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We investigate the non-Hermitian Haldane model on hyperbolic {8, 3} and {12, 3} lattices and showcase its
intriguing topological properties in the simultaneous presence of non-Hermitian effect and hyperbolic geometry.
From bulk descriptions of the system, we calculate the real-space non-Hermitian Chern numbers by generalizing
the method from its Hermitian counterpart and present a corresponding phase diagram of the model. For
boundaries, we find that skin-topological modes appear in the range of the bulk energy gap under certain
boundary conditions, which can be explained by an effective one-dimensional zigzag chain model mapped from
a hyperbolic lattice boundary. Remarkably, these skin-topological modes are localized at specific corners of the
boundary, constituting a hybrid higher-order skin-topological effect on hyperbolic lattices.
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I. INTRODUCTION

The non-Hermitian system is a nonconservative open sys-
tem [1] in which many unique physical phenomena that have
no counterpart in the Hermitian case can emerge. Complex
eigenvalues are allowed in non-Hermitian systems and ex-
ceptional points at which both eigenvalues and eigenstates
coalesce can appear [1,2]. The coexistence of non-Hermitian
effect and topology has resulted in many exotic non-Hermitian
phenomena being discovered and reinterpreted [3–20]. Non-
Hermitian skin effect [21–24] is a prominent example among
them, that is, all eigenstates are localized to open boundaries
of the non-Hermitian system. The non-Hermitian skin effect
breaks down the usual bulk-boundary correspondence pre-
dicted by the Bloch theory [21,25]. A non-Bloch theory based
on the generalized Brillouin zone [21,26–28] is developed to
remedy the bulk-boundary correspondence in non-Hermitian
systems. Interestingly, it is also found that the interplay be-
tween non-Hermitian skin effect and the topological boundary
state can give rise to skin-topological modes [29], the so-
called hybrid higher-order skin-topological effect [29–38].

Recently, the hyperbolic lattice has attracted considerable
interest [39–55]. The hyperbolic lattice is a lattice that exists
in a space of constant negative curvature. One can tessel-
late hyperbolic planes with any regular p-side polygon with
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p > 2, unlike in a two-dimensional Euclidean plane where
only three regular p-side (p = 3, 4, 6) polygon tessellation
can exist. With the experimental realization of hyperbolic
lattices in circuit quantum electrodynamics [39] and electric
circuits [44,46], this greatly inspired the research interest in
hyperbolic lattice, such as the topological properties of hy-
perbolic lattice [40,47], Chern insulator [48,55], high-order
topological insulator [49,50], and hyperbolic band theory
[41,43,51,53], etc. So far, most of the research efforts on
non-Hermitian effect have focused on the lattice in Euclidean
space but little attention has been paid to the corresponding
effect in hyperbolic lattices. Stimulated by the experimental
realization of hyperbolic lattices and rich topological physics
in non-Hermitian systems, we explore the non-Hermitian
topological effects on hyperbolic lattices in this paper.

We extend the non-Hermitian Haldane model to hyper-
bolic lattices (including hyperbolic {8, 3} and {12, 3} lattices),
and systematically study the topological properties under
non-Hermitian effects [30]. By calculating the real-space
non-Hermitian Chern number, we present a phase diagram
for the model in related parameter space. We also verify
the topological robustness of corresponding boundary states
against Anderson disorder by the localization index called
the inverse participation ratio (IPR). As such, we prove the
exotic topological properties in the non-Hermitian Haldane
model on both hyperbolic {8, 3} and {12, 3} lattices from
bulk as well as boundary descriptions. Remarkably, we find
that the non-Hermitian effect will drive the one-dimensional
topological boundary states to skin-topological modes at the
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corners, forming a hybrid higher-order skin-topological effect.
We explain the appearance of such a hybrid higher-order skin-
topological effect by a one-dimensional zigzag chain model
mapped from the specific boundary conditions of hyperbolic
lattices.

The rest of this paper is organized as follows. Section II
introduces the non-Hermitian Haldane model Hamiltonian.
Section III investigates topological properties of the non-
Hermitian Haldane model and their robustness against disor-
der on the hyperbolic {8, 3} lattice. Section III presents the
appearance of the hybrid higher-order skin-topological effect
and its explanation. Section IV generalizes our main results to
the hyperbolic {12, 3} lattice. Finally, we provide some further
discussion and conclusions in Sec. V.

