
PHYSICAL REVIEW B 108, 075120 (2023)

Finite-temperature second harmonic generation in Kitaev magnets
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We study electric-field-induced second harmonic generation (SHG) in the Kitaev model. This frustrated
magnet hosts a quantum spin liquid, featuring fractionalization in terms of mobile Majorana fermion and
static Z2 flux-vison elementary excitations. We show that finite-temperature SHG allows to probe characteristic
features of both fractional quasiparticle types. In the homogeneous flux state at low temperatures, the SHG
susceptibility displays an oscillatory spectrum, which is set by only the fermionic excitations and is subject
to temperature-induced Fermi blocking, generic to all higher harmonic generation (HHG). In the intermediate
to high-temperature range, intrinsic randomness, which emerges from thermally excited visons leads to drastic
changes of the SHG susceptibility, resulting from resonance decoupling over a wide range of energies. At the
flux proliferation crossover, we suggest an interpolation between these two temperature regimes. Our results
satisfy previously established symmetries for electric-field-induced SHG in Kitaev magnets.
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I. INTRODUCTION

Nonlinear optical (NLO) spectroscopy is a diverse tool
of many interests. In particular, second harmonic generation
(SHG) has traditionally served as a probe to study inversion
symmetry breaking [1]. Lately, this has played an eminent
role in bulk graphene materials [2–5], layered transition metal
dichalcogenides [6–10], and transition metal monopnictide
Weyl semimetals [11]. Probing inversion symmetry breaking
by SHG can even be related to local properties [12]. Apart
from SHG, photovoltaic shift currents, e.g., in ferroelectrics
[13,14] and topological insulators [15], are another second-
order NLO response of interest, which is of similar sensitivity
to symmetries. Photogalvanic currents have been considered
not only in the charge, but also in the spin channel, e.g., for
bilayer trihalides [16].

Beyond exploring symmetries with low-order HG, the
complete time dependence of the NLO response is of inter-
est due to its relations to Floquet group theory and Floquet
topological insulators [17–19]. This is because the allowed
emissions from higher harmonic generation (HHG) can be
analyzed in terms of certain spatiotemporal, dynamical sym-
metries of time-periodically driven systems [17,20,21]

Lately, two-dimensional coherent NLO spectroscopy
(2DCS), which is a third-order echo response [22,23], has
come into focus, for accessing quasiparticle spectra and in-
teractions. This pertains not only to semiconductors [23],
molecules [24], and disordered many-body systems [25].
Instead, direct coupling of the driving external magnetic
fields to the spin of correlated magnets has allowed to con-
sider magnons [26], kinks [27], spinons [28], fractons [29],
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Majorana fermions and visons [30] by 2DCS, and also by
a related second-order spectroscopy [31]. Such applications
have linked NLO spectroscopy to the very timely topics of
quantum spin liquids (QSL) and fractionalization [32].

In the context of QSLs, the Kitaev magnet [33] is of partic-
ular interest [34,35]. This frustrated magnet hosts a QSL due
to an exact fractionalization of spins in terms of two types
of elementary excitations, namely, mobile Majorana matter
and Z2 gauge flux, which is localized in the absence of ex-
ternal magnetic fields [33]. It is realized by an Ising model
on the honeycomb lattice with bond-directional anisotropy
and may serve as a low-energy spin model for certain Mott-
Hubbard insulators with strong spin-orbit coupling [36]. All
of its spin correlations are short ranged [37] and the flux-free
sector allows for analytic treatment [33]. In a finite magnetic
field the Kitaev magnet opens a gap, supporting chiral edge
modes [33]. As for materials, α-RuCl3 [38] may currently be
closest to representing the Kitaev model, although additional
exchange interactions lead to zigzag antiferromagentic order
below 7.1 K [39]. This order can be suppressed by in-plane
magnetic fields H‖a [40,41] and leaves the most likely region
for a low-temperature QSL in the field range of H ∼ 7. . . 9T
[42–46]. Fractionalization in this QSL has been suggested
to impact a multitude of spectroscopic probes, including in-
elastic neutron scattering [47–50], Raman scattering [51–53],
resonant x-ray scattering [54], phonon spectra [55–60], and
ultrasound propagation [61].

Recently, in a first study [62], the NLO response to driving
external electric fields of a Kitaev magnet has been added to
the list of spectroscopies of fractional quasiparticles. Based
on a field-induced exchange-striction mechanism [63], HHG
by Majorana fermions was shown to exist up to high order,
using the time-dependent density matrix from a Lindblad
equation approach. The latter approach was confined to a
particular driving pulse shape, leaving spectral information
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about the higher harmonic (HH) susceptibilities undisclosed.
In addition, only the case of zero temperature was considered.
Therefore, since the magnetostrictive light-matter interaction
does not couple to Z2 flux directly, the impact of thermally
excited visons, i.e., the second type of fractional quasipar-
ticles of a Kitaev QSL on NLO spectroscopy remains to be
understood.

Motivated by this, the purpose of this paper is to study
the effects of finite temperature on the electric-field-driven
NLO response of a Kitaev QSL, focusing on the dynamical
SHG susceptibility. As prime results, we show that not only
Fermi blocking occurs, but that visons have a very strong
impact, indicating that temperature is an additional impor-
tant parameter in NLO experiments. The paper is organized
as follows. In Sec. II we summarize the model. Section III
details our evaluation of HHG and SHG susceptibilities for
homogeneous and random gauge sectors, in Secs. III A and
III B, respectively. Results and discussions are presented in
Sec. IV, a summary in Sec. V. Additional information and
further calculations are deferred into Appendixes A–D.

