PHYSICAL REVIEW B 108, 075124 (2023)

Origin of Hilbert-space quantum scars in unconstrained models
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Quantum many-body scar is a recently discovered phenomenon weakly violating eigenstate thermalization
hypothesis, and it has been extensively studied across various models. However, experimental realizations are
mainly based on constrained models such as the PXP model. Inspired by recent experimental observations
on the superconducting platform in the works by Zhang et al. [Nat. Phys. 19, 120 (2023)] and Yao et al.
[Nat. Phys. (2023)], we study a distinct class of quantum many-body scars based on a half-filling hard-core
Bose-Hubbard model, which is generic to describe in many experimental platforms. It is the so-called Hilbert-
space quantum scar as it originates from a subspace with a hypercube geometry weakly connecting to other
thermalization regions in Hilbert space. Within the hypercube, a pair of collective Fock states do not directly
connect to the thermalization region, resulting in slow thermalization dynamics with remarkable fidelity revivals
with distinct differences from dynamics of other initial states. This mechanism is generic in various real-space
lattice configurations, including one-dimensional Su-Schrieffer-Heeger chain, comb lattice, and even random
dimer clusters consisting of dimers. In addition, we develop a toy model based on Hilbert hypercube decay
approximation, to explain the spectrum overlap between the collective states and all eigenstates. Furthermore, we
explore the Hilbert-space quantum scar in two- and three-dimensional Su-Schrieffer-Heeger many-body systems,
consisting of tetramers or octamers, respectively. This study makes quantum many-body scar state more realistic

in applications such as quantum sensing and quantum metrology.

DOI: 10.1103/PhysRevB.108.075124

I. INTRODUCTION

Violations of eigenstate thermalization hypothesis in
strongly correlated quantum many-body systems are rare
[1-3], but quite important due to their potential applica-
tions in quantum information, including quantum integrability
[4,5], many-body localization [6-9], and Hilbert-space frag-
mentation [10,11]. These phenomena all strongly break the
ergodicity of many-body systems. Recently, a new type of
coherent many-body states has attracted great interest as some
special eigenstates, embedded in the thermalized spectrum,
exhibit nonergodic behavior. Thus, being analogous to scars
in single-particle quantum billiards, it was named quantum
many-body scar (QMBS), which was first discovered in a
Rydberg atom array in strong nearest-neighbor interaction
limit [12], reduced to the kinetically constrained PXP model
[13,14].

QMBS states have been studied in numerous quan-
tum many-body models, including the Heisenberg spin-
1 XY model [15,16], the Affleck-Kennedy-Lieb-Tasaki model
[17,18], the extended Hubbard model [19-22], the Ising
model [23], frustrated [24,25] and topological [26,27] lat-
tices, quantum Hall systems [28,29], Floquet-driven systems
[30-32], systems with a flat band [24,33,34], and two-
dimensional systems [35]. In addition, several general the-
oretical frameworks have been developed for QMBS states,
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including the embedding method [36,37] and quasisymme-
try groups [38—41]. QMBS states were used for generating
Greenberger-Horne-Zeilinger (GHZ) entanglement states [42]
and for robust quantum sensing [43—45]. Due to their ability
to defy thermalization, QMBS states have also been proposed
for manipulating and storing quantum information [46,47].

Nevertheless, experimental realizations are quite limited,
mainly on platforms such as Rydberg atoms [12—14], ultracold
87Rb atoms [48], and digital quantum simulator based on the
PXP model [49] and Li atoms based on the spin-1/2 XXZ
model [50]. Quite recently, a new class of QMBS was found
in superconducting qubits [51] in a one-dimensional (1D) Su-
Schrieffer-Heege (SSH) model with irregular cross couplings
based on the spin-1/2 XXZ model, where a pair of special
collective Fock states have revivals in fidelity dynamics with
a stable period. This class of QMBS is called Hilbert-space
quantum scar, having a distinct origin from the constrained
models in Hilbert space. Compared to most other QMBS
states, we find this kind of scarred states is experimental
friendly to be prepared in a superconducting processor or
other simulation platforms, which are based on unconstrained
models. Also, it possesses slow entanglement entropy growth,
which can be applied to the generation of GHZ states [42] and
quantum metrology [43—45].

In this paper, we systematically study the origin of the
Hilbert-space quantum scar in depth. This kind of scar states
in the hard-core Bose-Hubbard model had not been theoret-
ically investigated. Thus, in detail, we study its mechanism
from the viewpoint in Hilbert space in Sec. II, in which we
demonstrate the origin of this class of QMBS and propose a
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decay approximation of the Hilbert hypercube to describe the
scarring mechanism. Furthermore, in Sec. III, we numerically
verify the scarring phenomenon from both the eigenstates and
the special Fock state dynamics for the 1D SSH chain, comb
lattice, and random dimer cluster. In Sec. IV, we expand the
Hilbert-space quantum scar to higher dimensions, whose SSH
lattice is consisting of a set of tetramers in two dimensions,
where more kinds of special Fock states in higher dimensions
have slow thermalized dynamics.