II. NON-HERMITIAN HYPERBOLIC HALDANE MODEL

We consider a non-Hermitian version of the celebrated
Haldane model on the hyperbolic lattice [56],

H = t1
∑
〈i, j〉

c†
i c j + t2

∑
〈〈i, j〉〉

eiνi jφc†
i c j

+ (m + iγ )
∑
i∈A

c†
i ci − (m + iγ )

∑
i∈B

c†
i ci, (1)

where c†
i (ci) is the creation (annihilation) operator of electron

at site i. The first term is the nearest-neighbor hopping with
the amplitude t1. The second term represents a complex next-
nearest-neighbor (NNN) hopping with an amplitude t2 and a
phase νi jφ. The value of νi j is +1(−1) for the hopping in
the clockwise (counterclockwise) direction. The phase φ is
proportional to the flux enclosed by the cyclic NNN hoppings,
and we set φ = π/2 throughout the paper. m and iγ in the
third term are real and imaginary on-site stagger potentials,
respectively. The Hamiltonian is made non-Hermitian by the
imaginary part of the potential, which is related to the on-site
energy gain and loss. We first consider the Hamiltonian in
Eq. (1) on a hyperbolic {8, 3} lattice [see Fig. 1(a) for the
geometry]. The Hermitian case, i.e., γ = 0, has been exam-
ined in a recent work [47]. It is found that while the real
staggered potential only results in a trivial insulator at half
filling, the NNN spin-orbit coupling opens two topological
gaps located above and below Re(E ) = 0, respectively. The
resulting topological phases are characterized by nontrivial
Chern numbers and chiral edge states.

Figure 1(b) plots the energy spectrum of a case of γ �= 0
and m = 0 on a circular flake of hyperbolic {8, 3} lat-
tice. Due to the non-Hermitian nature of the Hamiltonian,
the eigenvalues are complex and thus are demonstrated as
points in the [Re(E ), Imag(E )] plane. Under the basis � =
(ψA

1 , . . . , ψA
N , ψB

1 , . . . , ψB
N )T, the Hamiltonian in real space

can be written as H = �†H�. It can be verified that the
matrix H satisfies a pseudo-Hermitian condition [57],

ηHη = H†, (2)

where

η =
[

0 IN

IN 0

]
, (3)
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FIG. 1. (a) Schematic illustration of the Haldane model on a
hyperbolic {8, 3} lattice. The black dashed lines indicate the next-
nearest-neighbor hoppings with amplitudes t2e±iφ . The sign of φ is
positive (negative) for the (opposite) direction marked by the arrow,
which arises due to an alternating magnetic flux. (b) Energy spectrum
of the Hamiltonian in Eq. (1) on a hyperbolic {8, 3} lattice with
open boundary condition. (c) The corresponding density of states of
bulk (blue) and edge (green) states. The red dotted lines in (b) and
(c) estimate the topological gap above the energy Re(E ) = 0 (the
lower one is symmetric). Here the parameters in (b) and (c) are
t1 = 1, t2 = 0.2, m = 0, and γ = 0.3.

and IN is a N × N identity matrix. Suppose H has a com-
plex eigenvalue Ej with the eigenvector ϕ j , which satisfies
Ej = 〈ϕ j |H|ϕ j〉. By a Hermitian operation, we get

E∗
j = 〈ϕ∗

j |H†|ϕ∗
j 〉 = 〈ϕ∗

j |ηHη|ϕ∗
j 〉. (4)

This implies E∗
j is also an eigenvalue of H with the corre-

sponding eigenvector η|ϕ∗
j 〉. Hence, the complex eigenvalues

appear in conjugate pairs, resulting in the mirror-symmetric
spectrum about the x axis.

In the next section, we calculate the corresponding density
of states. Since a circular flake geometry is considered, we
would like to distinguish the contributions from the bulk and
edge states. For the j th eigenvector |ϕ j〉 = {φ j,x}x∈Nsites , we
define the bulk weight ωbulk

j and the edge one ω
edge
j :

ωbulk
j =

∑
x∈Nbulk

|φ j,x|2, ω
edge
j =

∑
x∈Nedge

|φ j,x|2, (5)

where Nedge is the number of sites enclosed outside a circle
of 0.95 radius of the circular flake, and Nbulk = 16 counts the
sites in the innermost unit cell. The bulk (edge) density of
states can be extracted via

ρb(e) (E ) = 1

Nsites

Nsites∑
j=1

ω
bulk(edge)
j δη(E − Ej ), (6)

where we choose a Gaussian smearing function to approxi-
mate the delta function δη(ε) = 1

η
√

2π
exp[− ε2

2η2 ]. As shown
in Fig. 1(c), the two symmetric energy gaps generated by
the spin-orbit coupling remain even in the presence of a
non-Hermitian term. In addition, there appear edge states
traversing the gaps, implying the resulting non-Hermitian in-
sulators are still topologically nontrivial.
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FIG. 2. (a) Convergence of the real-space Chern number for the
two non-Hermitian topological phases as the lattice size increases.
The blue (red) symbol represents the case that the chemical poten-
tial is located in the lower (upper) topological gap. (b) CRS as a
function of chemical potential μ on a hyperbolic {8, 3} lattice with
500 sites. IPR for various disorder strengths without (c) and with
(d) the non-Hermitian potential. In (c), and (a), (b), (d), the values
of the imaginary potential are γ = 0 and 0.3, respectively. The other
parameters are the same as those in Fig. 1(b).