II. THE MODEL

We consider the Kitaev spin model on the two-dimensional
honeycomb lattice [33]

H0 =
∑
l,α

JαSα
l Sα

l+rα
, (1)

where l = n1R1 + n2R2 runs over the sites of the trian-
gular lattice with R1[2] = (1, 0), [( 1

2 ,
√

3
2 )], and rα=x,y,z =

( 1
2 , 1

2
√

3
), (− 1

2 , 1
2
√

3
), (0,− 1√

3
) refers to the basis sites α =

x, y, z, tricoordinated to each lattice site of the honeycomb
lattice with Ising exchange Jα , which we set isotropic in the
absence of electric fields, i.e., Jα = J . While for α-RuCl3

most ab initio studies suggest a sizable ferromagnetic Kitaev
exchange [34,35], i.e., J < 0 in Eq. (1), the sign of J remains
irrelevant in the absence of additional exchange interactions
or external magnetic fields. For the light-matter interaction
between the electric field E and the spin system, we assume
a minimal dipole coupling −P · E , employing an exchange-
striction mechanism induced by orbital polarization [63,64],

P = ∂H0

∂E
= �

∑
l

(
Sx

l Sx
l+rx

− Sy
l Sy

l+ry

)
, (2)

where, to simplify symmetry matters, we set the field E =
Ee⊥,z to be perpendicular to the z bonds [65]. P is the effective
polarization operator and � is the magnetoelectric coupling
constant. The size of � remains an open question. However,
it has been argued, that for fields with E ∼ 0.1 − 1 MV/cm,
energies of |�E | ∼ 0.01 − 0.1J can be reached [62].

The pure Kitaev model is invariant under the transforma-
tion U of reflection on the z bond (x,y)→(−x,y), including
an exchange of spins Sx,y,z→(+, − ,+)Sy,x,z. Both, polar-
ization and electric field, change sign under U . Since NLO
susceptibilities at order N of E are rank-(N+1) tensors of P,
see Appendix A, this implies that even-N response vanishes
unless the U symmetry of H is broken [62]. To allow for
such symmetry breaking, and for the remainder of this paper,

FIG. 1. Kitaev model with (blue, red, black) x, y, z bonds, hosting
Sα

l Sα
l+rα

exchange with α = x, y, z, respectively, in electric field
Edc + Eac(t ) ⊥ to z bonds. J (1 + λ, 1 − λ, 1) refers to exchange
interactions on x, y, z bonds including dimerization λ = −�Edc by
static field.

we follow Ref. [62] and decompose E = Edc + Eac(t ) into
a static (DC) and an dynamic (AC) part, the latter of which
time averages to zero. Since the symmetry of the Hamiltonian
includes all terms, i.e., also the external electric field, the
total Hamiltonian then breaks centrosymmetry for Edc �= 0.
As depicted in Fig. 1, Edc can be absorbed into a rescaled
exchange Jα = J (1 + λ, 1 − λ, 1) with λ = −�Edc, thereby
explicitly breaking the U symmetry of H . This procedure is
reminiscent of the field-induced SHG in semiconductors [66]
or graphene [67].

Following established literature [33,35], Eqs. (1) and (2)
map onto a quadratic form of Majorana fermions in the pres-
ence of a static Z2 gauge ηl = ±1, residing on, e.g., the α = z
bonds,

H0 − P(Edc + Eac(t )) = H − PEac(t )

= − i

2

∑
l,α=x,y,z

Jαηl,α alcl+rα

+ i

2

∑
l,α=x,y

sgα alcl+rα
�Eac(t ), (3)

where ηl,x(y) = 1, ηl,z = ηl, and sgα = +(−) for α = x(y).
There are two types of Majorana particles, corresponding to
the two basis sites. We use the normalization {al, al′ } = δl,l′ ,
{cm, cm′ } = δm,m′ , and {al, cm} = 0. Note that this Hamilto-
nian is diagonal in ηl,α . That is, the optical exchange-striction
mechanism does not excite Z2 fluxes. For the remainder of
this paper h̄ = kB = 1.

III. HH SUSCEPTIBILITIES

In this section we detail the evaluation of the HH response
functions. Two temperature regimes will be considered,
namely, T � (�)T �, where T � ≈ 0.012 . . . 0.025J is the so-
called flux proliferation temperature. In a very narrow region
of width O(±0.01J ) centered around T � the Z2 flux gets
thermally populated, changing the average link density rapidly
from 〈ηl〉 = 1 to 〈ηl〉 = 0 [68–70]. In the following, we will
employ this and divide the temperature axis into approx-
imately two regimes, i.e., the homogeneous flux sector in
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Sec. III A for T � T � and the “random flux sector” for T �
T � in Sec. III B. The term random flux sector is used to
imply an average over sectors with randomly chosen values
of ηl. This approach has proven to work well on a quantitative
level in several studies of the thermal conductivity of Kitaev
models [69–71].

