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Phase transitions and bunching of correlated particles in a non-Hermitian quasicrystal
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Noninteracting particles in non-Hermitian quasicrystals display localization-delocalization and spectral phase
transitions in complex energy plane that can be characterized by point-gap topology. Here we investigate the
spectral and dynamical features of two interacting particles in a non-Hermitian quasicrystal, described by an
effective Hubbard model in an incommensurate sinusoidal potential with a complex phase, and unravel some
intriguing effects without any Hermitian counterpart. Owing to the effective decrease of correlated hopping
introduced by particle interaction, doublon states, i.e., bound particle states, display a much lower threshold
for spectral and localization-delocalization transitions than single-particle states, leading to the emergence of
mobility edges. Remarkably, since doublons display longer lifetimes, two particles initially placed in distant
sites tend to bunch and stick together, forming a doublon state in the long time limit of evolution, a phenomenon
that can be dubbed non-Hermitian particle bunching.
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I. INTRODUCTION

Topological phases, localization, and novel phase transi-
tions in non-Hermitian systems with periodic or aperiodic
order have recently sparked a great interest in a wide variety
of physical systems, ranging from condensed matter physics
to cold atoms and classical systems (see, e.g., Refs. [1–13]
and references therein). Noninteracting particles in crystalline
systems described by an effective non-Hermitian Hamiltonian
display a variety of exotic physical effects, such as a nontrivial
point-gap topology, the non-Hermitian skin effect, the break-
down of the bulk-boundary correspondence based on Bloch
band topological invariants, and a variety of dynamical and
transport signatures [14–85]. Recent experimental realizations
of synthetic matter with controllable non-Hermitian Hamil-
tonians using different platforms, such as photonic systems,
cold atoms in optical lattices, and mechanical and topolec-
trical systems, have lead to the observation of such exotic
physics.

The study of non-Hermitian physics in such systems is
being extended into several directions, unraveling a plethora
of intriguing effects which do not have any counterpart in Her-
mitian systems. For example, in systems with aperiodic order
(quasicrystals), non-Hermiticity induces phase transitions that
are beyond the paradigm of Hermitian quasicrystals [86–110].
Non-Hermitian extensions of the famous Aubry-André model
[111] have attracted great interest recently, unraveling the
rich interplay between disorder, non-Hermiticity, and topol-
ogy. In such systems, the localization-delocalization phase
transition and mobility edges in complex energy plane, sep-
arating extended and localized states, can be rather generally
characterized by point-gap topological numbers [1–12,88,90–
93,95–98]. Another interesting ramification is provided by
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the many-body physics of noninteracting non-Hermitian sys-
tems [112–122], where the construction of many-body states
involves ramified symmetry classes leading to unique topolog-
ical phases. Owing to the different lifetimes of single-particle
eigenstates, non-Hermitian many-particle systems may not
attain an equilibrium state but rather a nonequilibrium steady
state at long times.

Recently, there is a growing focus on exploring non-
Hermitian phenomena in interacting many-particle systems,
aimed at understanding the interplay between non-Hermitian
skin effect, interaction, and non-Hermitian topological phases
in correlated systems [123–139]. Quantum many-body phases
lead to novel manifestations beyond single-particle physics,
where the collective behavior of a large number of con-
stituents offers several exotic phases of matter. Among the
simplest and intriguing phenomena in strongly correlated
quantum systems of both fermions and bosons is the for-
mation of doublons, i.e., pairs of bound particles occupying
the same lattice site [140–147]. Such states are readily found
within the standard Fermi-Hubbard or Bose-Hubbard models
in the two-particle sector of Hilbert space. For sufficiently
strong interactions, either attractive or repulsive, isolated dou-
blons represent stable quasiparticles which undergo correlated
tunneling on the lattice [148,149]. Doublon dynamics is ex-
perimentally accessible using different platforms, such as
ultracold atoms in one-dimensional optical lattices [140,148–
151], superconducting quantum metamaterials [152], and
classical emulators of two- or three-particle dynamics in Fock
space based on two- or three-dimensional photonic [153] or
topolectrical [154,155] lattices with engineered defects. The
current advances in experimental fabrication and control of
synthetic matter enables one to extend the few-body Hubbard
model into the non-Hermitian realm [155], thus motivating
the study of correlated-particle states and doublon dynamics
in non-Hermitian models.
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In this work we investigate the spectral and dynamical
properties of two strongly correlated particles on a lattice
in an incommensurate sinusoidal potential with a complex
phase [88], i.e., a non-Hermitian extension of the interact-
ing Aubry-André model [150], highlighting distinct spectral
and localization-delocalization phase transitions for single-
particle and doublon states as the complex phase of the
incommensurate potential is varied. Specifically, particle in-
teraction introduces mobility edges which are prevented in the
single-particle regime and lowers the real-to-complex spectral
phase transition owing to the correlated hopping and slow
motion of doublons on the lattice. Remarkably, since doublons
display longer lifetimes than displaced particle states, two par-
ticles initially placed at distant sites of the lattice tend to bunch
and stick together, forming a doublon state in the long time
limit of evolution. This phenomenon, which can be dubbed the
non-Hermitian bunching effect, provides an interesting tool for
“quantum distillation” of interacting particles [146] of purely
non-Hermitian origin.