The Hermitian hyperbolic topological band insulators have
been characterized by the real-space Chern number formu-
lated as

CRS(μ) = 12π i
∑
j∈A

∑
k∈B

∑
l∈C

(
Pμ

jkP
μ

klP
μ

l j − Pμ

jlP
μ

lkP
μ

k j

)
, (7a)

Pμ =
∑
Ej<μ

∣∣ϕR
j

〉〈
ϕL

j

∣∣, (7b)

where Pμ is the projector onto the subspace of occupied
single-particle states at chemical potential μ, and A, B, C
are three regions in the bulk of the systems that do not ex-
tend all the way to the boundary, and which are arranged
counterclockwise around the center of the system. To apply
the method to the non-Hermitian case, it is necessary to dis-
tinguish the left and right eigenvectors in constructing the
projector Pμ, which satisfy H†|ϕL

j 〉 = E∗
j |ϕL

j 〉 and H|ϕR
j 〉 =

Ej |ϕR
j 〉, respectively [58]. Since the non-Hermitian Hamilto-

nian can be written as H = T �T −1 with � a diagonal matrix,
the right and left eigenstates are just the columns of T and
(T −1)†, and are orthonormal, i.e., 〈ϕL

i |ϕR
j 〉 = δi j .

Let us first calculate the topological invariant CRS when
the chemical potential lies in the topological gap. As shown
in Fig. 2(a), the Chern number converges to a quantized value
as the size of the open hyperbolic lattice increases, indicating
the non-Hermitian topological phase can be properly charac-
terized by the definition in Eqs. (7). Then, CRS as a function
of chemical potential is obtained on a large enough lattice [see
Fig. 2(b)]. The real-space Chern number keeps the quantized
value within the topological gap, but takes zero or a random
value outside the bulk gap. Hence, the appearance of the edge
state is directly related to the quantization of the topological

invariant, establishing the non-Hermitian bulk-boundary cor-
respondence. It is noted that the real-space Chern number
varies continuously near the topological transition point,
which should be due to the finite-size effect.

Generally, the edge states originating from the nontrivial
topology are robust to the disorder that preserves the symme-
try protecting the topological phase. To verify the robustness
of the non-Hermitian topological edge states, we introduce a
random on-site potential on each site,

Hdis =
Nsites∑
j=1

Ujc
†
i ci, (8)

where the strength of the Anderson disorder Uj uniformly
distributes in the range [−W/2,W/2]. The localization of an
eigenstate |ϕ j〉 = {φ j,x}x∈Nsites can be characterized by the IPR
[59–61], defined as

IPR j =
Nsites∑
a=1

∣∣φR
j,a

∣∣4
. (9)

The meaning of the IPR can be understood in terms of a state
uniformly distributed over N sites, in which all nonvanishing
elements of the wave function are φ j,a = 1/

√
N . According

to the above definition, we have IPR j = 1/N for the homo-
geneous state. Hence, IPR j can measure the number of the
distributed sites of an eigenstate (1/IPR j), which can be taken
as a degree of its localization. In addition, since the wave func-
tion is normalized, the value is bounded by 0 < IPR j < 1.

To see how the IPR j measures the localization degree of
an eigenstate explicitly, we first calculate the IPR at various
disorder strengths in the Hermitian case by setting γ = 0. As
shown in Fig. 2(c), IPR js inside the two topological gaps
take very small values (less than 10−3), which is expected
as the topological edge states are delocalized over a large
number of lattice sites. In addition, IPR js of the edge states
almost do not fluctuate and have no noticeable change with
increasing the disorder strengths. In contrast, the other states
have much larger IPR js and exhibit significant fluctuations
among different eigenstates and disorder strengths, which can
be viewed as the signatures of the localization.

Now we turn on the non-Hermitian potential and show the
results of γ = 0.3 in Fig. 2(d). It is found that the fluctuations
of IPR js remain very low inside the topological gaps and the
values only slightly vary as the disorder strength is increased,
which are in stark contrast to those in the other regions.
It implies the non-Hermitian edge states are still topologi-
cally protected and they are robust against on-site disorder.
However, when compared with the Hermitian counterpart, the
values of IPR js considered here in the topological gaps are
significant increased, even in the absence of disorder. Hence,
it implies possible localization of the edge states, which is
related to a hybrid skin effect happening at the boundary of
the hyperbolic lattice, as we will show in the next section.

