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Classification and emergence of quantum spin liquids in chiral Rydberg models
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We investigate the nature of quantum phases arising in chiral interacting Hamiltonians recently realized
in Rydberg atom arrays. We classify all possible fermionic chiral spin liquids with U(1) global symmetry
using parton construction on the honeycomb lattice. The resulting classification includes six distinct classes
of gapped quantum spin liquids: the corresponding variational wavefunctions obtained from two of these classes
accurately describe the Rydberg many-body ground state at 1/2 and 1/4 particle density. Complementing this
analysis with tensor network simulations, we conclude that both particle filling sectors host a spin liquid with
the same topological order of a ν = 1/2 fractional quantum Hall effect. At density 1/2, our results clarify
the phase diagram of the model, while at density 1/4, they provide an explicit construction of the ground-state
wavefunction with almost unit overlap with the microscopic one. These findings pave the way to the use of
parton wavefunctions to guide the discovery of quantum spin liquids in chiral Rydberg models.
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I. INTRODUCTION

There is presently considerable interest in studying
strongly correlated phases of matter in synthetic quantum
systems based on Rydberg atom arrays [1,2]. Stimulated by
early experiments realizing symmetry-protected topological
phases in one dimension [3], these platforms are now able
to realize frustrated Hamiltonian dynamics in two dimensions
[4–6], thus providing unparalleled opportunities to realize
quantum spin liquids (QSLs)—elusive, exotic states of matter,
which have captivated the attention of physicists for decades
[7–10]. One route to access QSLs is based on the realization
of frustrated Ising models in the so-called frozen gas regime
[2,11,12]: Several theoretical works have proposed different
realistic scenarios for both gapped and gapless phases of
matter [13–16], with pioneering experiments already report-
ing evidence for deconfinement [6]. These models resemble
closely situations investigated in the context of quantum dimer
models [17], providing direct link between gauge theories and
experimental settings [18–21].

Over the last two years, a new route has been paved in
a very different experimental regime, where the dynamics
solely takes place within the Rydberg subspace. The result-
ing Hamiltonians naturally feature various forms of chiral
multibody interactions [22–25], which have already been ex-
perimentally demonstrated [26]. These classes of dynamics
differ fundamentally from traditional Ising- and Heisenberg-
type frustrated magnets and, while very promising since they
display chiral terms, it is presently not even clear what classes
of quantum spin liquids these can stabilize, and in which
parameter regimes they might be observed.

In this paper, we provide a general framework to de-
scribe chiral spin liquids (CSLs) in Rydberg atom honeycomb
arrays. This framework is based on a systematic CSLs classifi-
cation [27–29] using a fermionic spinon construction [30,31]
that yields Gutzwiller-projected parton wavefunction ansätze
for the many-body ground state. The resulting classification
differs substantially from those of Heisenberg-type regimes:
it rules out the possibility of gapless Dirac spectrum, while
predicting several, distinct topological phases.

Combining variational wavefunctions obtained from the
classification with exact diagonalization (ED) methods, we
demonstrate that the former capture the intermediate liquid
regime of the chiral Rydberg model at both 1/2 [25] and 1/4
density [24], which—surprisingly—encode the same form of
topological order: a twofold ground-state degeneracy and a
fractionalized Chern number C = 1/2 per state. These two
CSLs represent two distinct phases characterized by differ-
ent projective representations of the lattice symmetries in the
underlying fermionic spinon space. Remarkably, the CSL at
1/2 density is a new phase, which corresponds to integer
filling of the single-particle band, thereby representing an
interaction-driven topological phase generated from a trivial
band insulator [32], setting an open quest recently put forward
in Ref. [25]. We then corroborate the topological character of
this phase by computing the topological correction to the area-
law scaling of entanglement entropy [33,34], which is consis-
tent with a CSL ground state, and by analyzing the pattern of
currents at the edges of a cylinder using the density matrix
renormalization group (DMRG) [35–38], which shows sub-
stantial counter-propagating nearest-neighbor edge currents,
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offering a simple mean for experimental detection. In the 1/4-
density case, our results allow to frame the recent observation
of CSL [24] within a rigorous classification, as well as provid-
ing a genuine understanding of the system wavefunction.