II. NON-HERMITIAN INTERACTING
AUBRY-ANDRÉ MODEL

A. Model

We consider the Hubbard model for interacting fermionic
particles in the lowest Bloch band of a one-dimensional
tight-binding lattice [156] subjected to an external incommen-
surate sinusoidal potential, which provides an extension of the
Aubry-André model for interacting particles [Fig. 1(a)]. We
indicate by J the single-particle hopping amplitude between
adjacent sites in the lattice and by U the on-site interaction
energy of fermions with opposite spins (U > 0 for a repul-
sive interaction). In the limit U = 0 and for an Hermitian
potential, the model reduces to the ordinary Aubry-André
model. Non-Hermiticity in the system is introduced by con-
sidering a complex phase ϕ = θ + ih of the sinusoidal on-site
potential [88], while a reciprocal (Hermitian) amplitude J
is assumed for left/right hopping. This means that, contrary
to many-body non-Hermitian models considered in several
recent works [123–135,137,138], the present model does
not display the non-Hermitian skin effect for single-particle
states. The effective non-Hermitian Hubbard Hamiltonian of
the system reads

Ĥ = −J
∑
l,σ

(â†
l,σ âl+1,σ + H.c.)+

∑
l,σ

Vl n̂l,σ + U
∑

l

n̂l,↑n̂l,↓,

(1)

where âl,σ , â†
l,σ are the annihilation and creation operators of

fermions with spin σ =↑,↓ at lattice site l , n̂l,σ = â†
l,σ âl,σ is

the particle-number operator, and

Vl = V cos(2παl + ϕ) − iγ (2)

is the complex incommensurate on-site potential with real
amplitude V and complex phase

ϕ = θ + ih, (3)

the term h � 0 governing the strength of non-Hermiticity of
the system. The positive constant γ provides a uniform loss
rate, which just introduces a shift of eigenenergies of the

FIG. 1. (a) Non-Hermitian Hubbard model, describing corre-
lated many-particle states in a one-dimensional lattice with a
superimposed incommensurate on-site potential (quasicrystal). The
reciprocal single-particle hopping rate between adjacent sites is J , U
is the on-site interaction energy, and Vn = V cos(2παn + ϕ) is the
incommensurate potential with complex phase ϕ = θ + ih. (b) The
Hubbard model for two fermions with opposite spins can be mapped
onto the dynamics of a single particle on a square lattice with a line
defect on the main diagonal n = m (red circles), corresponding to
the interaction energy U , and with a hopping rate J . States bound
on the main diagonal n = m in (b) correspond to sticked two-particle
states (doublons) in (a). In the strong interaction regime, doublons
undergo correlated hopping via a second-order tunneling process
with an effective hopping rate Je � 2J2/U .

system in the complex energy plane along the imaginary axis
and avoids instability in a purely dissipative system. Since the
specific value of γ does not change the dynamical behavior of
the system under continuous measurements, in the following
without loss of generality we will assume γ = 0. As a typi-
cal irrational α, we assume the inverse of the golden mean,
α = (

√
5 − 1)/2, which can be approximated by the sequence

of rationals α = limn→∞ qn/qn+1, where qn are the Fibonacci
numbers (q0 = 0, q1 = 1, qn+1 = qn + qn−1 for n � 1). In the
numerical analysis, we will assume a finite lattice of large
size L = qn+1 in a ring geometry with periodic boundary
conditions (âl+L,σ = âl,σ ) [88].