A. Higher harmonic susceptibilities below T �

For ηl = 1 the Hamiltonian (1) can be diagonalized analyt-
ically in terms of complex Dirac fermions. This procedure has
been detailed extensively in various ways in the literature, e.g.,
[35,55,56,72] and Refs. therein. We merely state the quanti-
ties needed for the present calculations. The real Majorana
fermions are mapped onto complex ones on half of the mo-
mentum space by Fourier transforming ak = ∑

l e−ik·lal/
√

N
with momentum k and similarly for ck. They satisfy a†

k =
a−k. Standard anticommutation relations apply, {ak, a†

k′ } =
δk,k′ , {ck, c†

k′ } = δk,k′ , and {a(†)
k c(†)

k′ } = 0. The diagonal form
of H is

H =
∑̃

k,γ=1,2

sgγ εk d†
γ kd

γ k, (4)

where [ck, ak]T = u(k) [d1k, d2k]T defines the quasiparti-
cle fermions dik via a unitary transformation u(k) (Ap-
pendix D), and sgγ = 1(−1) for γ = 1(2). The quasipar-
ticles satisfy d†

1(2)k = d2(1)−k, and
∑̃

sums over half of
momentum space. In Cartesian coordinates the quasiparti-
cle energy εk reads εk = J[3 + 2λ2 + 2(1 − λ2) cos(kx ) +
4 cos(kx/2) cos(

√
3ky/2) − 4λ sin(kx/2) sin(

√
3ky/2)]1/2/2.

Using the unitary trafo u(k), we may express P in terms of
the quasiparticle Dirac fermions

P = �
∑̃
k,μν

d†
μk pμν (k)dνk, (5)

where, in cartesian coordinates, p11(k) = −p22(k) =
sin(kx/2)(2λ sin(kx/2) − sin(

√
3ky/2))/(2εk ) and p12(k) =

p�
21(k) = −i sin(kx/2)(2 cos(kx/2) + cos(

√
3ky/2))/(2εk ).

Obviously P is not diagonal in the quasiparticle basis,
implying both, inter- and intraband excitations to occur.

Using Appendix A, we are now in a position to formu-
late the N th harmonic susceptibilities diagrammatically as in
Fig. 2. For the AC field we use Eac(t ) = (eiωt + e−iωt )A, with
amplitude A. To appreciate these graphs, we first note that in
principle N th harmonics can arise from any combination of
contributions by the field ∝ exp[(

∑
l ±1l )itω], such that the

sum of all signs of the input frequencies satisfy
∑

l ±1l = N .
In turn N th harmonics can be generated at order EM

ac (t ) with
M = N + 2m, m ∈ N. For the remainder of this paper we will
consider only the leading order, i.e., M = N . This is merely
for simplicity. No conceptual or technical reason prevents
inclusion of graphs beyond the leading order in Eac(t ), at the
expense of increasing the length of the analytical expressions.
Second, we emphasize that for the latter situation, the intrinsic
permutation from Eq. (A7) is the identity, i.e., only a single
graph has to be considered for each N . Third, for all purposes
the wave vector of the incoming light can be set to zero q = 0.
Finally, for each Green’s function line in Fig. 2, two contri-
butions Gγ (k, εn) with γ = 1, 2 from the two quasiparticle

(a)

(b)

(c)

FIG. 2. Diagrams for NHG susceptibilities χNω(ω) to leading
order in Eac(t ) for N = 1, 2, 3.

bands arise, fixing also the matrix elements pμν (k) distributed
along each graph.

Evaluation of the susceptibilities is straightforward. For
Figs. 2(a)–2(c) we obtain

χω(ω) = �2
∑̃

k

4(2 fk−1)εk |p12(k)|2(
ω2+ − 4ε2

k

) , (6)

χ2ω(ω) = �3
∑̃

k

6(2 fk−1)ε2
k p11(k)|p12(k)|2(

ω2+ − ε2
k

)(
ω2+ − 4ε2

k

) , (7)

χ3ω(ω) = �4
∑̃

k

[
8(2 fk−1)|p12(k)|2εk(

9ω2+ − 4ε2
k

)
×

(|p12(k)|2(ω2
+ − ε2

k

) + p2
11(k)

(
ω2

+ + 4ε2
k

))
(
ω2+ − ε2

k

)(
ω2+ − 4ε2

k

)
]
,

(8)

with Fermi function fk = 1/( exp(εk/T ) + 1) and ω+ = ω +
i0+, with positive imaginary broadening 0+. Calculating the
diagrams for χNω(ω) can be cast into symbolic algebra code
swiftly, providing analytical expressions with minimal re-
sources, easily up to N > 10 [73]. Therefore in practice,
real-time HH response can be obtained for any input pulse
shape without repetitive solutions of Lindblad equations by
convolution with analytic expressions for χNω(ω).

The susceptibilities (6)–(8) display the resonance structure,
typical of NHG. In particular, for each N , resonant enhance-
ment occurs at integer fractions of 2εk, down to ω = 2εk/N ,
indicative of the cooperative transition of N photons of fre-
quency ω at a fermion gap of 2εk.

Not only the pure Kitaev model, but also its homogeneous
flux sector satisfies the U symmetry discussed in Sec. II.
Indeed, following the diagrams of Fig. 2 and Eqs. (6)–(8), it is
clear that any even-N harmonic susceptibility, including those
at subleading order in Eac(t ), contain an odd [even] power
of p11(k) [|p12(k)|]. Moreover, for vanishing static fields,
i.e., λ = 0, εkx,ky = ε−kx,ky , p11(kx, ky) = −p11(−kx, ky), and
|p12(kx, ky)| = |p12(−kx, ky)|, as well as an identical relation
for ky → −ky. Therefore, at λ = 0, all even-N harmonic sus-
ceptibilities vanish. This agrees with Ref. [62].
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B. Second harmonic susceptibilities above T �

In phases with random flux enclosed, i.e., for T > T �,
Hamiltonian (3) loses translational invariance and we resort to
a formulation amenable to numerical treatment in real space.
This approach has been detailed in the literature [55,56,72].
We only list those points necessary to clarify the calculation
of susceptibilities.

