing weight at kx = ky = 0
[30]. A similar dependence is expected in the 1D case due
to the contribution of the O orbitals along the chain, which
increases the relative weight for kx ∼ π/2. To estimate the
relative weight due to these orbitals, we have calculated the
probability of creating a hole (eik p†

i+δ − p†
i−δ )/

√
2 (the minus

sign is due to the choice of phases in Hm) in a singly occupied
cell leaving a ZRS, and we have also calculated the corre-
sponding result for apical O and Cu.

In addition, the observed total intensity depends on the
cross sections f for Cu and O, which in turn depend sen-
sitively on the frequency of the radiation used. The ratio of
cross sections for the reported energy (65 eV) of the x-ray
beam (available at Ref. [56]) is fCu/ fO = 3.077. Using this
result and the abovementioned probabilities for the parameters
of Hm described in the previous section, we obtain that the
wave vector dependence of the photoemission intensity can
be written as

I (k) ∼ Z (k)[A + B sin2(k/2)], (6)

where Z (k) is the quasiparticle weight of the generalized t-J
model, A = 1.097, and B = 0.205.

B. Numerical results

We calculated the photoemission spectrum of the gen-
eralized t-J model using the time-dependent density-matrix
renormalization group method [41,42,44,57]. The simula-
tion yields the single-particle two-time correlator G(x, t ) =
i〈c†

σ (x, t )cσ (L/2, 0)〉. This is Fourier transformed to fre-
quency and momentum, allowing one to retrieve the spectral
function as A(k, ω) = −ImG(k, ω)/π . The method has been
extensively described elsewhere [44,57] and we hereby men-
tion some (standard) technical aspects. Simulations are carried
out using a time-targeting scheme with a Krylov expansion of
the evolution operator [43]. Since open boundary conditions
are enforced and the chain length is even, the correlations in
real space are symmetrized with respect to the “midpoint”
x = L/2. In order to reduce boundary effects we convolve
G(x, t ) with a function that decays smoothly to zero at the
ends of the chain and at long times, automatically introducing
an artificial broadening. The function of choice is the so-called
“Hann window” [1 + cos (xπ/σ )]/2, where σ is the window
width. We apply this window to the first and last quarter of
the chain. We study systems of length L = 80 sites, N = 74
and 68 electrons, corresponding to x = 7.5% and x = 15%
doping, using m = 800 density-matrix renormalization group
states (guaranteeing a truncation error below 10−6), a time
step of δt = 0.05, and a maximum time σ = tmax = 20. This
density is chosen to maximize the holon-folding (hf) effect
discussed in Ref. [15].

Due to the one-dimensionality, the low-energy physics of
the models discussed here falls into the universality class of
the Luttinger-liquid theory [58–61]. Accordingly, excitations

are not full-fledged Landau quasiparticles and the spectrum
displays edge singularities instead of Lorentzians. In addition,
and most remarkably, they realize the phenomenon known
as spin-charge separation, with independent charge and spin
excitations that propagate with different velocities and char-
acteristic energy scales: the spinon bandwidth is determined
by J , while the holon bandwidth is determined by the hopping
t . In the photoemission spectrum, these excitations appear
as separate branches between −kF and kF , with the spinon
branch looking like an arc connecting the two points. Unlike
noninteracting systems, the photoemission spectrum extends
beyond |k| > kF due to momentum transfer between spinons
and holons: An electron with energy ε(k) can fractional-
ize into spin and charge excitations such that εs(q) + εc(k −
q) = ε(k), leading to a high-energy continuum and additional
branches leaking out from k = ±kF and k = ±3kF [62–64]
(the first one is referred to as a holon-folding band in Ref. [15]
and as a “shadow band” in Ref. [65]).

Results for the generalized t-J model [Eq. (3)] are shown in
Figs. 3(a) and 3(e) for the physical parameters corresponding
to Ba2−xSrxCuO3+δ , as discussed above. To understand the
contributions of the different terms we also considered the
cases without second-neighbor hopping in Figs. 3(b) and 3(f)
and without correlated hopping (t ′′ = 0) in Figs. 3(c) and 3(g).
In all these curves, the spectral density has been rescaled ac-
cording to Eq. (6). As a reference, we also show results for the
extended Hubbard chain with U = 8t and second-neighbor
attraction V = −t (t = 0.6 eV).

We notice that the Hubbard chain has more spectral weight
concentrated on the holon branches, while in the t-J model
it is more distributed in the continuum and even in the con-
tinuation of the holon bands at high energies. In addition, we
observe that the t-J model has a larger spinon velocity with
a wider spinon branch, and a larger charge velocity with a
holon band ∼20% wider than the one for the Hubbard model
(we measure the holon bandwidth as the distance between the
Fermi energy and the crossing of the two holon branches at
k = 0). Since the value of J remains unchanged, we attribute
these effects to kinematic sources (the extra hopping terms).