For pure states and considering open-system dynamics
conditioned on measurement outcomes such that the quan-
tum evolution corresponds to the null-jump process, the
state vector |ψ (t )〉 of the system at time t is given by
[113–115,124,137,138]

|ψ (t )〉 = exp(−iĤt )|ψ (0)〉
‖ exp(−iĤt )|ψ (0)〉‖ ≡ |	(t )〉

‖|	(t )〉‖ , (4)

where we have set |	(t )〉 ≡ exp(−iHt )|ψ (0)〉. Basically, at
each time interval dt the state vector evolves according to the
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Schrödinger equation with an effective non-Hermitian Hamil-
tonian Ĥ , followed by a normalization of the wave function,
without undergoing any quantum jump. As mentioned above,
under postselection the re-normalization of the wave function
after each time interval dt makes it the dynamical evolution
of |ψ (t )〉 independent of the loss rate γ .

B. Single- and two-particle states

The single-particle limit of the Hamiltonian (1), de-
scribing the hopping dynamics of a single particle on a
one-dimensional incommensurate sinusoidal potential with a
complex phase, was earlier introduced Ref. [88]. In this case,
when V < 2J a real-to-complex spectral phase transition, cor-
responding to a delocalization-localization phase transition,
is demonstrated to arise as the non-Hermitian parameter h is
increased above the critical value [88]

hc = ln

(
2J

V

)
(5)

and can be traced back to the change of a winding number,
i.e., to a topological phase transition. For a given base energy
EB, which does not belong to the energy spectrum, one can
introduce the winding number w [88]

w = 1

2π i

∫ 2π

0
dθ

∂

∂θ
ln

{
det

[
H

(
θ

L
, h

)
− EB

]}
, (6)

where H = H (θ/L, h) is the single-particle L × L matrix
Hamiltonian and θ is the real phase angle term entering in
the incommensurate potential [Eq. (3)]. The winding number
w counts the number of times the complex spectral trajectory
encircles the base point EB when the real phase θ of the po-
tential varies from zero to 2π [1]. When the energy spectrum
is entirely on the real energy axis, one clearly has w = 0.
Conversely, when the energy spectrum describes one or more
closed loops in complex plane, for a base energy EB internal
to one of such loops w takes rather generally a nonvanishing
integer value, namely one can show that w = −1 independent
of EB [88]. Experimental demonstrations of such a kind of
non-Hermitian phase transition in quasicrystals, involving a
change of the winding number w, have been recently reported
in Refs. [109,110].

In this work we will focus our analysis on considering two
fermions with opposite spins hopping on the one-dimensional
lattice. In this case, we can expand the state vector |ψ (t )〉 of
the system in Fock space according to

|ψ (t )〉 =
∑
n,m

ψn,m(t )â†
n,↑â†

m,↓|0〉. (7)

Note that the probability of finding the two particles at
the same site n is given by Pn(t ) = |ψn,n(t )|2. After letting
ψn,m(t ) = 	n,m(t )/

√∑
n,m |	n,m(t )|2, the evolution equa-

tions for the amplitudes 	n,m(t ) are readily obtained from
the Schrödinger equation of a pure state with the effective
non-Hermitian Hamiltonian Ĥ given by Eq. (1) and read

i
d	n,m

dt
= −J (	n,m+1 + 	n,m−1 + 	n+1,m + 	n−1,m)

+Uδn,m	n,m + (Vn + Vm)	n,m. (8)

Equation (8) shows that the hopping dynamics of the two
interacting fermions on a one-dimensional lattice is basi-
cally equivalent to the hopping motion of a single particle
in a two-dimensional square lattice with an incommensurate
on-site potential and with an additional defect line on the
main diagonal m = n, under the periodic boundary condi-
tions 	n+L,m = 	n,m+L = 	n,m [see Fig. 1(b)]. Therefore, the
spectral and localization properties as well as the dynamical
motion of two-particle states in the original one-dimensional
quasicrystal can be readily understood by considering the
single-particle states in a two-dimensional quasicrystal with
a defect line on the main diagonal. Finally, we mention that,
while our analysis considers two interacting fermions with
opposite spins, in the two-particle sector of Hilbert space
the Hubbard model Eq. (1) can also describe the dynami-
cal evolution of two identical bosonic particles (rather than
two distinct fermions), with the only additional constraint
being the symmetrization of the wave function under particle
exchange.