II. MODELS AND HILBERT HYPERCUBE
A. Models and Hamiltonians

At first, we consider the Bose-Hubbard model, which is a
generic model for various quantum electrodynamics (QED)
systems. The generic Hamiltonian is given by (& = 1)

ﬁBH = Zwm
m
+ZU m m ?

where 8,5 (8,) is the raising (lowering) operator of the mth
quantum two-level system (qubit). As the nonlinearity U, is
much larger than the couplings (U,,/Jy, > 1), Hamiltonian
(1) can be reduced to the Heisenberg spin-1/2 XY Hamilto-
nian (also known as the hard-core Bose-Hubbard model)

G, 6 + > Jmn(6,56, +He)
’ (H

IS m ‘Ilnn )
fxy =Y (6 +o0) + 2 56360 +636). @

where 6;,”" are the spin-1/2 Pauli matrices and & is the

identity matrix. We have 6+ = 1/4/2(6} + 6,,). Hamilto-
nian equation (2) is generally studied in magneto mate-
rials [52-55], circuit-QED [56-59], and waveguide/cavity-
QED systems [60-62]. Thus, in this paper, we focus on
Hamiltonian (2).

Now, we start to study the mechanism of the scarring
phenomenon in the dimer cluster system with a Hamiltonian

as
Hy=Y ha+ ) hap, 3)
o o,f

where o, B = 1...N are the indices of dimers. We use “a, b”
to denote the sites in a dimer and “a, b” to represent the op-
erators of subdimer sites. Then, the smgle dimer Hamiltonian
and intradimer Hamiltonian are respectively written as

hy = wo@ta; +b7b,) + Jo(a
hap = D803 by + 8'byag + 8"afay +

., +H.c.),

8”’b+b +H.c.).
“

At first, we focus on a single dimer with no interdimer
coupling (i.e., J; = 0), which is crucial to understand these
special scarred eigenstates. Two eigenstates with particle-
number conservation are written as singlet state |dg) =
(]10) — |01))/+/2 with an energy of —J, and a triplet state
|di) = (]10) + |01))/ﬁ with energy of Jy. Thus, the decou-
pled Hamiltonian of N one-particle dimers (J; = 0) can be
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FIG. 1. (a) An example of the many-body system consisting of
four dimers. (b) and (c) show the adjacency graph in Hilbert space
corresponds to the real-space many-body system in (a). The whole
system is divided into hypercube and thermal environment, which
are in and outside the blue dashed circle, respectively. Two scar states
(red bullets) are C = |10101001) and C’ = |01010110). Bullets be-
longing to the hypercube denote Fock states |24, 25, Za, 2y Za3 23204 b, )
with z,, + 2, = 1 fora =1,2, ..., N, while gray ones do not meet
this requirement. Black and gray lines represent the intradimer J, and
interdimer J; couplings, respectively.

written as
N
Aer.=0=Jo ) _ Xa &)
a=1

where X, = [01)4 (10]o 4 |10)¢ (01| is the x component Pauli
matrix for the one-particle dimer «. It is a famous model
considered to hold perfect quantum state transfer and thus
exact fidelity revival, no matter what product state we choose
to set as an initial state. From analytical calculations, the
eigenenergy levels of decoupled Hamiltonian can be written
as E =rJy withr=—N,—N+2,...,N —2,N, which are
equally distributed.

As the intradimer coupling increases, the equal spacing of
eigenstates AE becomes large induced by the strongly cor-
related particles. In general, AE /Jy = A(J; /Jo)? + 2, where
the parameter A is related to the system size and approaches
a constant at the thermodynamic limit. For the 1D SSH chain
and comb lattice, we show the numerical fitting results in the
Appendix.

B. Robust hypercube in Hilbert space

From the viewpoint of Hilbert space, each Fock state |p) =
|Za,2b, 20526, - * - Zay 2y ) 18 TEPresented by a site, where z,, and
2p, are qubits a, and b, in their ground and excited states,
respectively. The connection between two Fock states or sites
implies their coupling, describing the particle motion from
one qubit to another. For the system with four coupled dimers
as shown in Fig. 1(a), the Hilbert-space adjacency graph can
be represented by a robust hypercube connecting to the Hilbert
thermalization region as shown in Figs. 1(b) and 1(c). It is
noteworthy that the hypercube represents the adjacency graph
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of the Fock states |py) with only one excited site in each
real-space dimer, i.e., z,, + 25, = 1 for each «.
Thus, we can rewrite the Hamiltonian in Hilbert space as

H =Hy + Hy+ Hyr, with

Hy = Z Jpugn|Pu){gqu| + H.c.,

PH,qH
Hr = Z Jprgr|PTYGT| + Hec,, (6)
pr.qr
Hyr = Z Jpugr 1) (g1] + Hec,
PH,4T

where Hy 1 denote the single-particle Hamiltonians for the
Hilbert hypercube region and for the Hilbert thermalization
region, respectively. The coupling coefficient is given by
Jy.q = (p|H|q). The hoppings between the Hilbert hypercube
and thermalization regions are represented by Hyr, where in-
dices “p, ¢” and “py,t, gu 7" stand for the Fock product states
in the full Hilbert space and in the hypercube/thermalization
subspace, respectively.