The Majorana fermions on the 2N sites in Eq. (3) are en-
coded into a spinor A†

σ = (a1 . . . al . . . aN , c1 . . . cl+rx . . . cN ).
This is mapped onto a spinor of complex Dirac fermions D†

σ =
(d†

1 . . . d†
N , d1 . . . dN ) using a unitary (Fourier) transform F.

That is, D = FA where bold faced symbols refer to vectors
or matrices. F is constructed from two disjoint N × N blocks
F i=1,2

σρ = e−ikσ ·Ri
ρ /

√
N , with σ, ρ = 1 . . . N and Ri

ρ = l and
l + rx, for a- and c-Majorana lattice sites, respectively. F
merely serves as a device to introduce complex fermions. k is
chosen such that for each k there exists one −k with k �= −k.
Finally, for convenience, F is rearranged such as to associate
the d†

1 . . . d†
N with the 2 (N/2) = N “positive” k vectors. In

terms of these notations and for any set of values {ηl},
H = D†h D/2, P = �D†p D/2. (9)

The 2N × 2N matrices h and p are in general nondiagonal and
contain particle number nonconserving terms. Finally, at this
stage, and for a fixed distribution of {ηl} numerics is invoked
to obtain a Bogoliubov transformation U, diagonalizing h, i.e.,
(UhU†)ρσ = δρσ ερ , with ερ = (ε1 . . . εN ,−ε1 · · · − εN ) and
quasiparticles S = UD, for which H = ∑2N

ρ=1 ερS†
ρSρ/2. We

stay within a Nambu notation with ρ = 1 . . . 2N , i.e., keeping
the particle and hole range of S(†)

ρ , because the quasiparticle
form of the polarization P = �S†m S/2 is not simultaneously
diagonal with H . It remains particle number nonconserving.

The quasiparticle Green’s function Gαβ (τ ) = −〈Tτ (SαS†
β )〉

in Matsubara frequency space reads

Gαβ (εn) = δαβGα (εn) = δαβ/(iεn − εα ), (10)

with εn = (2n + 1)πT . To appreciate this textbook equation
in the present context, we introduce a notation, connecting
the particle- and hole indices of Sρ , namely, ρ̄ = ρ ∓ N for
ρ ≷ N . With that, anomalous Green’s functions simply fulfill
−〈Tτ (S†

αS†
β )〉 = −〈Tτ (SᾱS†

β )〉 = Gᾱβ (τ ), with εᾱ = −εα . This
renders normal and anomalous contractions in the diagrams
of Fig. 2 straightforward, using Eq. (10) only and summing
proper index combinations for the polarization vertices mαβ .
Diagram Fig. 2(b) yields

χ2iωn (iωn) = − �3 T
∑

αβγ ,εm

[tαγ tγ βtβα

× Gα (εm+2ωn)Gβ (εm+ωn)Gγ (εm)], (11)

with tαβ = (mαβ − mβ̄ᾱ )/2, where the first addend refers to
the normal contraction order, and the second to the anoma-
lous. Frequency summation and analytic continuation results
in

χ2ω(ω) = �3
∑

αβγ ,εm

tαγ tγ βtβα

2ω+ − εα + εγ

(
fβ − fα

ω+ − εα + εβ

+ fβ − fγ
ω+ − εβ + εγ

)
, (12)

with the Fermi function fα = 1/( exp(εα/T ) + 1). Obviously
Eqs. (11) and (12) can readily be generalized to any HH
susceptibility. We refrain from this.

To complete our evaluation of χNω(ω) for T � T �, a suffi-
ciently large number of random distributions {ηl} is generated,
for each of which U, εα , mαβ , and Eqs. (12) are calculated
numerically, with a final average over all χNω(ω) obtained.
The relative orientation of the polarization in Eq. (2) and
the gauge fixing on the z bonds does not imply unphysical
anisotropies. This is satisfied by our r-space code. That is, the
spectra we obtain in the random gauge sector are independent
of (P, E ) pointing perpendicular to the z, x, or y bonds.

IV. RESULTS AND DISCUSSION

For the purpose of discussion and to highlight some of
the results of this paper, it seems of help to sketch the
physics by elementary considerations on a two-level system.
Since the homogeneous sector is translationally invariant, all
HHG processes can be viewed as occurring on a disjoint
collection of pairs of states {1k, 2k} with energies {εk,−εk},
enumerated by k. For discussion, we reduce this to a single
two-level Hamiltonian H = ε|1〉〈1| − ε|2〉〈2|, an accompany-
ing polarization P = n|1〉〈1| + m|2〉〈2| + �|1〉〈2| + ��|2〉〈1|,
and a driving field E (t ) = (eiωt + e−iωt )A, with a combined
Hamiltonian of H + P E (t ). We are interested in the ex-
pectation value 〈P〉ρ (t ), with respect to the time-dependent
density matrix ρ(t ). In the interaction picture ρ̇(t ) =
−i[Q(t ), ρ(t )], with Q(t ) = P(t )E (t ) = eiHt Pe−iHt E (t ) =
(n|1〉〈1| + m|2〉〈2| + �e2iεt |1〉〈2| + ��e−2iεt |2〉〈1|)E (t ).