III. SPECTRAL AND LOCALIZATION-DELOCALIZATION
PHASE TRANSITIONS

Let us indicate by ψ (β,δ)
n,m ≡ |ψ (β,δ)〉 and Eβ,δ the two-

particle eigenstates and corresponding eigenenergies of the
L2 × L2 matrix Hamiltonian corresponding to Ĥ in the two-
particle sector of Hilbert space, where β, δ = 1, 2, . . . , L is a
pair of indices labeling the matrix eigenstates. Here we aim
at exploring the impact of particle interaction on the spectral
and localization-delocalization phase transitions found in the
single-particle case. For h > 0, the energy spectrum is rather
generally described by energies in complex plane and a transi-
tion from an entirely real to complex spectrum can be detected
by monitoring the behavior of ε ≡ maxβ,δ|Im(Eβ,δ )| versus
the non-Hermitian complex phase h. The localization features
of the eigenstates are captured by the inverse participation
ratio (IPR), defined by

IPR(β,δ) =
∑L

n,m=1

∣∣ψ (β,δ)
n,m

∣∣4

(∑L
n,m=1

∣∣ψ (β,δ)
n,m

∣∣2
)2 . (9)

The IPR of an extended state scales as L−2, hence vanishing
in the L → ∞ limit, while it remains finite for a localized
state, with IPR � 1 and IPR = 1 when the excitation occupies
a single site. In the following, we will indicate by IPRmax ≡
maxβ,δIPR(β,δ) and IPRmin ≡ minβ,δIPR(β,δ) the largest and
smallest values of IPR over the eigenstates of the Hamilto-
nian. For a given base energy EB that does not belong to the
energy spectrum, a winding number w can be introduced,
which measures the times the complex two-particle energy
spectrum rotates around EB when the angle θ adiabatically
varies from 0 to 2π . The definition of w is basically the same
as Eq. (6), where now H (θ/L, h) is the matrix associated
to Ĥ in the two-particle sector of Hilbert space. Since the
energy spectrum in complex energy plane is described by
multiple layers of closed loops in complex energy plane [see,
for example, Figs. 2(d), 3(d), 4(d), and 5(d) discussed below],
whose number increases with the system size L, the winding
number w is size dependent and can take large values, i.e., not
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FIG. 2. Two-particle energy spectrum and IPR of eigenstates in
the noninteracting limit U = 0. Other parameter values are J = 1,
V = 0.15, θ = 0, α = 34/55, and L = 55. (a) Behavior of the largest
value ε (in modulus) of the imaginary part of any eigenenergy
versus the complex phase h of the incommensurate potential. The
vertical dashed line corresponds to the spectral phase transition point
h = hc = ln(2J/V ) � 2.59. (b) Behavior of the largest and smallest
values of the IPR versus h. [(c),(d)] Energy spectra in complex
energy plane for h = 1 [panel (c)] and h = 3.3 [panel (d)]. In (d) the
spectrum comprises multiple layers of closed loops in complex plane,
characterized by a nonvanishing winding number w for any base
energy EB internal to such loops. For example, for the base energies
EB = 0, 1.5, and 2.5, one has w = −55, −45, and −37, respectively.

limited to w = 0,−1 [128]. For a sufficiently large system
size L and EB not too close to any energy in the spectrum, as
previously discussed in Ref. [128] the function under the sign
of the integral in Eq. (6) is almost independent of θ and, thus,
after letting

det

{
H

(
θ

L
, h

)
− EB

}
≡ R(θ ) exp[iω(θ )],

one can simply calculate the winding number using the
relation

w(EB) � dω

dθ
(10)

at any arbitrary value of the angle θ . It should be mentioned
that, while in the single-particle case the winding number is
defined taking the L → ∞ limit [88], for two-particle states
one should keep the system size L finite since in the limit
L → ∞ the number of closed loops diverges and the energy
spectrum covers an entire area (rather than a numerable set of
curves).

In the noninteracting limit U = 0, the two-particle eigen-
states ψ (β,δ)

n,m and corresponding eigenenergies Eβ,δ are readily
obtained from the single-particle spectral properties of Ĥ ;

FIG. 3. Same as Fig. 2, but for U = 1. Note that the real-to-
complex spectral phase transition is observed at a lower value h′

c

of the complex phase than hc. The value h′
c corresponds to the

appearance of localized eigenstates, indicated by a finite value of
IPRmax. For h < h′

c all eigenstates are extended, for h′
c < h < h2 with

h2 � hc localized and extended states coexist, whereas for h > h2 all
eigenstates are localized.

namely one has

ψ (β,δ)
n,m = ψ (β )

n ψ (δ)
m (11)

and

Eβ,δ = Eβ + Eδ, (12)