With weak interdimer couplings (J;) where each dimer
connects to two others, the symmetry of the Hilbert hypercube
is broken and the hypercube is connected to other regions.
However, there are still two unique collective states at op-
posite corners of the hypercube that do not directly connect
to other regimes. If the system is initially prepared in one
of these collective states (for example, |C) = |010101 ---) or
|C") = 1101010 --) in a quasi-1D comb model), it exhibits
slow thermalization dynamics. The Hilbert hypercube has di-
mension Dy = 2V, while the thermal region has dimension
Dr =D — Dy, where D = C(2N, N) is the total dimension
of the Hilbert space. As the system size increases, the thermal
region becomes much larger than the Hilbert hypercube region
and can be approximated as a thermal bath. Under these con-
ditions, the hopping from the Hilbert hypercube to the thermal
region can be considered as radiative decay, distinguishing
from the PXP model [63].

For a better understanding of the construction process, we
use the 1D SSH model with 2N sites in Fig. 4(a) as an example
to give the explicit form of Hy and Hyr which will be used
in the following calculation. Hy is related to the adjacency
matrix of an N-dimension hypercube

N
Hy=1Jy) X, (7)
a=1

which has the same form as the decoupled Hamiltonian in
Eq. (5), implying the intradimer hoppings between two Fock
states belonging to the hypercube. For a Fock state |py)
in the hypercube, there is only one particle in each dimer,
e.g., |101010---) < |011010- - - ). In addition, the hopping
between the hypercube and the thermal region is represented
by Hyr in the form of

07&;:-11;;}—12;-&-1 +H.c.), ®)

which refers to the interdimer hoppings between a hyper-
cube state and a state in the thermalization subspace, e.g.,
[101010---) <> |110010---).

We can determine the ratio of the hopping summation
between Hy and Hyr for the 1D SSH case as follows:

® N 2NJ0 N—o00 JO
Z) == e ©)
<F>1D (N = 1)2MJ, Ji

which demonstrates the strength of the hypercube’s connec-
tion to the rest of the Hilbert space. Here we define ® =
(1/2) Yy (prilHitlgr) and T = (1/2) Y, (pulHurlgr).
As dissipation is caused by the hopping from the hypercube to
the thermal environment (and additionally, the Hilbert space
is always too large to consider reflection), the ratio directly
influences the fidelity of the scar state and the dynamics of en-
tanglement entropy. The ratio will converge to a finite number
as the size of the SSH chain increases, indicating that the scar-
ring phenomenon will occur even in the thermodynamic limit.
In Sec. III, we examine the 1D SSH-chain and quasi-one-
dimensional comb lattice cases. We utilize next-next-nearest
neighboring coupling to enhance the scarring behavior, which
can be viewed as a kind of phase tuning for suppressing the
jump from the hypercube to the thermal environment. Fur-
thermore, to verify that this type of scarring extends to the
thermodynamic limit, we will conduct a scaling analysis in
Sec. III C by considering the two-dimensional (2D) case.

C. Hypercube decay approximation

Here, our goal is to estimate the overlap spectrum between
special Fock states and eigenstates using a toy model with
hypercube decay approximation (HDA). To depict the Hilbert-
space scarring phenomenon, we employ the nonequilibrium
Green’s function approach [64]. The Green’s function of the
Hilbert hypercube is expressed as [65]

G(E) = ((E +i0") — Hy — Z(E))™, (10)

where X is the self-energy that represents the effect of the
Hilbert thermalization region. By calculating the continuous
spectral density of states after the approximation, one can
obtain a reasonable estimation of the overlap between the
Fock state and the eigenstates in the original discrete spec-
trum. As defined in Eq. (7), Hy determines the dimension of
the nonequilibrium Green’s function G(E), implying that the
full Hilbert-space dimension 9D = C(2N, N) can be reduced
to Dy =2V, In general, our model is applicable to other
large-scale systems, where the thermalized region is much
larger than the hypercube and the connections between them
are relatively weak.