The rest of the paper is structured as follows. In Sec. II, we
introduce the model under study and give a brief overview of
previous studies on its phase diagram. In Sec. III, we present
the classification of CSL on the honeycomb lattice with ap-
propriate symmetries of the Rydberg model. The microscopic
wavefunctions resulting from the classification are then com-
pared with the ground-state wavefunction of the model in
Sec. IV. Here, we show that the overlaps are significant in
the intermediate phase, strongly indicating that the phase is
a CSL. In Secs. V, VI, and VII, we show additional numer-
ical results on excitation spectra, topological entanglement
entropy, and chiral edge currents, respectively, which further
confirm the CSL nature of the intermediate phase. Then, in
Sec. VIII, we discuss a putative intermediate phase interven-
ing between the CSL and the BEC phase. Finally we conclude
in Sec. IX.

II. MODEL HAMILTONIAN AND PHASE DIAGRAM

We consider a system with atoms arranged on a honeycomb
lattice. We assume optical control on the three Rydberg states
|0〉, |+〉 = a†|0〉, and |−〉 = b†|0〉, where the state |0〉 has no
excitations, and the states |+〉 and |−〉 (which belong to the
same Rydberg manifold and differ, e.g., by their total angular
momentum) encode two species of hard-core bosons created
by the operators a† and b†, respectively. Atomic motion is
irrelevant on typical experimental timescales: below, we fo-
cus on the dynamics of the Rydberg excitations. The model
Hamiltonian is [22,23]

H0 =
∑
i �= j

(
ai

bi

)†
( −t a

i j wi je−i2φi j

wi jei2φi j −t b
i j

)(
a j

b j

)

+ μ

2

∑
i

(
na

i − nb
i

)
. (1)

The first term represents hopping processes (of excitations)
between different sites, with the real hopping conserving the
internal state, and the complex hopping resulting in a change
of the internal state. The amplitudes for real and complex
hoppings are given by t a

i j , t b
i j , and wi je±i2φi j respectively, with

φi j being the polar angle between the two Rydberg atoms on
the sites i and j. All the amplitudes scale as 1/r3

i j . The second
term represents the energy difference between the two internal
states, with na

i and nb
i being the particle number operators for

the |+〉 and |−〉 states, respectively.
Here, we focus on the regime μ � t a

i j, t b
i j,w, in which

case the internal state |+〉 can be adiabatically eliminated. We
further make an approximation by considering only nearest-
neighbor (NN) interactions in Eq. (1), with NN hopping am-
plitudes t a, t b, and we±i2φi j . A more detailed discussion of the
validity of this approximation can be found in Appendix A.
At leading order, the effective Hamiltonian is given by [26]

H = − J
∑
〈i j〉

b†
jbi − 2gJ

∑
〈〈i j〉〉

b†
jbie

±2π i/3(1 − ni j )

+ H.c. + 4gJ
∑
〈i j〉

nin j, (2)

where J = t b and g = w2/(2µ). The complex phases e±2π i/3

in the next-nearest-neighbor (NNN) hopping are illustrated in
Fig. 1(a). The NNN hoppings explicitly break time-reversal
and reflection symmetries, but preserves their combination.
The Hamiltonian has U(1) symmetry related to particle-
number conservation. Note that, in the language of spins,
the U(1) symmetry corresponds to spin-rotation symmetry
around the z axis. Hereafter, we set the energy scale to J = 1.

The phase diagram of the model at 1/2 density has been
studied in Ref. [25], where three different phases were found
for g � 0. For g � 0.4, the phase is a Bose-Einstein con-
densate (BEC), while for g � 0.9 the phase exhibits spiral
or 120◦ spin order [39]. The intermediate phase between
0.4 � g � 0.9, shows no clear order, and it is believed to be
a candidate for a spin liquid. However, its true nature remains
unclear, also due to hard-to-interpret spectral properties.