In order to compare to previous attempts to interpret the ex-
perimental observations, we analyze momentum distribution
curves at fixed frequency values, plotted in Fig. 4, corre-
sponding to the yellow dashed lines in Fig. 3. The parameters
used for each model (unless otherwise indicated in the figure)
are shown in Table I. We include results for the extended
Hubbard model with U/t = 8, V = −t , and V = 0, which
agree very well with similar previous calculations [18,20].
Note that the parameters of this Hubbard model are not those
that correspond to the mapping discussed in Sec. IV, but the
chosen value of U gives rise to an effective J similar to the
correct one. In this figure it is easier to observe the signatures
of the kF and 3kF holon branches at high momentum, which
are quite faint in the color density plot and are highlighted
here with arrows. One can also appreciate the qualitative
differences between the extended Hubbard model with V =
−t and the other cases. In particular, by comparing to the
standard Hubbard model with V = 0, we notice a transfer
of weight from the edge of the continuum (3kF band) to
the holon-folding band, which in Ref. [15] is attributed to a
phonon-induced attraction. On the other hand, the t-J model
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FIG. 3. Photoemission spectrum of (a, e) the generalized t-J , Eq. (3); (b, f) same but setting the second-neighbor hopping to zero; and
(c, g) t ′′ = 0. Panels (d) and (h) show results for the extended Hubbard model with t = 0.6, U/t = 8, and V/t = −1 for comparison. Upper
(lower) row panels are for a hole density of x = 7.5% (x = 15%).

realizes a more prominent feature at 3kF and the hf band, and
the continuum contains markedly more spectral weight in the
sidebands than the Hubbard model. We also include results

FIG. 4. Momentum distribution curves: cuts along the fixed fre-
quency dashed lines in Fig. 3 for hole densities (a) x = 7.5% and
(b) x = 15%. The features corresponding to the holon-folding (hf)
and 3kF bands are highlighted by arrows. The curves are ordered
from bottom to top and shifted 0.1 up in intensity from the previous
one for clarity.

for the generalized t-J model with V = −t , and we observe
results practically identical to those for the extended Hubbard
model with attraction.

Our results indicate that there are both kinetic and
many-body effects that affect the relative spectral weight con-
centrated in the sidebands: While t2 and t ′′ shift weight from
the center toward the folding and 3kF bands, the attraction V
shifts the weight toward the center and from the 3kF band into
the hf one. However, comparing with the cases of vanishing t2
and t ′′, we see that these terms also have an effect of shifting
weight from the 3kF to the hf band but of smaller magnitude.

VI. SUMMARY AND DISCUSSION

We have started our description of CuO3 chains of
Ba2−xSrxCuO3+δ from a four-band model (with one rele-
vant orbital per Cu or O atom). The hopping parameters of
the model were obtained using maximally localized Wannier
functions. Extending the cell-perturbation method used for
CuO2 planes of the superconducting cuprates to this one-
dimensional compound, we derive simpler one-band models
that are more amenable to numerical techniques due to the
smaller Hilbert space. In order to account for the effect of
excited triplets, the one-band Hubbard model should be sup-
plemented by other terms not usually considered. In addition
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TABLE I. Parameters of the different models discussed in the text in eV.

Hm Ud = 10 � = 3.5 ε
ap
O − εO = −0.4t x

pd = 1.10 t y
pd = 1.04 tpp = 0.60

HtJ t = 0.443 J = 0.314 eV V = −0.143 t ′′ = 0.068
HH U = 2.083 tAA = 0.443 tAB = 0.421 tBB = 0.369

the hopping term depends on the occupancy of the sites in-
volved. For energies below the value of the effective Coulomb
repulsion U , it is more convenient to use the generalized t-J
model.

We warn the reader that our starting three-band model
contains only short-range repulsion and the hopping param-
eters have been obtained from first-principles calculations
on the undoped compound. Doping necessarily involves re-
arrangement of charges that can affect, for example, the
charge-transfer energy. Therefore, the precise values of the
parameters of the effective models are expected to be accurate
only for small doping.

We have calculated the photoemission spectrum of this
model using the time-dependent density-matrix renormal-
ization group method. The results are in semiquantitative
agreement with experiment. We obtain that the hopping to
second nearest-neighbors and the three-site term Ht ′′ have a
moderate effect in shifting weight from the 3kF peak to the
holon-folding branch, but a nearest-neighbor attraction has
a stronger effect. For energies below U and if only either
electron or hole doping is of interest, a Hubbard model with
an artificially enlarged U that leads to the correct value of the
effective nearest-neighbor exchange J shows a photoemission
spectrum very similar to the corresponding results for the
generalized t-J model.
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APPENDIX: DERIVATION OF THE EFFECTIVE
ONE-BAND MODELS

Here we summarize the application of the cell-perturbation
method [25,26] to the case of the one-dimensional compound.