Recently, the Bloch band theory has been generalized to
hyperbolic lattices [41]. A hyperbolic Bravais lattice with
periodic boundary conditions can be constructed by apply-
ing Fuchsian translation on the unit cell. Instead of dealing
with a large real-space Hamiltonian, the single-particle spec-
trum can be easily obtained by diagonalizing a Hamiltonian
in the momentum space (this momentum space is at least
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FIG. 3. (a) Energy spectrum and (b) the corresponding density of
states of the Hamiltonian in Eq. (1) on a hyperbolic {8, 3} lattice ob-
tained by HBT (red dots or line) with periodic boundary conditions.
In (a) and (b), the same quantities calculated by directly diagonal-
izing the Hamiltonian of an open hyperbolic flake are also plotted
for comparison. The phase diagrams in the (γ , m) plane: (c) at half
filling; (d) below or above half filling. CI (TI) represents conventional
(topological) insulator. Here the parameters not specified are the
same as those used in Fig. 1.

four-dimensional, which is unlike that of a Euclidean lat-
tice). For the hyperbolic {8, 3} lattice, we can choose a unit
cell containing 16 sites, and thus have four independent
generators to form a hyperbolic translation group (see Ap-
pendix A for details). In the four-dimensional momentum
space (k1, k2, k3, k4), the resulting hyperbolic Bloch Hamil-
tonian H{8,3}(k) is a 16×16 matrix (see Appendix B for
the explicit form). Since the hyperbolic band theory directly
solves the bulk system, the phase diagram in the (γ , m) pa-
rameter space can be determined more precisely without the
mixing of the edge states. Figure 3(a) shows the boundaries
between the metal and conventional insulator (CI) at half
filling. A CI can only be induced by a large enough stag-
gered potential m, and the critical value mc increases with the
strength of the non-Hermitian potential γ .

While the topological state is absent at half filling, it ap-
pears in symmetric locations below and above the Re(E ) = 0,
as shown in Fig. 3(b). For a small γ , the topological property
will be broken by a finite m. The critical value mc decreases
with increasing the absolute value of γ . As γ becomes large
enough, the topological phase is completely suppressed, and
the system keeps metallic at any value of m. Interestingly,
near the left or right boundaries of the topological region,
the topological phase can be induced by turning on m. A
qualitative understanding is that the effect of the topological
hopping term is manifested due to the annihilation between
the real and imaginary staggered potentials.

III. HYBRID HIGHER-ORDER
SKIN-TOPOLOGICAL EFFECT

In this section, we investigate the effect of the non-
Hermitian potential on the edge states in the topological gap.
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FIG. 4. Demonstration of the skin-topological corner modes in
terms of the sum of the distributions of the edge states in the energy
range 1 − 1.4 t1 for (a) γ = 0.3 and (b) γ = −0.3. The other param-
eters are the same as those in Fig. 1.

The on-site gain and loss drive the boundary states to lo-
calize at four corners of the disk geometry, realizing hybrid
higher-order skin-topological effect. As shown in Fig. 4, the
corner states are located at the diagonal positions for γ > 0
and axial positions for γ < 0. As the non-Hermitian strength
γ increases, the corner modes become more localized, which
should result from the strengthened non-Hermitian skin effect.
This trend continues until the topological gap is closed by a
large enough value of γ . The geometry considered here has
an eightfold rotation symmetry and can be divided into eight
equal circular sectors with central angle π/4. The corners can
be regarded as the boundary sites where two adjacent pieces
meet. After the staggered potential is included, the rotation
symmetry is reduced to be fourfold, which accounts for the
existence of localized states at four symmetric corners.

We then proceed to the underlying mechanism causing
the localization of corner states. The phase φ in the NNN
hopping results from an alternating magnetic flux piercing
the hyperbolic plane perpendicularly. Similar to the celebrated
Haldane model on the honeycomb lattice, the total magnetic
flux in each octagon is completely canceled, and sums up to
zero. However, since the boundary is composed of open-sided
octagon, there exist net magnetic fluxes nearby. In the fol-
lowing, we will show the interplay between the nonvanishing
boundary flux and the non-Hermitian physics generate a skin
effect which results in the appearance of the corner modes.