At 1/4 density, Ref. [24] investigated the full model in
Eq. (1) and provided clear numerical evidence for a fractional
Chern insulating state: that included ground-state degeneracy
and Chern number compatible with a ν = 1/2 bosonic Frac-
tional Quantum Hall (FQH) state. Building on such numerical
understanding, we will show below how that reflects into a
very clear ansatz for the system wavefunction, informed by
our classification.

III. CLASSIFICATION AND VARIATIONAL
WAVEFUNCTIONS FROM PARTON CONSTRUCTION

In order to construct a spin liquid wavefunction, a method
based on fermionic representation of spins have been intro-
duced in [30,31]. The main idea is to fractionalize the spin-1/2
operators into fermionic spinon operators as Sa = 1

2 f †
i σ a

i j f j ,
where σ a are Pauli matrices, with the constraint of one
spinon per site. It is convenient to introduce a two-component
spinor � = ( f↑ f †

↓ )T . Directly rewriting the spins in terms of
spinons gives rise to quartic spinon interactions, which after
performing mean-field approximation, leads to a quadratic
spinon Hamiltonian

HMF =
∑

i j

�
†
i ui j� j + H.c., (3)

where ui j are the mean-field amplitudes. The spinon inter-
actions include hopping and pairing terms. The mean-field
Hamiltonian is invariant under global spin rotation around the
z axis [40,41]. The matrices ui j can be written as ui j = uμ

i jσ
μ,

where (σμ) = (iτ 0, τ a), uμ
i j are complex parameters and τ a

are Pauli matrices. Real uμ
i j correspond to singlet terms, while

imaginary uμ
i j correspond to triplet terms [42]. Different mean-

field ansätze are described by different (gauge-inequivalent)
{ui j} on the links of the lattice. Finally, a physical spin
state is obtained by applying Gutzwiller projection |ψ〉 =
PG|ψMF 〉, with PG = ∏

i ni(2 − ni ), to the mean-field ground
state |ψMF 〉.

A method to systematically classify all possible spin liq-
uids within this parton construction has been introduced
by Wen [27,28,43], based on projective symmetry groups
(PSG). It has subsequently been extended to classify spin
liquid phases in the absence of time-reversal (i.e., CSL) [29]
and SU(2) spin-rotation [40,41] symmetries. Here, we are
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FIG. 1. (a) Schematics of the model on the honeycomb lattice. The signs of the complex phase in the next-nearest-neighbor (NNN)
hoppings are indicated by the colored arrows. (b) Mean-field ansätze of chiral spin liquids on the honeycomb lattice with broken time-reversal
and reflection symmetries. ε indicates whether the unit cell is doubled in the spinon space. gσ (A/B) and gR(A/B) are projective representations
of reflection and rotation symmetries, respectively, with a = ei2π/3τ3

. u1 and u2 are mean-field amplitudes at NN and NNN links, respectively.
The CSL phase at 1/2 and 1/4-density are captured by ansatz no. 1 and 4, respectively. (c) NN edge currents for cylinders with periodic width
LPBC = 4 (i.e., eight lattice sites). The edge currents are substantially larger in the intermediate phase compared to the neighboring phases.
(d) The current profile at g = 0.74 for a cylinder with periodic width LPBC = 4 and length LOBC = 8. Widths of the arrows are proportional
to the current values and directions denote the current directions. Large counterpropagating NN currents are observed only at the edges, while
they vanish in the bulk.

interested in a CSL, which breaks time-reversal and reflection
symmetries but preserve their combination, and which pre-
serves U(1) spin-rotation symmetry. Such chiral mean-field
states are stable beyond mean-field treatment, as the mean-
field gauge fluctuations are gapped out by the Chern-Simons
mechanism [44].

The PSG classification of symmetric spin liquids on the
honeycomb lattice has been worked out in [45], where 160
different algebraic PSG’s are found. In the absence of time-
reversal symmetry, we do not need to specify the SU(2)
representation of the time-reversal operation [29]. Thus, we
find that the number of different classes of algebraic PSG is
reduced to 24 (see Appendix B). Each PSG is characterized
by the representations of reflection gσ (A, B), and π/3 rotation
gR(A, B), for each sublattice A and B (for more technical
details, see Appendix B).