In detail, we can express the self-energy as X = ) ou Opu-
Here, 6, (E) = VI G(E)V ,, with V. = v, |pu) (pul is the
coupling between |py) and the thermal region. To emulate
the radiative decay, we assume that the state |py) in the
Hilbert hypercube is connected to a semi-infinite chain with a
hopping strength v, = >__ (pulH|qt) = >_, (pulHurlqr).
The hopping strength is the summation of the direct hopping
connection from a specific hypercube Fock state to the thermal
environment, as shown in Fig. 2. As a result, we can obtain the
self-energy of state |py) by solving the self-consistent Dyson
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(a)

FIG. 2. (a) The hypercube of the model we discuss in Fig. 1. For
each vertex, we show the coupling with the thermalization region.
(b) From the perspective of a vertex in the hypercube, the thermal
environment can be considered as a semi-infinite chain, represented
by the self-energy X. Thus, a set of semi-infinite chains leads to an
approximate decay rate of the Hilbert hypercube for a Fock state
in the Hilbert hypercube directly connecting to the thermalization
region.

equation
op(E) =V} (EI —Hy —0,,(E))"'V,,. (11

Then, we have the spectral function (density of states) as
1
A(E) = ——ImG(E). (12)
b4

The local density of states for state |py) in the Hilbert hyper-
cube is given by

Apy(E) = (pulA(E)|pn), (13)

which implies that Fock state |py) overlaps with the continu-
ous “eigenstates.”

We present a comparison between the exact computational
results and the toy model using HDA for a comb lattice with
N =7 in Fig. 3. We will discuss the numerical details for the
comb lattice in Sec. III. Our model successfully reproduces
the exact result near the zero-energy regime, both for the tower
heights and for the energy. However, this model overestimates
the tower heights at high energies. As the strength of the inter-
dimer coupling J; approaches the intradimer coupling Jy, the
overestimation of tower heights gradually becomes weaker.

III. QUANTUM SCARRING IN SYSTEMS
CONSISTING OF DIMERS

We consider a set of dimers with appropriate interdimer
coupling J;. There is only one coupling link between two
neighbor dimers. In this section, we numerically demonstrate
a one-dimensional SSH chain, quasi-one-dimensional comb
lattice, and random dimer cluster.

A. Su-Schrieffer-Heeger chain with perturbation

Here, we numerically study the quantum thermalization
properties of the scarring states in the one-dimensional SSH
lattice. The clean SSH Hamiltonian is given by the Hamilto-
nian in Eq. (4) with

B=a+1, §=1,

§=38"=8"=0. (14)

E

FIG. 3. Comparison of overlaps between the collective state |C)
and eigenstates in the comb lattice for the exact result (black dots)
and HDA (green solid curve), respectively. Additionally, the blue
squares represent the special eigenstates of a decoupled hypercube
(J; = 0). The intradimer coupling is fixed at Jy, = 1.5. The interdimer
coupling in different panels is given by (a) J; = 0.8, (b) 0.9, (¢) 1,
and (d) 1.1, respectively. Here we set the dimer numbers N = 7.

The clean spin-1/2 XY SSH chain is integrable. We apply
a long-range interaction term, as a perturbation, to break its
integrability. Thus, the Hamiltonian is Hssy = Hy + Hz with

Hy =1 (afby,, +bia, ,+Hc.), (15)

where J3 is the strength of the next-next-nearest-neighbor
coupling. Figure 4(a) shows the configuration of the non-
integrable SSH Hamiltonian. Such a perturbed SSH chain
emerges to be thermalized and its level-spacing statistics agree
with the Wigner-Dyson distribution. We numerically obtain
the level-spacing ratio (r) as a function of the strength of
the next-next-nearest coupling J3 for various strengths of J;
and a fixed system size N =9, as shown in Fig. 4(b). The
energy-level statistics imply that the nonintegrability emerges
at the perturbation strength J;3 > 0.06Jy. We note that such a
nonintegrable threshold of J3 is not robust for different system
sizes. In general, a larger system has a smaller threshold value
of .]3.

Now, we focus on the scarred eigenstates. At first, we plot
the overlap between the collective state |C) and all eigenstates
|Ey) for a dimer number of N =9 (i.e., 18 qubits and 9
particles) with the coupling coefficients given by Jo/J; = 1.6
and J3/J; ~ —0.162, as shown in Fig. 4(c). Differing from
most eigenstates, a set of special states has a strong overlap
with the collective states, located at the peaks of towers. These
towers have an equal energy spacing, also fitted by a quadratic
function for the nonintegrable SSH system (see Appendix).
We also plot the spectral function of state |C) estimated by
the HDA. The tower energies in the HDA greatly agree with
the exact simulation, while the tower heights away from zero
energy are inaccurate.
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FIG. 4. (a) A SSH-chain schematic diagram with a set of dimers
for the spin-1/2 XY model. The intra- and interdimer couplings
are marked by solid and dashed lines, respectively. a,,, b, with
m=1,2,3,... denote the two sites in a single dimer. (b) The
energy-level spacing ratio (r) of the SSH chain as a function of
the next-next-nearest-neighbor coupling strength J; for intradimer
coupling strength J, from 1 to 2 with a step of 0.1. (c) Scattering plot
of the overlap of many-body eigenstates with the special collective
state as a function of energy for the 1D SSH chain. (d) Half-chain
bipartite EE as a function of eigenstates for the 1D SSH chain. The
dimer number in [(b)—(d)] is N = 9 with nine particles. The coupling
strengths in (c) and (d) are given by Jy/J; = 1.5and J5/J; = —0.162.