For simplicity, we ignore the connections between the in-
ner sites and the boundary ones, and model the edge state with
a separate zigzag chain [see Fig. 5(c)]. The phase φ of the
NNN hopping amplitude is positive when the electron moves
in the arrow direction. If the positive directions for the two
sublattices are the same and the numbers of the NNN bonds
in the upper and lower chains are equal, the phases picked
up by an electron circling the zigzag area through all NNN
bonds are exactly canceled out, suggesting there is no net
magnetic flux piercing the region. This situation occurs at a
zigzag edge of the Euclidean honeycomb lattice. However,
in the current paper, we have an irregular boundary which
results from constructing the disk geometry using complete
unit cells with the centers in a fixed radius. As shown in
Fig. 5, the positive directions are not uniform anymore [to
be clear, the positive direction pointing to left is denoted
by red (blue) color in the upper (lower) sublattice]. The net
magnetic flux is proportional to the difference in the numbers
of the red arrows and the blue ones. Specifically, we focus on
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FIG. 5. (a) Illustration of the inequivalent one-fourth of the studied open hyperbolic lattice. Zoomed details of the edge geometries in the
dotted line boxes located at (b) the top (red) and (d) the diagonal (green). (c) and (e) show the outermost sites arranged in zigzag shapes for the
boundary fragments (b) and (d), respectively. The arrows in (c) and (e) denote the directions along which the next-nearest-neighbor hopping
phase φ is positive.

one-fourth of the circle geometry due to the fourfold sym-
metry, as demonstrated in Fig. 5(a). Without the staggered
potential, the upper half sector is exactly the same as the lower
half one, and they are related to each other by a π/4 rotation.
After γ is included, the two sectors become inequivalent and
the difference is that the signs of the imaginary staggered
potentials on the two sublattices are interchanged in the lower
sector. The skin effect induced by a γ > 0 non-Hermitian
term manifests itself in the upper sector by making all modes
localize at the right end [Figs. 5(b) and 5(c)]. In contrast, due
to the sign reversing of the non-Hermitian staggered poten-
tial in the lower sector, the localization from the skin effect
occurs at the left end [Figs. 5(d) and 5(e)]. Hence, the two
opposite localization tendencies meet at the diagonal position,
generating a skin-topological corner state there. For the case
of γ < 0, the localization of the skin mode changes to the
opposite end of each 1/8 sector, and the corner states appear
in the axial positions.

The above skin effect can be explicitly demonstrated by
examining the distributions of the eigenstates of the ef-
fective zigzag-chain Hamiltonian. We first diagonalize the
non-Hermitian model mapped from the boundary of the ge-
ometry in Fig. 5(a) and find the tendency for all eigenstates
to distribute near the middle (γ > 0) or ends (γ < 0) of the
one-dimensional(1D) zigzag chain [Figs. 6(a) and 6(b)]. Then
we proceed to consider a closed zigzag chain, which corre-
sponds to the whole boundary of a hyperbolic disk. As shown
in Fig. 6(c), there are four skin-topological corner modes and
their locations are in good consistency with those obtained by
the calculations on the entire lattice. The skin corner modes
are induced by the imaginary staggered potential. To verify
this, we plot the distributions of the eigenstates in Fig. 6(d)
and indeed the corner states do not appear anymore without
the non-Hermitian potential.

It is worth noting that the geometry of the boundary is crit-
ical for the appearance of the skin-topological corner modes.
If the open hyperbolic flake is constructed by keeping the
lattice sites located within a fixed-radius circle, the effective
1D zigzag chain is not threaded by a net magnetic flux. Conse-
quently, the non-Hermitian potential will not lead to the skin
effect, and no skin corner states are generated (see Fig. 7).

Including a comparison with the results obtained from
the non-Hermitian Haldane model on the Euclidean coun-
terpart, namely, the honeycomb lattice with Schläfli symbol

{6, 3} would be beneficial. It has been demonstrated that a
hexagonal geometry with zigzag edges harbors three hybrid
skin-topological modes located at the corners, which are as-
sociated with C3 rotation symmetry [30]. Similarly, when
the sign of the non-Hermitian strength changes, the location
transitions to the other set of corners. While bearded edges
also support corner modes, the armchair edges do not.

IV. NON-HERMITIAN HALDANE MODEL
ON HYPERBOLIC {12,3} LATTICE

The hyperbolic space has an infinite number of regular
tilings, each of which can be labeled by the so-called Schläfli
symbol {p, q}, with p the number of sides of the polygons
and q the coordination number at each vertex. Hence, we
proceed further to investigate more honeycomblike hyperbolic

FIG. 6. The distributions of the eigenstates of the one-
dimensional zigzag chain model mapped from the boundary of
the inequivalent one-fourth geometry in Fig. 5(a) at (a) γ = 0.8
and (b) γ = −0.8. (c) and (d) are the distributions on a closed
one-dimensional chain corresponding to the boundary of the whole
hyperbolic disk with γ = 0.8 and γ = 0, respectively. The eigen-
states are distinguished by different colors in (a)–(d).
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FIG. 7. (a) A smoother boundary created by cutting the hyper-
bolic lattice with a fixed-radius circle. (b) The distributions of the
edge states in the topological energy gap at γ = 0.3, and no skin-
topological corner modes are visible. The other parameters are the
same as those in Fig. 1.