Given the model that we study, we focus on those ansätze
that have nonzero mean-field amplitudes on the NN and NNN
links. This leaves six distinct ansätze, which are listed in
the Fig. 1(b). The last two columns indicate the symmetry-
allowed terms in the mean-field Hamiltonian on the NN and
NNN links [46]. Their amplitudes are taken as variational
parameters in the following section.

Note that if the ansätze are restricted to NN interactions,
the mean-field states are gapless with Dirac spectrum {in
particular, ansatz no. 1 corresponds to the SU(2) algebraic
spin liquid (ASL) state discussed in [47], or equivalently the
u-RVB state discussed in [45]}. Thus, the resulting states
after Gutzwiller projection describe a Dirac spin liquid (DSL).
However, this DSL ansatz submanifold preserves time re-
versal, which is explicitly broken by our Hamiltonian. This
excludes the possibility of a DSL being stabilized in chiral
systems such as our model.

IV. OVERLAPS WITH GUTZWILLER-PROJECTED
PARTON WAVEFUNCTIONS

To determine whether the intermediate phase of the model
in Eq. (2) is described by one of the ansätze above, we op-
timize the variational parameters by maximizing the overlap

of the exact ground state of the Hamiltonian with the wave-
function ansatz, for each of the six ansätze. The optimization
of the overlap is performed using the Nelder-Mead optimiza-
tion method, implemented in MATLAB. The optimization is
performed on a 16-site cluster at g = 0.7. We find that the
ansatz with the largest overlap with the ground state at 1/2
density is ansatz no. 1, characterized by nonzero real triplet
NN hopping parameter τ 0, imaginary singlet NNN hopping
parameter iτ 0, and imaginary triplet NNN hopping parameter
iτ 3. The corresponding amplitudes are uiτ 0

2 /uτ 0

1 = −0.31 and
uiτ 3

2 /uτ 0

1 = −0.1. We have also checked that the optimal pa-
rameters do not differ much from the optimal parameters on
the smaller clusters.

The spinon band structure with the optimal parameters are
shown in Fig. 3(a). Note that each band is spin degenerate.
With one fermion per site, the mean-field ground state is
obtained by filling all single-particle orbitals in the lower
band, for both spin-up and spin-down orbitals. There is a
finite-energy gap to the valence band, resulting in a fully
gapped state. The Gutzwiller projection of such an ansatz has
been shown to yield a topological CSL [44,48,49], which is
a lattice analog of ν = 1/2 FQH Laughlin state [50]. The
topological nature of such CSL is manifested by the twofold
topological degeneracy of states on a torus. These degenerate
states can be constructed by threading fluxes along the non-
contractible loops on a torus [51], which can be implemented

FIG. 2. Periodic clusters used for the exact diagonalization
calculations.

075118-3



TARABUNGA, GIUDICI, CHANDA, AND DALMONTE PHYSICAL REVIEW B 108, 075118 (2023)

FIG. 3. (a) Spinon band structure and (b) Berry curvature on
the cluster 24b (normalized with the average) of the optimal ansatz
at g = 0.7 for n = 1/2. The parameters are uiτ0

2 /uτ0

1 = −0.31 and
uiτ3

2 /uτ0

1 = −0.1.

by twisting the boundary conditions of the spinons, � →
eiθ/2�. Although there are four states that can be constructed
with θx, θy ∈ {0, π}, they only span a two-dimensional space,
resulting in two topological states. We verify this numerically
by computing the overlap matrix for the four states, defined as
Oi j = 〈ψ j |ψi〉. We find that the rank of the overlap matrix is
2, within a numerical accuracy on the order of 10−2. The two
independent states are then constructed from the eigenvectors
of the overlap matrix with nonzero eigenvalues.