FIG. 4. Same as Fig. 3, but for U = 3.
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FIG. 5. Same as Fig. 3, but for U = 10.

where Eβ and ψ (β )
n are the eigenenergies and corresponding

eigenstates of the single-particle Hamiltonian

Eβψ (β )
n = −J

(
ψ

(β )
n+1 + ψ

(β )
n−1

) +V cos(2παn + ϕ)ψ (β )
n . (13)

In this case, for h < hc the energy spectrum remains entirely
real and all eigenstates are delocalized, whereas for h > hc

the energy spectrum becomes complex, composed by multiple
layers of closed loops in complex energy plane, with simul-
taneous localization of all corresponding eigenstates. As an
example, Figs. 2(a) and 2(b) show the behavior of ε and of
IPRmax,min versus h, as obtained by numerical diagonalization
of the two-particle matrix Hamiltonian, for noninteracting
two-particle states in a lattice with parameter values α =
qn/qn+1 = 34/55, lattice size L = qn+1 = 55, hopping ampli-
tude J = 1, potential amplitude V = 0.15, and phase θ = 0.
Clearly, for h < hc = ln(2J/V ) � 2.59, all eigenstates are
delocalized and the energy spectrum is real, whereas for
h > hc the energy spectrum becomes complex and all eigen-
states become simultaneously localized. Figures 2(c) and 2(d)
show typical energy spectra in the h < hc and h > hc phases,
respectively. Note that for h > hc the energy spectrum in-
cludes multiple layers of loops in complex plane. Such a
layered structure is typical of two-particle states, does not
actually require interaction, and, as a distinctive feature from
single-particle states, leads to a winding number w which is
system-size dependent and can take large values, depending
on the numbers of loops in the layer (see, e.g., Ref. [128]).
For example, for the case of Fig. 2(d) with L = 55 the winding
number w takes the values w = −55, −45, and −37 for a base
energy EB = 0, 1.5, and 2.5, respectively.

The spectral and localization properties of the system
for increasing values of interaction energy U are shown in
Figs. 3, 4, and 5. The effects arising from particle interac-
tion are mainly twofold. First, one clearly sees a lowering of
the threshold value h′

c for the real-to-complex spectral phase

transition from the value hc predicted in the single-particle
case [Eq. (5)]. Second, when the complex phase h varies in
the range h′

c < h < h2, with h2 ∼ hc, extended and localized
states coexist, as one can infer from the inspection of the
IPRmin, which remains close to zero indicating the existence
of extended states, and IPRmax, which takes finite values cor-
responding to localized states. Therefore, interaction leads to
the appearance of mobility edges, which are prevented in the
single-particle (noninteracting) case. Extended and localized
states correspond to real and complex energies, respectively.
Interestingly, as the interaction energy U increases one loop
in the cluster of Fig. 2(d) detaches and separates with the
formation of a line gap from the other layers, as shown in
Figs. 3(d), 4(d) and 5(d). For h > h2, deformation of the en-
ergy loop layers induced by energy interaction changes rather
generally the values of winding numbers w as compared to the
noninteracting limit. For example, for the case of Fig. 5(d) one
has w = −54, −43, and − 36 at the base energies EB = 0,
1.5, and 2.5, respectively (to be compared with the values of
w given in Fig. 1).

The loop detachment observed as U increases is analogous
to the formation of the Mott-Hubbard gap in the standard
(Hermitian) Hubbard model in strongly correlated systems.
The detached loop basically describes doublon states, i.e.,
sticked two-particle states which undergo correlated hop-
ping along the lattice. In the single-particle analog shown in
Fig. 1(b), doublon dynamics and correlated particle hopping
basically correspond to bound excitations near the defective
line along the main diagonal in the square lattice, which
cannot spread in the lattice bulk owing to energy conserva-
tion constraint. The doublon dynamics can be described in
the strong-interaction limit U  J,V exp(h) by a reduced
model obtained from a multiple time scale analysis of Eq. (8),
which is detailed in Appendix A. After letting 	n,n(t ) =
An(t ) exp(−iUt ), one obtains the following evolution equa-
tions for the slowly varying amplitudes An, corresponding to
the amplitude probabilities that the two particles are found at
the same lattice site n at time t :

i
dAn

dt
= Je(An+1 + An−1 + 2An) + 2VnAn, (14)

where

Je ≡ 2J2

U
(15)