lattices with p > 8 while fixing q = 3 to see the evolution of
the physical properties of the non-Hermitian Haldane model
with a polygon geometry [see Fig. 8(a)]. The main physics,
such as the topological nontrivial phase and hybrid higher-
order skin-topological effect, are similar to the hyperbolic
{8, 3} presented above. For instance, the NNN spin-orbit cou-
pling hoppings also lead to two topologically nontrivial band
gaps here, which distribute symmetrically with respect to
Re(E ) = 0 [Figs. 8(b) and 8(c)]. However, a larger t2 is
needed to generate a gap with the same size in the hyperbolic
{12, 3} lattice. When the non-Hermitian term γ is introduced,
the energy spectrum becomes complex and the eigenvalues
come in pairs due to the pseudo-Hermicity of the Hamiltonian.
As shown in Fig. 8(c), the boundary states remain within the
topological energy gap in the presence of the non-Hermitian
potential, implying the topological property persists under
non-Hermitian effect. We find that the real-space Chern num-
ber gets quantized in the topological gaps. In addition, these
non-Hermitian edge states corresponding to nontrivial phases
show robustness against on-site disorder, which suggests they
are topologically protected.
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FIG. 8. (a) Schematic illustration of the Haldane model on a
hyperbolic {12, 3} lattice. (b) Energy spectrum of the non-Hermitian
Haldane Hamiltonian on an open hyperbolic {12, 3} lattice. (c) The
corresponding density of states of bulk (blue) and edge (green) states.
The red dotted lines in (b) and (c) estimate the topological gap above
the Re(E ) = 0 (the lower one is symmetric). Here the parameters in
(b) and (c) are t1 = 1, t2 = 0.4, m = 0, and γ = 0.1.
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FIG. 9. (a) The inequivalent one-sixth of the open hyperbolic
{12, 3} lattice. (b) The skin-topological modes appearing symmet-
rically at six corners of an open hyperbolic {12, 3} lattice.

Then we consider a disk of hyperbolic {12, 3} lattice with
an open boundary while keeping the unit cells whose cen-
ters are within a fixed radius. The positive directions of the
imaginary NNN hoppings are imbalanced on the resulting
boundary, near which there is a net magnetic flux threading
through. Consequently, the skin-topological modes appear at
six corners of the disk geometry. The six corners arise due to
the sixfold rotational symmetry in the hyperbolic {12, 3} flake.
The underlying mechanism is similar as in the hyperbolic
{8, 3} case discussed previously. Let us focus on one-sixth
of the geometry [see Fig. 9(a)]. Actually, this sector can be
further divided into two equal parts, whose Hamiltonians are
almost the same except the signs of the staggered potentials.
The difference leads to the directions of the skin effects being
opposite, thus generating one corner mode in each one-sixth
sector [see Fig. 9(b)]. Compared to the hyperbolic {8, 3} case,
the corner modes here are more extended, which is due to the
smaller net magnetic flux near the {12, 3} boundary.

V. CONCLUSIONS AND DISCUSSION

We have investigated the topological properties of anon-
Hermitian Haldane model on hyperbolic lattices of two
representative {8, 3} and {12, 3} types. We prove the exis-
tence of a nontrivial topological gap in the complex energy
spectrum, characterized by a quantized non-Hermitian Chern
number. Correspondingly, the edge states appear at boundaries
of the hyperbolic lattices in the topological nontrivial phase.
Remarkably, these edge states are driven to localize at corners
of the boundary by non-Hermitian effect, forming the hybrid
higher-order skin-topological effect. The mechanism account-
ing for such a hybrid higher-order skin-topological effect is
revealed by mapping the specific boundary to an effective
one-dimensional zigzag chain model with a net magnetic flux.

While we focus on hyperbolic lattices of {8, 3} and {12, 3}
types here, the main results can be generalized to other types
of different {p, q} with similar setups. We note the number
of degrees of freedom at the boundary of hyperbolic lat-
tices is very large, different from regular lattices, such that
the ratio of boundary modes over bulk modes is extremely
high. Therefore, the hybrid higher-order skin-topological ef-
fect may provide an effective method to manipulate most
degrees of freedom in hyperbolic lattices.