Furthermore, we computed the many-body Chern number,
a topological invariant that characterizes the topologically
nontrivial phases of matter [52]. It can be computed by twist-
ing the boundary condition by angles θx,y in the x, y direction,
and is given by the integral of the Berry curvature over the
twist space,

C = 1

2π i

∫ 2π

0

∫ 2π

0
dθxdθy

(〈
∂θx �(θ )∗

∣∣∂θy�(θ )
〉

− 〈
∂θy�(θ )∗

∣∣∂θx �(θ )
〉)
, (4)

where |�(θ )〉 = |�(θx, θy)〉 is the ground-state wavefunction
with twist angles θx and θy. To compute Eq. (4) numerically,
we discretize the twist space into D × D mesh and sum the
discretized Berry curvature. We have obtained C = 2, with the
Berry curvature for D = 24 is shown in Fig. 3(b). Note that
the twist 0 � θx,y � 2π for the fermionic spinon operators
corresponds to 0 to 4π twist for the spin operators, and there-
fore, the result must be divided by 4. Thus, the Chern number
of the spin wavefunction is fractionalized C = 1/2 per state.
The Chern number, along with the twofold degeneracy, are
consistent with the properties of ν = 1/2 bosonic Laughlin
state.

Having established the FQH nature of the ansatz, we next
compute the overlap of the ground state of the Hamiltonian
with the two topological states [53,54],

OED
GW =

√∣∣〈ψED

∣∣ψ1
GW

〉∣∣2 + ∣∣〈ψED

∣∣ψ2
GW

〉∣∣2
, (5)

where |ψED〉 is the ground state obtained with ED and |ψ1
GW 〉

and |ψ2
GW 〉 are the two topological states. All the ED clusters

that are considered are depicted in Fig. 2. We impose periodic
boundary conditions, and the ED calculations are performed
exploiting translational symmetry. The cluster 24a and the 32-
site cluster has sixfold rotational symmetry, which we also
exploit.

FIG. 4. Overlaps OED
GW between the exact ground states with

(a) ansatz no. 1 at 1/2 density and (b) ansatz no. 4 at 1/4 density.
The shaded region denotes the intermediate phase, which we show
to be a CSL.

The results are shown in Fig. 4(a) for different system
sizes. It can be seen that the overlap remains large in the
middle phase with increasing system size, indicating that the
ground state is strongly related to the topological states. In-
terestingly, on a 32-site cluster, we find that the ground state
in the intermediate phase is not in the rotation-neutral sector.
Specifically, if we take the operator Rπ/3, which generates
a π/3 rotation around the center of a honeycomb plaquette,
then Rπ/3|ψED〉 = e−2π i/3|ψED〉. This can be seen in Fig. 4(a)
as a discontinuous jump in the overlap at g ≈ 0.45, as the
transition from the BEC phase becomes a level crossing be-
tween different rotation sectors. Remarkably, one of the two
topological states is in the same nontrivial rotation sector as
the ground state of the Hamiltonian, i.e., the eigenvalue of
Rπ/3 is e−2π i/3. This nontrivial observation strongly supports
the hypothesis that the intermediate phase is described by the
wavefunction ansatz.

At this point, it is worth emphasizing that the CSL phase
found at 1/2 density represents a novel phase that has not been
previously identified. Notably, this CSL has a dispersive band
[see Fig. 3(a)], distinguishing it from the previously observed
CSLs at 1/4 density [24,55] and 1/8 density [55] that pos-
sesses topological flat bands. As such, this CSL is inevitably
missed by previous approaches relying on the identification of
flat bands [24,55]. Moreover, its dispersive band significantly
affects the physical properties on finite-size clusters, thus hin-
dering the identification of the true CSL nature in previous
study [25]. Our hybrid approach, combining theoretical PSG
classification and numerical optimization, thus showcases its
effectiveness by successfully identifying the CSL phase even
in the presence of strong finite-size effects.

To compare with the 1/2-density case, we performed the
same parameter optimization procedure for the 1/4-density
case. In [24], it was shown that a CSL emerges at 1/4 den-
sity for the full model in Eq. (1). For the effective model in
Eq. (2), we found that the CSL phase emerges in a narrow
range around g = 0.2. For 1/4 density, a gapped phase can be
obtained within the parton construction when the mean-field
ansatz has a doubled unit cell. We obtain large overlaps with
the ansatz no. 4 at small-size clusters in the CSL phase. Fig-
ure 4(b) shows the overlaps for 1/4 density with the optimized
parameter for different system sizes. We found that the overlap
remains huge in the CSL phase, reaching 0.96 at the largest
system size we considered, L = 40.