The Cu orbitals at each site are hybridized with symmetric
linear combinations of O orbitals of the form (dropping for the
moment the spin subscripts)

a†
i = p†

i+γ + p†
i−γ√

2
, q†

i = p†
i+δ + p†

i−δ, (A1)

To change the basis of the q†
i to orthonormal Wannier func-

tions [29], we Fourier transform

q†
k = 1√

N

∑
l

e−ikl q†
i = 2 cos(kδ)√

N

∑
j

e−ik j p†
j, (A2)

where the sum over l ( j) runs over all Cu(O) sites. The opera-
tors

π
†
k = 1

2| cos(kδ)|q†
k (A3)

satisfy {π†
k1
, πk2} = δk1,k2 . Transforming to real space, one

obtains the Wannier O orbitals centered at the Cu sites as
follows:

π
†
l = 1√

N

∑
k

eiklπ
†
k =

∑
j

A(l − j)p†
j,

A( j) = 1

N

∑
k

eik jsgn[cos(kδ)] = (−1) j−1/2

jπ
. (A4)

Changing the basis of the O orbitals, the hopping terms in
the Hamiltonian Eq. (2) (those proportional to t x

pd , t y
pd , and

tpp) that act inside each cell that includes a Cu site and the O
Wannier functions centered at the same site become

H intra
hop =

∑
iσ

[d†
iσ (Vxπiσ + Vyaiσ ) + VOπ

†
iσ aiσ + H.c.],

Vx = 2A(1/2)t x
pd , Vy =

√
2t y

pd , (A5)

VO = −2
√

2A(1/2)tpp,

while the remaining part of the hopping takes the form

H inter
hop =

∑
iσ

∑
l 	=0

Bl
[
π

†
i+lσ

(
t x
pd diσ −

√
2tppaiσ

) + H.c.
]
,

Bl = A(l + 1/2) + A(l − 1/2). (A6)

The on-site terms of H3b retain the same form. This part
and H intra

hop is solved exactly in the subspaces of one and two
holes. For one hole and given spin, one has a 3 × 3 matrix, and
we denote as E1 the lowest energy in this subspace. For two
holes and neglecting Up, there is a 6 × 6 matrix for the singlet
states and a 3 × 3 matrix for each spin projection of the triplet
states. The ground state of the subspace of singlets with the
energy Es is identified as the Zhang-Rice singlet (ZRS) [29]
and mapped into an empty site in the effective generalized
t-J model. The Coulomb repulsion in the effective Hubbard
model is U = Es − 2E1.

An advantage of the cell perturbation method is that most
of the hopping terms are included in H intra

hop and included
exactly in these matrices. The rest of the hopping H inter

hop is
treated in perturbation theory. The first-order correction gives
rise to effective hopping at different distances. An important
difference with the two-dimensional case is that the larger
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overlap between linear combinations of the original O or-
bitals centered at a Cu site [as the q†

i in Eq. (A1)] leads to
larger effective hoppings and to a slower decay with distance.
Note that the ratio of second nearest-neighbor (NN) hopping
to the first NN one is t2//t1 = −B2//B1 = 1/5 (the minus
sign comes from restoring the original signs of half of the
orbitals, which have been changed to simplify H3b) and for
third NN hopping the ratio is t3//t1 = B3//B1 = 3/35 (these
ratios change if corrections due to Up and Upd are included).

In the effective Hubbard model, there are actually three
different hopping terms depending on the occupancy of the
sites involved, while in the generalized t-J model, only the one
related with the exchange of Zhang-Rice singlets with singly
occupied sites is important.

The most important second-order corrections in H inter
hop lead

to a superexchange J and a nearest-neighbor attraction −V in
the generalized t-J model. For example, one of these second-
order processes leads to an effective spin-flip process between
a state with one hole with spin ↑ at site i and another with
spin ↓ at site i + 1, and to another one with the spins inter-
changed, through an intermediate state with no holes at site

i and two holes at site i + 1. While the states with one hole
correspond to the ground state of the abovementioned 3 × 3
matrix, the two-hole parts of the intermediate states include
all singlet and triplet states of the corresponding 6 × 6 and
3 × 3 matrices. This is an important difference with the Hub-
bard model, because in the latter only the ground state of the
6 × 6 matrix of singlets is included in the effective exchange
JH = 4t2

AB/U and the triplets are neglected, leading to an
overestimation of JH , because the contribution of the triplets is
negative.

The next important second-order corrections in H inter
hop cor-

respond to three-site terms. They lead, for example, to an
effective mixing between states with one hole at sites i and
i + 1 and a ZRS at site i + 2 and states with a ZRS at site
i and one hole at sites i + 1 and i + 2. As before, perform-
ing second-order perturbation theory in the Hubbard model
includes only a few of these contributions.

The different terms can be expressed analytically in terms
of the eigenstates and eigenenergies of the matrices of the
local cell mentioned above. The expressions are lengthy and
are not reproduced here.
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