We expect the exotic non-Hermitian topology on hy-
perbolic lattices can be experimentally demonstrated, for
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instance, in electric circuits [39,44,46,54]. Recently, the Hal-
dane model has been successfully implemented on hyperbolic
lattices using circuit networks, leading to the observation of
edge states that are associated with nontrivial topology in
these systems [54,62,63]. The negative resistor can introduce
gain or loss into the circuit, resulting in the non-Hermitian on-
site potential that is considered in this paper [64]. Therefore,
the direct experimental realization of the hybrid higher-order
skin-topological effect in hyperbolic lattices can be achieved
through hyperbolic non-Hermitian circuits.
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APPENDIX A: HYPERBOLIC GEOMETRY

In this Appendix, we present the general description of
the hyperbolic geometry. The hyperbolic plane is a two-
dimensional space with negative curvature. An infinitely
periodic lattice on this plane can be mapped onto a unit disk
D = {z ∈ C, |z| < 1}, known as the Poincaré-disk representa-
tion [45,65]. The distance metric on the Poincaré disk is

ds2 = (2κ )2 dx2 + dy2

(1 − |z|2)2
, (A1)

where κ represents the radius of curvature. From this metric, it
is clear that the hyperbolic distance between two points close
to each other on the edge of the unit disk in the Poincaré
representation is infinite. Explicitly, it can be inferred that the
hyperbolic distance between any two points, z1 and z2, on the
unit disk is

d (z1, z2) = κarcosh

(
1 + 2|z1 − z2|2

(1 − |z1|2)(1 − ∣∣z2
2

)
)

. (A2)

For the hyperbollic {p, q} lattice on the hyperbolic plane, the
interior angle of each regular p-gon is 2π/q. If a regular p-gon
is placed with its center at the origin of the Poincaré disk, then
the distance from a vertex of the polygon to the center of the
disk is

r0 =
√

cos(π/p + π/q)

cos(π/p − π/q)
. (A3)

The coordinates of these vertices can be expressed as z j =
r0ei(2π j/p+δ), where j = 1, . . . , p, and δ an arbitrary phase
factor.

For the hyperbolic {8, 3} lattice, its unit cell consists of a
regular octagon indicated by the red lines in Fig. 10(a), con-
taining 16 sites. Therefore, the {8, 3} lattice can be tessellated
by the {8, 8} lattice. Similarly, for the {12, 3} lattice, one unit
cell consists of a regular dodecagon containing 12 sites such
that the {12, 3} lattice can be tessellated by the {12, 12} lattice.
As long as the coordinates of the sites contained in an initial

FIG. 10. Sketch of hyperbolic {8, 3} (a) and {12, 3} (b) lattices
with marked unit cell (red dots) and fundamental domain of the
Bravais lattice (red polygon), respectively. γ j in (a) and (b) are the
generators of their lattice.

unit cell are given, the coordinates of all other sites on the
entire lattice can be obtained by translation operations of the
sites within the unit cell. That is, any site can be uniquely
represented as

zi = γ z(a), (A4)

where a is the index of the site within the unit cell (for the
{8, 3} lattice, a = 1, · · · , 16), and γ is the sequence of basic
translation operations that make transformations between dif-
ferent unit cells. The translational operator in the horizontal
direction of the hyperbolic plane can be represented by the
matrix

T (τ ) =
(

cosh(τ/(2κ )) sinh(τ/(2κ ))

sinh(τ/(2κ )) cosh(τ/(2κ ))

)
, (A5)

with τ representing the hyperbolic distance translated hori-
zontally by T (τ ). For instance, by applying the translation
operator T (τ ) to the origin 0, we can utilize Eq. (A2) to
calculate the distance d (z, 0) between a point z and the origin,
allowing us to discern the distance between the origin 0 and
T (τ )0 is τ . This is critical for understanding the parameter τ

in the horizontal translation operation T (τ ).
The unit cell on the {8, 3} lattice contains four fundamental

translation symmetry operations, also known as generators,
namely, γm(m = 1, 2, 3, 4), as shown in Fig. 10. Among them,
γ1 stands for the operation that horizontally translates a unit
cell to its nearest neighbor on the right.

Assuming that the hyperbolic distance from the center of
the Bravais lattice to the center of a side is a, then the transla-
tion distance of γ1 is 2a, therefore

γ1 = T (2a) =
(

cosh(2a/(2κ )) sinh(2a/(2κ ))
sinh(2a/(2κ )) cosh(2a/(2κ ))

)
, (A6)

and the length of a satisfies

cos

(
π

p

)
= tanh[2arctanh(a)]

tanh[2arctanh(r0)]
. (A7)

As long as γ1 is known, other generators can be directly
obtained through a rotation matrix:

R(φ) =
(

eiφ/2 0
0 e−iφ/2

)
. (A8)
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Thus, we have

γm=1,2,3,4 = R((m − 1)α)γ1R(−(m − 1)α), (A9)

with α = 2π
pB

(pB denotes the number of edges in the corre-
sponding Bravais lattice that encompasses the unit cell).