Without loss of generality, from the various commutator
contributions to ρ(t ) for SHG, analogous to Appendix A, we
pick a single-time ordering, with all Q(t ) left of ρ0, the equi-
librium density matrix at t = −∞, set to the zero-temperature
limit ρ0 = |2〉〈2|. Using only the e−iωt A component of the
driving field for the purpose of SHG, the contribution reads

ρ2ω(t ) = − A2
∫ t

−∞
dt1

∫ t1

−∞
dt2 ne−iω+t1 |1〉〈1|

× �e−i(ω+−2ε)t2 |1〉〈2| |2〉〈2| + . . .

= A2 n �
|1〉〈1| |1〉〈2| |2〉〈2|

(2ω+ − 2ε)(ω+ − 2ε)
e−i(2ω−2ε)t + . . . .

(13)

The selected time ordering shows off in the sequence of
projectors |μ〉〈ν| and “. . . ” refers to all orderings discarded.
From this density matrix 〈P〉ρ (t ) = A2e−i2ω+t n|�|2/((2ω+ −
2ε)(ω+ − 2ε)).

Obviously, 〈P〉ρ (t ) displays frequency doubling. More-
over, the structure of matrix elements is consistent with
Eq. (7), replacing n|�|2 ↔ p11(k)|p12(k)|2. Finally, the se-
quence of projectors in the last line of Eq. (13) allows to
interpret the resonance denominators: The first photon invokes
an interband transition with resonance (ω − 2ε)−1. The sec-
ond photon invokes an intraband transition with resonance
(2ω − 2ε)−1. Connecting this with Eqs. (6)–(8), an NHG
response function shows N resonances, separated by fixed,
coupled integer fractions of the two-level energy ±2εk, for
each k.
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FIG. 3. Imaginary part of dynamical SHG susceptibility in ho-
mogeneous gauge sector vs ω, for various static fields λ = −�Edc at
fixed temperature T . Linear system size L = 400, imaginary broad-
ening 0.01, energies in units of J .

This physics is drastically altered by gauge disorder. It ren-
ders the Hamiltonian diagonal in a set of single fermion states,
the quantum numbers of which will be completely mixed
by the polarization operator. The consecutive absorption of
m = 1. . . N photons of Eq. (13) remains intact; however, the
corresponding resonance denominators (mω+ − εα + εβ )−1

are independently distributed over all energies, i.e., they are
decoupled. The transitions may be intra- or interband, depend-
ing on the sign of εαεβ . This is the content of Eq. (12) in terms
of the nondiagonal matrix elements tαβ and the resonance
denominators.

In the homogeneous gauge sector, summing over k, the
product structure of resonances of Eq. (13), comprising a sign
change between the poles, and interlocked by a fixed energy
ratio of 2, can promote oscillations of Imχ2ω(ω), in addi-
tion to oscillations, which are induced by p11(k). In random
gauge sectors, however, such oscillatory behavior should be
suppressed, in particular towards lower frequencies, where
resonance pairs from all energies overlap randomly.

To substantiate the preceding, we now discuss several plots
of χ2ω(ω), scanning the system parameters of temperature T ,
static field λ = −�Edc, and flipped gauge link density nη. For
T in units of J we will consider all thermal energies, up to
the exchange energy, i.e., T ∼ [0 . . . 1]. The experimentally
accessible range of the static-field energy in units of J , i.e., λ

is an open question as of today. But exploratory values, up to
several tenths, e.g., λ ∼ [0 . . . 0.4] seem acceptable for low-
J materials [62]. Finally, the density of gauge links flipped
satisfies 0 � nη � 1/2, with nη = 0 the homogeneous state.

Figure 3 displays the spectrum Imχ2ω(ω) from Eq. (7)
at very low temperature T = 0.0025 for various �Edc. Since
χ2ω(ω) is holomorphic in the upper half plane, Reχ2ω(ω) fol-
lows from Kramers-Kronig and will not be shown henceforth.
The figure exemplifies the SHG selection rule, consistent with
[62]. That is, in the limit �Edc → 0 the susceptibility vanishes.
This substantiates our claim expressed in the last sentence of
the abstract. χ2ω(ω) is antisymmetric with respect to �Edc.
The spectrum clearly shows the oscillatory behavior discussed
previously, exhibiting several sign changes within the range
0 < ω < 2max(εk ) = 3J . As is evident from the figure, the
fermionic density-of-states modifications, due to �Edc lead to
characteristic shifts of van Hove structures in the spectrum.

FIG. 4. Imaginary part of dynamical SHG susceptibility in ho-
mogeneous gauge sector vs ω, for various temperatures T at fixed
static field λ = −�Edc. Linear system size L = 400, imaginary
broadening 0.01, energies in units of J .

Next, in Fig. 4, we consider the temperature dependence
of the SHG susceptibility in the homogeneous gauge sector
at a finite �Edc. Two of the temperatures displayed, i.e., T =
0.25J and 0.5J are well above the flux proliferation crossover.
Analyzing such temperatures with a homogeneous gauge is
for demonstration only and serves the purpose of clarifying
the impact of thermally excited flux later. The figure clearly
shows the effect of the statistics of the fermions. That is, as
the temperature increases, interband excitations get blocked
by thermal occupation, encoded by the factor (1 − 2 fk ) in
Eqs. (6)–(8) for all HHG susceptibilities. This so-called Fermi
blocking has been highlighted as a fingerprint of fractionaliza-
tion for a growing list of spectral probes of Kitaev magnets,
including Raman scattering [51–53], resonant x-ray scatter-
ing [54], phonon spectra [55–60], and ultrasound propagation
[61]. As a main result, the present study adds HHG to this list.