Furthermore, we calculate the bipartite entanglement en-
tropy. The von Neumann expression of the entanglement
entropy (EE) is written as

S4 = —Tralpalnpal, (16)

where ps = Trp(|¢)(¢]) is the reduced density matrix of
subsystem “A” since the system is equally divided by two
subsystems, “A” and “B.” We compute the EE for the one-
dimensional SSH chain in Fig. 4(a) for the same parameters.
Figure 4(d) shows the eigenstates bipartite EE. It can be ob-
served that the states in the bulk of the entropy spectrum show
larger entanglement entropy following the volume law [66].
The eigenstate EE of near-zero energy is close to the Page
value Sp = N 1In2 — 1/2. Some special states have relatively
smaller EE, manifesting the existence of scarred eigenstates
embedded in the thermal energy spectrum.

Next, we study the fidelity and EE dynamics of different
initial product states. The fidelity is given by

F (1) = (WO) W), a7

where |W(t)) = exp[—iHt]|W(0)) is the general time-
dependant wave function. As shown in Fig. 5(a), the fidelity
dynamics of a special collective state |C) exhibits revival
phenomenon with a period of AT =~ 27 /AE, mainly con-
tributed by the overlap towers in the energy spectrum. These
ultrasmall thermalized dynamics are distinguished from rapid
thermalization for other randomly chosen initial states. We
also compare the time evolution of the EE for the ordi-
nary thermalizing states with the special collective states in
Fig. 5(b). The EE of the special collective states slowly grows

Salt)

Random

FIG. 5. (a) Comparison of the dynamics of the fidelity for the
collective state |C) and ten randomly chosen Fock states for the 1D
SSH-chain system. Inset shows the height of the first fidelity revival
¥ as a function of next-next-nearest-neighbor coupling J; for sys-
tems with different dimer numbers from N = 6 to 9. (b) Comparison
of the dynamics of the bipartite EE for the collective state |C) and
ten randomly chosen Fock states for the 1D SSH-chain system. In
panels (a) and (b), the number of dimers is N = 9, consisting of nine
particles. The coupling coefficient J,/J; = 1.6 and J3/J;, = —0.18.

with slight oscillations. Differently, the EE dynamics of the
ordinary thermalizing states rapidly increase until its value is
close to the Page value.

In Fig. 5(c), we also plot the fidelity at its first revival ¥} =
F (t,) as a function of J; for different systems from N = 6 to
10. We find that the peak value of F; appears on J3 ~ —0.2Jp,
while the peak value gradually drops, being accompanied by
the increase of the system size.

Further, we plot the logarithmic fidelity density (Inf;)/2N
[21] as a function inverse system size 1/2N in Fig. 6. For the

or ]
Z 021 i
[\l
=
5 o4l —1—OBC —O0— PBC —e—1/D
06 i v v 1 1 1 1 ]
0.03 0.04 0.05 0.06 0.07 0.08 0.09

1/2N

FIG. 6. The logarithmic fidelity density as a function of the in-
verse system size 1/2N in an SSH chain for the collective initial state
|C) with OBC and PBC, respectively. The black curve represents the
scaling of the inverse Hilbert-space dimension, implying the scaling
of a typical thermalizing state.
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FIG. 7. (a) Quasi-1D comb lattice consisting of eight dimers
for the spin-1/2 XY model. The intradimer Jy and interdimer J;
couplings are denoted by solid and dashed lines, respectively. a,,, b,,
withm =1, 2, 3, ... denote the two sites in a single dimer. (b) Scat-
tering plot of the overlap of many-body eigenstates with the special
collective state as a function of eigenenergy for the comb lattice.
(c) Comparison of the dynamics of the fidelity with initial Fock
states for a collective state |C) and ten randomly chosen Fock states.
(d) Comparison of the bipartite EE dynamics for the initial Fock
states mentioned in (c). In panels [(b)—(d)], we consider the many-
body comb lattice consisting of nine dimers with nine particles. The
coupling ratio is given by Jy/J; = 1.6.

randomly chosen initial Fock states, its long-time fidelity is
1/D. However, for the collective state |C), its scaling of loga-
rithmic fidelity density has a small slope around 0.075, being
distinctive from 1.2 for ideal thermalizing states. The above
discussion is under the open boundary condition (OBC). For
the periodic boundary condition (PBC) case, the logarithmic
fidelity density shows a zigzag scaling. The fidelity density
for PBC is close to the OBC case for N € even, but the larger
difference for N € odd. This difference is gradually relieved
as the system size increases, as shown in Fig. 6.

B. Quasi-one-dimensional comb lattice

Here, we study the quantum scarring phenomenon of the
scarring states in the quasi-one-dimensional comb systems.
The origin of the quantum scars is the same as the SSH model,
from the robustness of the Hilbert cube. The only difference
is in the connection between the cube and the thermal re-
gion in Hilbert space. The Hamiltonian of a comb lattice is
also given by the Hamiltonian in Eq. (4), but with different
parameters of

B=a+1, § =1,
s5=08=258"=0. (18)

The clean comb model is nonintegrable and thus another per-
turbation term is not necessary.