is the effective (second-order) hopping rate of the sticked two-
particle state (doublon). Basically, the hopping rate of Je for
doublons, being a second-order process, is greatly reduced as
compared to the hopping rate J of a single particle, which
corresponds to an effective increase of the amplitude of the
incommensurate non-Hermitian potential for doublons. This
explains the lowering of the real-to-complex spectral phase
transition observed as the interaction energy U is increased,
from the single-particle value hc to the lower value h′

c, which
can be estimated in the strong interaction limit using Eq. (14),
yielding

h′
c � ln

(
Je

V

)
= ln

(
2J2

UV

)
= hc − ln

(
U

J

)
. (16)
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In particular, when the interaction energy U is larger than the
critical value Uc = 2J2/V , one has h′

c = 0, i.e., the energy
spectrum becomes immediately complex as soon as the po-
tential is complex.

IV. CORRELATED DYNAMICS AND NON-HERMITIAN
PARTICLE BUNCHING

In the Hermitian limit of the Hubbard model considered
in the previous section two fermions that are initially placed
at different sites in the lattice do not tend to bunch and stick
together owing to energy repulsion. Likewise, two fermions
initially prepared in the same lattice site form a doublon
that undergoes correlated hopping on the lattice, i.e., particle
dissociation is prevented owing to energy conservation. In the
many-particle case where lattice sites can be singly or doubly
occupied, the slow motion of doublons as compared to single
particle occupancies can be harnessed to realize “quantum
distillation,” i.e., to separate doublons from singlons [146].

The particle dynamics is deeply modified when consider-
ing the non-Hermitian extension of the Hubbard model. In
fact, the correlated particle dynamics on the lattice in the
non-Hermitian regime h > h′

c is greatly influenced by the
different “lifetimes,” i.e., imaginary parts of eigenenergies,
of doublon states than single-particle states. Since doublons
display longer lifetimes, in the strong interaction regime a
rather arbitrary initial excitation of the system, that is not
exactly orthogonal to doublon eigenstates, is attracted toward
one of such eigenstates in the long time limit, i.e., the two
particles tend to bunch and stick together as a result of the
non-Hermitian dynamics, a phenomenon that can be referred
to as non-Hermitian particle bunching. We note such a phe-
nomenon is distinct from quantum distillation of doublons and
singlons observed in the Hermitian case and briefly mentioned
above, where single-particle states move faster than doublons
and can escape from the edges of the system [146].

To understand the non-Hermitian bunching effect, let us
observe that for a given initial condition the state of the system
at time t can be written as

|ψ (t )〉 =
∑

β,δ Cβ,δ|ψ (β,δ)〉 exp(−iEβ,δt )

‖∑
β,δ Cβ,δ|ψ (β,δ)〉 exp(−iEβ,δt )‖ , (17)

where the spectral amplitudes Cβ,δ are determined by the
initial state |ψ (0)〉 and are given by

Cβ,δ = 〈ψ†(β,δ)|ψ (0)〉. (18)

In the above equation, ψ†(β,δ) are the eigenfunctions of the
adjoint Hamiltonian Ĥ† in the two-particle sector of Hilbert
space, which is obtained from Ĥ by just reversing the sign of
h, and the orthonormal conditions 〈ψ†(β,δ)|ψ (β ′,δ′ )〉 = δβ,β ′δδ,δ′

are assumed. From Eq. (17), it then follows that the long-
time dynamics of the system is dominated by the excited
two-particle eigenstate of Ĥ with the largest imaginary part
of the eigenenergy, which is expected to be rather generally a
doublon eigenstate.

As an example, let us assume that at initial time t = 0 the
two particles are initially placed at sites n1 and n2 of the lattice,
distant from one another by d = |n2 − n1|, and let us consider

the symmetrized wave function as an initial state

|ψ (0)〉 = 1√
2

(
â†

n1,↑â†
n2,↓|0〉 + â†

n2,↑â†
n1,↓|0〉) (19)

(symmetrization of the wave function is assumed so as to
include in the analysis the case of two bosonic particles as
well). The probability that at time t the two particles stick
together (bunching probability) is computed from the relation

Pbun(t ) =
∑

n

|ψn,n(t )|2. (20)