Figure 5 displays the temperature dependence of the SHG
susceptibility in the random gauge sector, at the same fixed
static field, as in Fig. 4. First it should be noted that the
linear system size L = 30 is considerably smaller than for the
homogeneous sector. On the one hand, this is a prerequisite
for acceptable runtimes of Eq. (12), comprising a Bogoliubov
transform, a matrix-product trace for each ω, and an aver-
age over {ηl} distributions. On the other hand, using L ∼ 30
for a strictly homogeneous gauge is impractical, because

FIG. 5. Imaginary part of dynamical SHG susceptibility in ran-
dom gauge sector vs ω, for various temperatures T at fixed static
field λ = −�Edc. Linear system size L = 30, number of random
realizations 62, imaginary broadening 0.05, energies in units of J .
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FIG. 6. Imaginary part of dynamical SHG susceptibility vs ω,
for various flipped gauge link densities at fixed temperature T =
0.05∼T � and static field λ = −�Edc. Linear system size L = 30,
number of random realizations 62, imaginary broadening 0.05, en-
ergies in units of J .

of finite-size degeneracies. These are absent in the random
gauge sector. Consequently, comparing χ2ω(ω) between ho-
mogeneous and random sectors, some quantitative finite-size
differences remain inevitable (see also Appendix C).

Apart from finite-size effects, the spectra in Figs. 5 and
4 differ qualitatively. This difference can now be understood
in terms of the discussion at the start of this section. That
is, in the random gauge sector the low- and high-frequency
resonance energies from Eq. (12), (εα − εγ )/2 and (εα − εβ ),
(εβ − εγ ), respectively, are distributed independent and ran-
domly, with a DOS that is almost flat [68] and they are
coupled by nondiagonal matrix elements. This modifies the
lower-energy region of χ2ω(ω), leading to significantly less
oscillatory behavior as compared to Fig. 4. In addition to this
qualitative difference, Fig. 5 shows Fermi blocking similar
to Fig. 4. Therefore, as another main result of this study, for
T � T �, both, the statistics of the fermionic quasiparticles, as
well as the visons impact the SHG susceptibility.

In Fig. 6 we approximate the evolution of the SHG suscep-
tibility through the flux-proliferation crossover. An unbiased
treatment of this requires evaluation of a dynamical three-
point correlation-function at intermediate flux density, varying
the temperature across T �. Quantum Monte Carlo [68] cal-
culations for this is an open issue. For exact diagonalization
[69] finite-size effects are expected to be detrimental. To make
progress, we therefore resort to a phenomenological approach.
This amounts to fixing a temperature T ≈ T �, e.g., T = 0.05J
and consecutively varying the average density nη of flipped
gauge links from a low value, essentially describing the ho-
mogeneous flux sector, up to its maximum possible value
at nη = 1/2. This provides for an approximate interpolation.
Since flux proliferation occurs within a rather narrow temper-
ature window of O(T �) � J , varying the temperature of the
fermions can be discarded. First, comparing the spectrum at
T = 0.05 in Fig. 4 with that for nη = 0.05 in Fig. 6 provides a
rough measure for the finite-size differences between L = 400
and 30. Otherwise, these spectra show the same oscillatory
behavior, representative of the homogeneous sector. Using ex-
actly nη = 0 within the r-space code is inconvenient because
of large degeneracies at L = 30. Remarkably, and as another
main result, Fig. 6 corroborates the discussion at the start of

FIG. 7. Imaginary part of dynamical SHG susceptibility in ran-
dom gauge sector vs ω, for various static fields λ = −�Edc at fixed
temperature T . Linear system size L = 30, number of random real-
izations 62, imaginary broadening 0.05, energies in units of J .

this section. That is, the low-energy modulations of χ2ω(ω)
are continuously removed as nη increases. Quantitatively, the
high-energy spectrum is less affected by the increase of flux
density.

Finally, we show results for the dc-field dependence of
χ2ω(ω) in the random gauge sector in Fig. 7. While for a
single gauge sector with a fixed random distribution of ηl, the
U symmetry of Sec. II will not be satisfied in general, it is
mandatory that after averaging over random ηl distributions,
to within the statistical error χ2ω(ω) must vanish for vanishing
�Edc, in order to encode the physics of the pure Kitaev model.
Figure 7 clearly evidences this behavior, implying that the
pure Kitaev magnet shows no SHG at any temperature.

V. SUMMARY

We have studied finite-temperature SHG in the Kitaev
magnet. We found that fractionalization in this frustrated
quantum spin system has a profound impact on the evolution
of the SHG susceptibility with temperature. Mobile fermionic
excitations, which are one kind of fractional quasiparticles of
this system, lead to an overall reduction of HHG susceptibili-
ties by Fermi blocking on a temperature scale of the exchange
coupling constant. This is in line with other spectroscopic
probes of the Kitaev magnet. In addition, however, a second
low-temperature scale T � exists, in the narrow vicinity of
which localized Z2 visons, which are the second kind of
fractional quasiparticles, are thermally populated. This in-
duces strong qualitative changes of the SHG susceptibility, by
smoothing spectral oscillations up to intermediate energies. In
turn, both types of fractional quasiparticles play an important
role in finite-temperature SHG. While we have analyzed the
effects of the visons on the SHG only, it is tempting to suggest
that this physics applies to all HHG.