We consider a comb lattice consisting of nine dimers with
the configuration in Fig. 7(a). The couplings are given by
Jo=1.6 and J; = 1. The square overlaps |(C|E;)|*> show
sharp towers in Fig. 7(b), while the eigenstates are denser in
each tower than the above SSH model. The HDA estimation
perfectly fits the tower energy. In Figs. 7(c) and 7(d), we plot

0 T T T
—3—1IC) —e—1/D
-0.21 9
Z
g e -
& ke H \“.
= i . \
- .55 & S
04 \'\ ¢ . . u ',. |
. e=D e
06F M‘/ i
0.05 0.07 0.09 0.11 0.13
1/2N

FIG. 8. The red curve is the logarithmic fidelity density
(InF,/2N) as a function of inverse system size 1/2N for the col-
lective initial Fock states |C) in a random dimer cluster, where 7
stands for the peak value of the first revival. Red circles and error bars
denote the mean values and standard error for different system sizes,
respectively. Each circle and error bar is based on 20 configurations
of random dimer clusters. The black arrow marks the fidelity density
of an example for a random dimer cluster consisting of eight dimers
with eight particles (shown in the inset), where the black bullets
and circles denote qubits in excited and ground states, respectively,
showing one of the collective states |C). The gray curve is the scaling
of inverse Hilbert-space dimension 1/9, implying the scaling of
typical thermalizing states. In this figure, we consider a coupling
ratio of Jy/J; = 1.6.

the fidelity and EE dynamics both for a collective state and
randomly chosen states. We find that the collective state has
strong fidelity revivals and slow growth of EE, in contrast to
the near-zero fidelity and rapid growth of EE for randomly
chosen initial states. We also note that the variance of those
randomly chosen states in EE dynamics is quite small, in
particular for late time.

We also note that a previous study of the comb system with
offshoots of random lengths was shown to have “compact”
localized states, as well as the quantum scarring phenomenon
based on a model with density-density interactions [34]. The
origin of such scarring is from the single-particle compact
localized state in a unit consisting of three backbone sites, the
mechanism of which is distinct from the study here.

C. Random dimer cluster

Furthermore, we consider random configurations of the
dimer cluster. The Hamiltonian is given by Eq. (4), restrict-
ing that each site has at most two hopping connections to
other dimers, and there is only one coupling link between
two neighbor dimers. As for choosing the initial state, the
phase of paired dimers is 7. The inset of Fig. 8 illustrates an
example of a random dimer cluster consisting of eight dimers.
The number of configuration combinations exponentially rises
with the increase in system size. We calculate the scaling of
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FIG. 9. The Hilbert hyperpolyhedron with two particles in
each tetramer in real space for (a) a tetramer and (b) two
tetramers, respectively. Red bullets denote a pair of second collective
states {|Cx), |C.)}. Blue bullets denote the first collective states
{IC)). 1C}), IC=), ICL)}, respectively. Purple bullets stand for those
mixed Fock states of first and second classes, which also have no
direct connection to the Hilbert thermalization region.

the logarithmic fidelity density of the first revival in Fig. 8.
We average over 20 random configurations in each system
size. The average logarithmic fidelity density scaling of the
collective state implies that such a collective state can survive
as the system size increases, with a remarkable difference
from the scaling of 1/ for thermalized states.

IV. HILBERT-SPACE SCARS IN HIGHER DIMENSIONS

In this section, we study the quantum many-body Hilbert-
space scars in higher dimensions, in which the unit of a lattice
is not a dimer anymore. For example, the unit is a tetramer and
octamer in 2D and 3D SSH many-body models, respectively.

Similar to dimer systems in low dimensions, the intra- and
intertetramer couplings are denoted by Jy and J;, respectively.
Each tetramer consists of four qubits, allowing us to consider
a 2D many-body SSH lattice composed of a set of tetramers.
For a clean 2D SSH lattice in the spin-1/2 XY model, the
system is nonintegrable. In Hilbert space, a special subset is
distinct from other Hilbert thermalization regions, particularly
for Jy > Jj, called the Hilbert hyperpolyhedron, which resem-
bles the hypercube in low-dimensional systems. The Hilbert
hyperpolyhedron is spanned by the Fock product states with
two particles in each tetramer, and is more intricate than the
low-dimensional cases composed of dimers, as depicted in
Fig. 9 for one and two tetramers. More generally, the defi-
nition of the Hilbert hyperpolyhedron is the adjacency graph
of the Fock states |py), where each basic unit is half-filled.
Here, the basic unit denotes the dimer for the 1D/quasi-1D
case, the tetramer for the 2D case, and the octamer for the
3D case.