All the translation symmetry operations of the unit cell
form a Fuchsian group �g. Each element in �g is a sequence
of operators consisting of generators and their inverses. For
convenience, the inverse of a generator is also labeled as a
generator, denoted by γpB/2+ j = (γm)−1. Then the generator
contains γm with m = 1, . . . , pB. Each γ is a word of a spe-
cific length composed of generators, for example, a word of
length n can be written as

γ = γm1 · · · γmn , (A10)

with mi = {1, . . . , pB}. What matters for γ is only the se-
quence of generators such that a γ can be labeled with a
sequence of numbers �m = (m1, . . . , mn). In general, any site
in the lattice can be uniquely written as (a, �m).

APPENDIX B: HYPERBOLIC BLOCH HAMILTONIAN

In this Appendix, we present the explicit form of a Bloch
Hamiltonian on a hyperbolic lattice. The hyperbolic Haldane
Bloch Hamiltonian H{8,3}(k) is a 16×16 matrix, which can be
expressed as

H{8,3}(k) = H1 + (H1)† + HS. (B1)

By defining S = m + iγ and f = eiφ , the specific forms of
matrices HS and H1 are given by

HS = diag(S[−1, 1,−1, 1,−1, 1,−1, 1, 1,−1, 1,−1, 1,−1, 1,−1]), (B2)

H1
2,1 = t1; H1

3,2 = t1; H1
4,3 = t1; H1

5,4 = t1; H1
6,5 = t1; H1

7,6 = t1; H1
8,7 = t1; H1

1,8 = t1;

H1
9,1 = t1; H1

2,10 = t1; H1
11,3 = t1; H1

4,12 = t1; H1
13,5 = t1; H1

6,14 = t1; H1
15,7 = t1; H1

8,16 = t1;

H1
9,14 = t1eik1 ; H1

10,15 = t1eik2 ; H1
11,16 = t1eik3 ; H1

12,9 = t1eik4 ;

H1
13,10 = t1e−ik1 ; H1

14,11 = t1e−ik2 ; H1
15,12 = t1e−ik3 ; H1

16,13 = t1e−ik4 ;

H1
3,1 = t2 f ; H1

4,2 = t2 f ; H1
5,3 = t2 f ; H1

6,4 = t2 f ; H1
7,5 = t2 f ; H1

8,6 = t2 f ; H1
1,7 = t2 f ; H1

2,8 = t2 f ;

H1
1,10 = t2 f ; H1

2,11 = t2 f ; H1
3,12 = t2 f ; H1

4,13 = t2 f ; H1
5,14 = t2 f ; H1

6,15 = t2 f ; H1
7,16 = t2 f ; H1

8,9 = t2 f ;

H1
9,2 = t2 f ; H1

10,3 = t2 f ; H1
11,4 = t2 f ; H1

12,5 = t2 f ; H1
13,6 = t2 f ; H1

14,7 = t2 f ; H1
15,8 = t2 f ; H1

16,1 = t2 f ;

H1
14,1 = t2 f e−ik1 ; H1

15,2 = t2 f e−ik2 ; H1
16,3 = t2 f e−ik3 ; H1

9,4 = t2 f e−ik4 ;

H1
10,5 = t2 f eik1 ; H1

11,6 = t2 f eik2 ; H1
12,7 = t2 f eik3 ; H1

13,8 = t2 f eik4 ;

H1
1,12 = t2 f e−ik4 ; H1

2,13 = t2 f eik1 ; H1
3,14 = t2 f eik2 ; H1

4,15 = t2 f eik3 ;

H1
5,16 = t2 f eik4 ; H1

6,9 = t2 f e−ik1 ; H1
7,10 = t2 f e−ik2 ; H1

8,11 = t2 f e−ik3 ;

H1
9,11 = t2 f e−ik2+ik1 ; H1

10,12 = t2 f e−ik3+ik2 ; H1
11,13 = t2 f e−ik4+ik3 ; H1

12,14 = t2 f eik1+ik4 ;

H1
13,15 = t2 f eik2−ik1 ; H1

14,16 = t2 f eik3−ik2 ; H1
15,9 = t2 f eik4−ik3 ; H1

16,10 = t2 f e−ik1−ik4 . (B3)

For the sake of conciseness, only the nonzero matrix elements of H1 are presented here, and the numbering scheme of the sites
within the corresponding unit cell is illustrated in Fig. 10(a). The rest of the matrix elements are zero.
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