Figure 6 shows the numerically computed temporal evolution
of the site occupation probabilities of the two particles on the
lattice, initially placed at a distance d = 1 form one another,
for the same parameter values as in Fig. 5 (J = 1, L = 55,
α = 34/55, V = 0.15, and θ = 0) in the Hermitian (h = 0,
upper row) and non-Hermitian (h = 1, lower row) regimes,
clearly indicating that in the latter case the two particles
tend to stick together, while in the former case they do not.
The corresponding behavior of the bunching probability is
shown in Fig. 7(a). The time required for the two particles to
bunch together is clearly dependent on the lifetime differences
between doublon and single-particle eigenstates and on the
weight |Cβ,δ| of the overlapping of initial state onto the dou-
blon eigenstate with the largest growth rate, which decreases
as the particle distance d increases. Hence the time of the two
particles to stick together increases as d is increased; compare,
e.g., Figs. 7(a) and 7(b), where the initial distance d of the
two particles is increased from d = 1 to d = 2. Quantitatively,
we can define a bunching time τ0 such that Pbun(τ0) reaches a
target (reference) value, for example 80%. A typical behavior
of τ0 versus initial particle separation d is shown in Fig. 7(c),
indicating that τ0 increases almost linearly with d .

V. CONCLUSIONS

Topological phases and phase transitions in non-Hermitian
crystalline or quasicrystalline systems provide a fascinating
area of research with promising implications in different fields
of physics, from condensed matter to cold atoms and clas-
sical systems such as photonic, acoustic, mechanical, and
topolectrical settings. While the properties of single-particle
non-Hermitian models have been the subject of extensive
studies and revealed unprecedented phenomena without any
counterpart in Hermitian systems, such as the appearance
of nontrivial point-gap and line-gap topologies, the non-
Hermitian skin effect, an extended form of the bulk-boundary
correspondence, and a variety of dynamical and transport
effects, intriguing physical phenomena are being discovered
when considering interacting many-body non-Hermitian sys-
tems. In this work we investigated the spectral and dynamical
features of two interacting particles in a non-Hermitian qua-
sicrystal, described by an effective Hubbard model in an
incommensurate sinusoidal potential with a complex phase,
and unravelled some intriguing effects without any Hermi-
tian counterpart. Owing to an effective increase of disorder
strength introduced by particle interaction, doublon states,
i.e., bound particle states, display a much lower threshold
for spectral and localization-delocalization transitions than
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FIG. 6. Temporal evolution of the two-particle probability distributions |ψn,m(t )|2 in a lattice with the same parameter values as in Fig. 5
(J = 1, U = 10, V = 0.15, L = 55, θ = 0) and for h = 0 (Hermitian limit, upper row) and h = 1 (lower row). The system is initially prepared
in a symmetrized state with one particle at site n1 = 26 and the other one at site n2 = 27.

single-particle states, leading to the formation of interaction-
induced mobility edges. Remarkably, since doublons display
longer lifetimes, two particles initially placed at distant sites
in the lattice tend to bunch and stick together, forming a dou-
blon state in the long time limit of evolution, a phenomenon
that can be dubbed non-Hermitian particle bunching. Our
results shed light onto the physical properties of strongly
correlated particles in non-Hermitian systems, even in the
few-body case considered here, and could suggest possibili-
ties to control many-particle states harnessing non-Hermitian
physics. In the present study, the analysis has been fo-
cused on a specific non-Hermitian interacting Aubry-André
model, where non-Hermiticity enters via a complex phase
h in the incommensurate on-site potential; however, differ-
ent non-Hermitian versions of the interacting Aubry-André
model could be considered, such as the Aubry-André model
with off-diagonal incommensurate disorder [91,106] or the
Aubry-André model with nonreciprocal (asymmetric) hop-
ping amplitudes [92,95,97] induced by an imaginary magnetic
flux η [157], which displays the non-Hermitian skin effect

in the single-particle regime [5,7,12]. In particular, it would
be interesting to investigate the interplay and competition
between complex phase h of the incommensurate potential,
which tends to localize the wave functions, and the magnetic
flux η, which tends to delocalize the wave functions and
plays the same role as h but in reciprocal (Fourier) space
[88]. Since the imaginary magnetic flux η acts in a different
way for two-particle scattered states and two-particle bound
states (doublons) [158], the non-Hermitian bunching effect is
expected to be washed out by the imaginary magnetic flux
and doublon dissociation in the bulk would be observed for a
magnetic flux η larger than the complex phase h.
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FIG. 7. (a) Temporal evolution of the bunching probability for the same parameter values as in Fig. 6 for h = 0 (Hermitian limit, dotted
curve) and h = 1 (solid curve). (b) Same as (a), but for an initial separation of the two particles d = 2. (c) Behavior of the bunching time τ0

versus initial particle distance d for h = 1. τ0 is defined such that Pbun(τ0 ) = 0.8.
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APPENDIX: DOUBLON DYNAMICS: MULTIPLE-TIME
SCALE ANALYSIS