In the Hilbert hyperpolyhedron, a series of classes of Fock
product states are special with collective features between
adjacent tetramers. Among them, two classes of collective
states, |Cj) and |Cy), exhibit remarkable scarred dynamics.
The first class of collective states |C};) (or |C=)) is essentially

— C) — |C”> Random

0 5 10 15
Jit

FIG. 10. (a) Two classes of the collective Fock states |C};) and
|Cx) for the 2D SSH model consisting of four tetramers. Solid
and dashed lines denote the couplings Jy and J;, respectively. The
black bullets and circles denote qubits in excited and ground states,
respectively. (b) Overlaps between the collective Fock states |Cjj)
or |Cy) and eigenstates. (c) and (d) show the fidelity and bipartite
EE dynamics for |Cj), |Cx), and 20 randomly chosen Fock states,
respectively. In panels [(b)—(d)], we consider N, = N, = 2, i.e., four
tetramers in total with eight particles. The coupling ratio is given
by Jo/Ji = 2.5. Inset of (c) shows the scaling of logarithmic fidelity
density (In¥;/4N) for state |Cx), |C), and inverse Hilbert-space
dimension 1/ from the TDVP with a bond dimension of 256 and a
time step of 0.02.

associated with the 1D SSH case along the x (or y) axis while
it is simply a replica of a 1D SSH chain along the y (or x)
axis, as illustrated in the upper panel of Fig. 10(a). The second
class, |Cy), is a true 2D collective state where two diagonal
sites in a tetramer are occupied by two particles and two
adjacent tetramers have a m phase difference, as illustrated
in the lower panel of Fig. 10(a). These two classes of states
in the Hilbert hyperpolyhedron lack a hopping connection to
the thermal region, while decoupled states are not limited to
those. Other decoupled states are combinations of these two
classes.

In the energy spectrum from eigenstates, both |C}) and
|C«) have high overlap with special eigenstates, resulting in
a set of equally spacing towers, as shown in Fig. 10(b). The
difference is that the overlap of |Cy) is overall higher than
|C) with lanky towers. This allows that the fidelity dynamics
of |Cy«) show higher revivals, as shown in Fig. 10(c). On
the contrary, other randomly chosen states quickly thermalize
and lose their initial information. Furthermore, the remarkable
differences of those initial states are distinct in bipartite EE
dynamics in Fig. 10(d). In addition, we note the oscillation
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FIG. 11. Three classes of collective Fock states for a 3D SSH
lattice consisting of two octamers. Solid and dashed lines denote the

couplings Jy and J;, respectively. The black bullets and circles denote
qubits in excited and ground states, respectively.

period of |Cjj) in EE dynamics is double of |Cy), which is
caused by the configuration difference of these two initial
Fock states and the cut of two subsystems.

Differently, from the low-dimensional system, the scarred
state in the 2D case is hard to verify by the scaling from the ex-
act numerics as the exponential expansion of the Hilbert-space
dimension exists. However, referring to the low-dimensional
case in Secs. II and III, we also can approximately give the
ratio of the hopping summation between Hy and Hyr for the
2D case by

(7)..-

where N, , denotes the tetramer numbers along the x and y
axis, respectively. Then, the total tetramer number is given by
N = N,N,. Thus, this distribution behavior of the collective
states is distinct from the others beyond the hyperpolyhedron
region, even in the thermodynamic limit. Also, in the inset
of Fig. 10(c), for different system sizes, we calculate the
logarithmic fidelity density (InF;/4N) for state |Cx) shown
in Fig. 10(a) by using the time-dependent variational princi-
ple (TDVP) [67-69], and its scaling of inverse system size
1/4N suggests states |Cyx) and |C’,) can survive in the ther-
modynamic limit. However, the scaling curve of state |C)))
is more tilted than |Cy). Thus, it is hard to conclude its
existence in the thermodynamic limit and further study is
needed.

The mechanism of Hilbert-space scars from 1D to 2D is
reminiscent of similar scars in three dimensions. Naively, we
first construct two classes of special collective states in the
x-y plane, as mentioned in the 2D case, and then replicate
them to each plane along the z axis. Using two octamers as
an example, we show the configuration of the 3D case |Cy)
and |C)) in Figs. 11(b) and 11(c), respectively. To seek more
remarkable scarred dynamics, we should introduce the initial
state configuration shown in Fig. 11(a), denoted by |C,). The
key feature of |C,) is that we can see an SSH chain when we
look along any straight line in any direction. This provides a
viable solution for creating quantum scars originating from
hypercubes in arbitrary dimensions. As a rough feasibility
verification, we can also approximately give the ratio of the

(4/3)NXNV6N‘M'J() Ny,Ny—00 2Jy
(2NN, — N, — N6V J, 37,

hopping summation between Hy and Hyr for the 3D case by

(?);

(24/7)NYNVN17ON‘N\N’JO
2 x (3Nx]vyNz - NXNV - ]V.VNZ — NZNX)7ON"'N~“NZJI
NN Moo 4y
Solemes 0

7

(20)

Similar to the case in 1D and 2D, that ratio finally will be a
finite number even under an infinite scale. More generally, we
can derive the ratio in the M-dimensional SSH case

® size— 00 2M71J0
i . 1)
T ) " — 1)),

The result will converge to a finite number however large
M is, implying that the Hilbert-space quantum scar in high
dimensions also originated from the hyperpolyhedron.