Speculating on experimental consequences for the proxi-
mate Kitaev magnet α-RuCl3, it should be realized first that
full access to the conclusions of this paper would be possible
only in the potential QSL phase in the in-plane field range
of H‖a ∼ 7. . . 9T. Second, since J ∼ 90 K is in the terahertz
range, the response of convoluting few-cycle terahertz pulses
with the SHG susceptibility should be very sensitive to the
drastic changes between Figs. 4 and 5. Therefore, apart from
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the gradual intensity increase on a scale of ∼90 K by Fermi
blocking as T is lowered, a vison-induced strong intensity
change should occur for T ∼ 1 . . . 5 K. Finally, the even HG
selection rule seems an interesting case where strain experi-
ments could be of interest.

Our considerations have left aside the role of static mag-
netic fields H for the fermions and visons. For the former,
magnetic-field-induced gaps are low-energy features only,
similar to bulk gaps induced by spin-orbit coupling in
graphene, and are smeared out by vison disorder for T > T �.
For the latter, vison dispersion generated by magnetic fields
could lead to interesting phenomena, which are beyond the
scope of this study.

Finally we note that the methods described in this paper
are directly applicable to the analysis of other types of higher-
order spectroscopies in Kitaev magnets [74].
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APPENDIX A: nTH ORDER RESPONSE DIAGRAMS

Let

H (t ) = H − P E (t ), (A1)

be a time-dependent Hamiltonian. For labeling purpose, P
is dubbed a “polarization” and E (t ) a time-dependent “elec-
tric field”. We assume the electric field to be adiabatically
switched on, starting at t = −∞. The response at time t of
P to the perturbation P E (t ) is obtained from expanding the
time-dependent density matrix ρ(t ) in the interaction picture
[75]

〈P〉(t ) = 〈P〉 + i
∫ t

−∞
〈[P(t ), P(t1)]〉E (t1) dt1

+ i2
∫ t

−∞

∫ t1

−∞
〈[[P(t ), P(t1)], P(t2)]〉E (t1)E (t2) dt1dt2

+ . . . + in
∫ t

−∞
· · ·

∫ tn

−∞
〈[. . . [P(t ), P(t1)], . . . , P(tn)]〉

× E (t1) . . . E (tn) dt1 . . . dtn + . . . , (A2)

where P(t ) = eiHt Pe−iHt is the time dependence within the
interaction picture. Equation (A2) can be written in terms of
retarded susceptibilities

�〈P〉(t ) =
∫ ∞

−∞
χ (t, t1) E (t1) dt1

+
∫ ∞

−∞

∫ ∞

−∞
χ (t, t1, t2) E (t1)E (t2) dt1dt2 + . . .

+
∫ ∞

−∞
· · ·

∫ ∞

−∞
χ (t, t1, . . . , tn) E (t1) . . .

× E (tn) dt1 . . . dtn + . . . (A3)

FIG. 8. Intrinsically symmetrized n + 1 point susceptibility.

where

χ (t, t1) = i�(t − t1)〈[P(t ), P(t1)]〉, (A4)

χ (t, t1, t2) = i2�(t − t1)�(t1 − t2)〈[[P(t ), P(t1)], P(t2)]〉,
(A5)

χ (t, t1, t2, . . . , tn) = in�(t − t1)�(t1 − t2) . . . �(tn−1 − tn)

× 〈[. . . [P(t ), P(t1)], . . . , P(tn)]〉.
(A6)

χ (t, t1) is the standard two-point linear response susceptibil-
ity. As usual, since H is time independent, 〈[P(t ), P(t1)]〉 can
be recast into 〈[P(t − t1), P]〉, highlighting the dependence of
χ (t, t1) on t − t1.

All of the n-fold time integrations in Eq. (A3) are totally
symmetric with respect to any permutation of the n time
arguments. Therefore, all contributions to �〈P〉(t ) can be
accounted for by replacing all susceptibilities by their fully
symmetric part, dubbed intrinsic permutation symmetry [76]

χ (t, t1, . . . , tn) → χS (t, t1, . . . , tn)

= 1

n!

∑
π

χ (t, tπ (1), . . . , tπ (n) ), (A7)

where π labels all permutations.
It is textbook knowledge [75] that the Fourier transform

χ (ω) at real frequencies ω of the retarted two-point func-
tion χ (t ) = i�(t )〈[P(t ), P]〉 can be obtained from the Fourier
transform of the imaginary time two-point function χ (τ ) =
〈Tτ (P(τ )P)〉 at Matsubara frequencies iωn = i 2πT n by an-
alytic continuation onto the real axis with iωn → ω + i0+.
Beyond this, however, the analytic continuation procedure
applies to the evaluation of any fully symmetrized retarded
n-point functions of an interacting systems for all n, including
the case of arbitrary vertex operators, P, P(t1), . . . , P(tn−1) →
P0, P1(t1), . . . , Pn−1(tn−1) with Pi �= Pj for i �= j. This has
been proved in Refs. [77,78]. Therefore, if P can be expressed
in terms of fermions/bosons, standard diagrammatic methods
can be applied to calculate χ (t, t1, . . . , tn) for any n.