In this Appendix we derive Eqs. (14) and (15) given in
the main text, which describe the correlated hopping of two
particles in the lattice that occupy the same site at each time
(doublons). Let us introduce the normalized time variable
τ = Ut , so that Eq. (8) take the form

i
d	n,m

dτ
= − J

U
(	n,m+1 + 	n,m−1 + 	n+1,m + 	n−1,m)

+ δn,m	n,m + Vn + Vm

U
	n,m. (A1)

Let us now consider the strong interaction regime by as-
suming J/U ≡ ε, with ε � 1. We also consider a potential
strength V and complex phase h such that U  V exp(h),
with V exp(h)/U ∼ ε2. Therefore, in Eq. (A1) the first term
on the right hand side of the equation is of order ∼ε, the
second term is of order ∼ε0, and the last term is of order ∼ε2.
Let us now assume that at initial time the system is prepared in
a doublonic state, i.e., such that 	n,m(τ = 0) = 0 for n �= m,
and let us look for a solution to Eq. (A1) as an asymptotic
series

	n,m(τ ) = 	(0)
n,m(τ ) + ε	(1)

n,m(τ ) + ε2	(2)
n,m(τ ) + · · · . (A2)

To ensure that the expansion (A2) is uniformly valid as τ

grows, multiple time scales

T0 = τ, T1 = ετ, T2 = ε2τ, . . . (A3)

have to be introduced to avoid the occurrence of secular grow-
ing terms in the asymptotic expansion. Using the derivative
rule

d

dτ
= d

dT0
+ ε

d

dT1
+ ε2 d

dT2
+ · · · , (A4)

substitution of Eqs. (A2) and (A4) into Eq. (A1), and after
equating terms of the same power in ε, a hierarchy of equa-
tions for successive corrections to 	n,m is obtained. At leading
order ∼ε0 one simply obtains

i
∂	(0)

n,m

∂T0
= δn,m	(0)

n,m, (A5)

which can be readily solved by letting

	(0)
n,m = Anδn,m exp(−iT0), (A6)

where the amplitudes An can vary on the slow time scales
T1, T2, . . . , i.e., An = An(T1, T2, . . .). At order ∼ε one has

i
∂	(1)

n,m

∂T0
= −(

	
(0)
n+1,m + 	

(0)
n−1,m + 	

(0)
n,m+1 + 	

(0)
n,m−1

)
(A7)

for n �= m and

i
∂	(1)

n,n

∂T0
− 	(1)

n,n = −i
∂An

∂T1
exp(−iT0). (A8)

The solvability condition for Eq. (A8) yields
∂An

∂T1
= 0, 	(1)

n,n = 0, (A9)

whereas Eq. (A7) can be solved for 	(1)
n,m (n �= m), yielding

	(1)
n,m = −(An+1δm,n+1 + An−1δm,n−1

+Anδm,n+1 + Anδm,n−1) exp(−iT0). (A10)

Finally, at order ∼ε2 for n = m one obtains

i
∂	(2)

n,n

∂T0
− 	(2)

n,n = exp(−iT0)

{
− i

∂An

∂T2
+ 2Vn

ε2U
An

+ 2(An+1 + An−1 + 2An)

}
. (A11)

The solvability condition to Eq. (A11) yields

i
∂An

∂T2
= 2Vn

ε2U
An + 2(An+1 + An−1 + 2An). (A12)

If we stop the asymptotic analysis at order ∼ε2, after reintro-
duction of the original variables from Eqs. (A2), (A4), (A6),
(A9), and (A12) one finally obtains

	n,n(t ) = An(t ) exp(−iUt ) + O(ε2),

	n,m(t ) = O(ε) (m = n ± 1), (A13)

	n,m(t ) = o(ε) (|m − n| � 2),

where the slowly varying amplitudes An evolve according to
the following equations:

i
dAn

dt
= 2J2

U
(An+1 + An−1 + 2An) + 2VnAn, (A14)

which correspond to Eqs. (14) and (15) given in the main
text, with Je ≡ 2J2/U . Note that Je corresponds to an effective
hopping rate of two-particle states, which is a second-order
process (as it arises at order ∼ε2 in the asymptotic analysis).
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