V. DISCUSSIONS

In summary, we systematically study a distinct class of
QMBS based on a hard-core Bose-Hubbard model in arbitrary
dimensions. In the simplest form, this model consists of a set
of dimers and it is different from the conventional constrained
model, typified by the PXP model. We find that, in general, the
origin of this kind of scar is caused by a robust subspace with
specific hypercube configurations surrounded by a thermal-
ization region with slightly weak couplings in Hilbert space,
thus it is also called Hilbert-space quantum scar. Within this
hypercube subspace, there exist special Fock states, called
collective states, which lack direct coupling to the Hilbert
thermalization region. These collective states exhibit periodic
fidelity revivals and show an almost linear growth of the
bipartite entanglement entropy as a function of time, unlike
other randomly chosen Fock states. Additionally, some of
the special scarred eigenstates have a significant overlap with
these collective states, revealing equal-spacing towers in the
energy spectrum. Moreover, these special eigenstates show
a lower bipartite entanglement entropy compared to other
eigenstates. As the system size increases, the volume of the
Hilbert thermalization region exponentially expands, leading
us to assume that it acts as a thermal bath.

To verify the assumption, our analysis shows that the ra-
diative decay of the hypercube into the thermalization region
can be accurately described using the nonequilibrium Green’s
function approach in this toy model, with the predicted over-
lap spectrum agreeing with the results from exact numerical
simulations. Through our investigations of the eigenstates and
dynamics of the collective Fock states, we have demonstrated
various dimer lattice configurations, including the 1D SSH,
comb lattice, and random dimer cluster. Furthermore, we
explore Hilbert quantum scars in higher dimensions, where
the higher-dimensional lattice is consisting of tetramers or
octamers for two and three dimensions, respectively. Those
higher-dimensional Hilbert-space quantum scars have the
same origin as the low-dimensional case, while more classes
of special Fock states with remarkable fidelity revivals can
be found. We also calculate the scaling results of the 1D
SSH, random cluster, and 2D SSH models. The scaling of
those quantum many-body scar states implies that the scarring
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FIG. 12. (a) Polynomial fitting of the equal spacing of eigen-
states AE. The dots show the numerical results of AE while the lines
show the polynomial fitting curve. In addition, the crosses represent
the results calculated by the HDA method. The fitting process con-
siders the data with Jy/J; in the interval of [0, 1.2], and the number
of dimers is set as N = 8. (b) Curve fitting parameter A according to
system size. In both panels (a) and (b) orange and blue lines (dots,
crosses) show the results of the 1D SSH model and the comb lattice,
respectively.

phenomenon can survive as the system size increases, with a
remarkable difference from the scaling behavior for thermal-
ized states.

This model and the lattice configurations are experi-
mentally friendly since a number of platforms, such as
superconducting circuit-QED systems, cold atoms, and ion
trapping systems, can simulate the hard-core Bose-Hubbard
Hamiltonian in a straightforward way. In addition, the initial
state is a Fock product state, which is easy to prepare in
many experimental platforms. For instance, in the supercon-
ducting platform, the coupling strength can be modified by
tuning the detuning of a coupler qubit connecting to two
nearest-neighbor qubits, resulting in the observation of this
kind of QMBS in 1D [51] and 2D [70] SSH configurations.

Furthermore, realization in such platforms can improve the
coherent time of specific many-body states, which highlights
the potential for utilizing Hilbert-space quantum scars in
quantum sensing and quantum metrology [43—45].
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APPENDIX: NUMERICAL FITTING OF THE EQUAL
SPACING OF EIGENSTATES AE

We’ve discussed in the main text that AE of the noninte-
grable systems such as the 1D SSH model and comb lattice
can be fitted by quadratic functions with a size-dependent
parameter A. For comb lattice, we can fit it by AE/Jy =
A(J1/Jo)? + 2 which is mentioned before. Meanwhile, we
should consider the effect of the next-next-nearest coupling J3
in the nonintegrable 1D SSH model. Here we choose J3/Jy =
—0.2 as an example. We find that the fitting function approx-
imately changes to AE /Jy ~ A(J1/Jo + J3/Jy)* + 2. Both of
their fitting results are shown in Fig. 12(a). If J;/Jp is small,
approximately in the interval between 0 and 1, the quadratic
function fits very well. While the data points outside this inter-
val hold a tendency to gradually deviate from the fitted curve
because the correlation between hypercube and thermal bath
becomes stronger when J; /Jy increases. Similarly, the HDA
method becomes invalid to predict AE well as the interdimer
coupling J; increases.

Furthermore, we show how fitting parameter A changes
according to the system size. In both the comb model and
the 1D SSH model, the size-dependent parameter increases
as the dimer number changes from N = 4 to N = 9, while the
growth rate is gradually slowing down.
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