Specifically, if P is a quadratic form of fermions/bosons,
the preceding implies the diagram Fig. 8 for the n + 1 point
susceptibility. Thick lines connecting the vertices Pj refer to
one-particle Green’s functions and the hatched background
implies, that any kind of interactions may dress the graph,
if H provides for such. Finally, π refers to an implicit sum
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over all such graphs with the vertices iωm, jPj permuted along
the outer lines of the diagram. This clarifies the correlation
functions evaluated in Sec. III A.

APPENDIX B: EQUATION OF MOTION APPROACH

For an approach alternative to the diagrams in Fig. 2, one
can also evaluate the commutators in Eq. (A2) directly using
the time-dependent polarization operators within the interac-
tion picture. In the k-space formulation for the homogeneous
state Eqs. (4) and (5) yield

P(t ) = �
∑̃
k,μν

ei(εμk−ενk )t d†
μk pμν (k)d

νk, (B1)

where εμk = sgμεk , with sgμ as defined after Eq. (4). Inserting
this into the commutators of Eq. (A5) we get

〈[[P(t ), P(t1)], P(t2)]〉
= �3

∑̃
k

2p11(k)|p12(k)|2(ei2εk (t1−t2 ) − ei2εk (t−t2 )

+ ei2εk (t2−t1 ) − ei2εk (t2−t )
)
(1 − 2 fk ), (B2)

where the Fermi function fk, defined after Eq. (8), results from
thermal traces of type 〈d†

μkdνk〉 = δμν〈d†
μkdμk〉. Since P(t ) is

quadratic in the fermions, all thermal traces in Eq. (B2) are
also. Inserting Eq. (B2) into the O(E2) addend of Eq. (A2)
using E (t ) = Ae−iω+t in order to obtain the SHG response, we
arrive at χ2ω(ω) identical to Eq. (7). Completely analogous,
following the notation used in Sec. III B, the polarization
expressed in the interaction picture and in r space reads

P(t ) = �
2

∑
μν

ei(εμ−εν )t S+
μ mμνSν, (B3)

where εμ = (ε1 . . . εN ,−ε1 · · · − εN ) and mμν are matrix ele-
ments of m, as defined after Eq. (9). Again, inserting this into
the commutators of Eq. (A5) we get

〈[[P(t ), P(t1)], P(t2)]〉
= �3

∑
αβγ

tαγ tγ βtβα

(
ei(εγ −εα )t ei(εβ−εγ )t1 ei(εα−εβ )t2 ( fβ − fα )

+ ei(εγ −εα )t ei(εα−εβ )t1 ei(εβ−εγ )t2 ( fβ − fγ )
)
, (B4)

where tαβ are defined after Eq. (11). Performing the integra-
tions in Eq. (A2) similar to the k-space case, we arrive at
χ2ω(ω) identical to Eq. (12).

APPENDIX C: REAL SPACE VERSUS MOMENTUM
SPACE CALCULATIONS

This section is merely meant to prove numerically, that
the two rather diametric approaches used in Secs. III A and
III B, i.e., the k-space and r-space calculations, indeed yield
identical results if used within the translationally invariant,
homogeneous gauge sector. For that purpose, we consider
a system, deliberately chosen small enough to resolve sin-
gle quasiparticle energies for a sufficiently small imaginary

FIG. 9. Section of imaginary part of dynamical SHG suscepti-
bility on very small system of linear size L = 8, comparing Eq. (7)
(bold red) with fully numerical results from Eq. (12), forcing a
homogeneous gauge (thin green, with marker) and setting imaginary
broadening 0.01 to resolve single quasiparticle poles. Energies in
units of J .

broadening and set the temperature such as to involve both,
positive and negative quasiparticle energies. For such a case,
we contrast Imχ2ω(ω) resulting from the analytical expres-
sions Eq. (7) with that obtained from the fully numerical
procedure in r space. A typical example is shown in Fig. 9.
The results are identical to within numerical precision.

APPENDIX D: DIAGONALIZATION OF HOMOGENEOUS
SECTOR

Here, for completeness sake, we list the unitary transfor-
mation to quasiparticles u(k), cited after Eq. (4) and known
from the literature, e.g., [55]. The quasiparticles are given by[

ck
ak

]
=

[
u11(k) u12(k)
u21(k) u22(k)

][
d1k
d2k

]
,

u11(k) = −u12(k) = i
∑

α e−ik·rα

23/2εk
,

u21(k) = u22(k) = 1√
2
, (D1)

where the momentum k is set by k = x G1 + y G2 with x, y ∈
[0, 2π [, in terms of the basis G1[2] = (1,− 1√

3
) [(0, 2√

3
)],

which is reciprocal to the triangular lattice basis listed after
Eq. (1).

In terms of the reciprocal coordinates x, y, the quasiparticle
energy εk stated after Eq. (4) reads εk = J[3 + 2λ2 + 2(1 −
λ2) cos(x) + 2(1 − λ) cos(x − y) + 2(1 + λ) cos(y)]1/2/2.

Furthermore, the matrix elements of the dipole operator,
cited after Eq. (5), in reciprocal coordinates are p11(k) =
−p22(k) = ( cos(y) − cos(x − y) + 2λ(1 − cos(x)))/(4εk )
and p12(k) = p�

21(k) = −i( sin(x − y) + 2 sin(x) + sin(y))/
(4εk ).
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