In Fig. 5, we present the excitation spectrum in the momen-
tum sector k = (0, 0) at g = 0.1 and g = 0.7, along with
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FIG. 5. Excitation spectrum in the momentum sector k = (0, 0)
up to the 10th excited state for (a) g = 0.1 and (b) g = 0.7 at 1/2
density. The markers are colored according to the overlap OED

GW .

the overlaps OED
GW for each eigenstate. Note that, since the

two topological states |ψ1
GW 〉 and |ψ2

GW 〉 lie in the momentum
sector k = (0, 0), only the eigenstates in this sector can have
nonzero overlap. In agreement with [25], we observe no ap-
proximate twofold degeneracy in the ED spectra, which would
have been expected in a CSL. Nevertheless, this can be at-
tributed to finite-size effects, which may significantly modify
the spectra on small-size clusters. It is therefore possible that
one of the low-lying states corresponds to another topological
ground state, which becomes degenerate with the true ground
state in the thermodynamic limit. To test this hypothesis, it is
useful to examine the overlaps of the low-lying levels. If an
eigenstate describes the topological ground state of the CSL,
it would have a sizable overlap with the wavefunction ansatz.
Indeed, at g = 0.7, we observe that the overlap is highest for
the ground state, and that there is a low-lying state with a
modest overlap. In contrast, at g = 0.1, the overlaps do not
exhibit any clear pattern for each system size.

V. EXCITATION SPECTRA

In Ref. [25], a DSL was proposed as one of possible
scenarios, based on the observation that the gap to the first
excited state varies significantly with twist angle when impos-
ing twisted boundary conditions. In light of this, we analyze
the excitation gaps as a function of twist angles θ1,2 along
the lattice vectors a1,2. In Fig. 6(a), we show the gap to the
first excited state obtained with ED on a 24-site cluster, while
the gap to the second excited state and the (symmetrized)
charge gap are shown in Figs. 6(b) and 6(c), respectively.
We observe that while the first gap may become very small
at some isolated points in twist space, the second gap and
charge gap remain wide open. This contrasts with the expected
behavior of a DSL, where all gaps would exhibit a vanishing
behavior with respect to twist angles [56–58]. In addition,
the transfer matrix spectrum does not show any signatures
of Dirac cones (see Appendix E). This is consistent with our
results that DSL is unstable against time-reversal symmetry
breaking perturbations (see Sec. III).

We note that the drastic variation of the first gap with
respect to the twist angles becomes even more pronounced
at larger sizes, as can be seen in the cluster of L = 32 sites
shown in Fig. 6(d). Based on our findings, we are able to offer
an interpretation of the curious vanishing of the gap to the first
excited state as observed in [25]. Indeed, for a CSL two topo-
logical ground states will flow into each other upon inserting

FIG. 6. (a) Excitation spectrum on the cluster 24a at g = 0.7
with twist θ1 = 2π/3 and varying θ2. (b) Gap to the second excited
state E2 − E0, and (c) (symmetrized) charge gap �c(N ) = 1

2 (E (N +
1) + E (N − 1) − 2E (N )) with N = L/2 as a function of the twist
angles {θ1, θ2} on the cluster 24a. (d) Gap to the first excited state
E1 − E0 in the k = (0, 0) momentum sector on the 32-site cluster as
a function of the twist angles {θ1, θ2}.

flux (see, e.g., [55]). In the case of CSL at n = 1/2 density,
the two ground states live in the same k = (0, 0) momentum
sector. Consequently, the flow between these ground states
manifests as an avoided crossing. As a result, the gap appears
to vanish at some isolated points, corresponding precisely to
the locations where the avoided crossing occurs. This behavior
is specific to the first gap and not observed in higher gaps or
the charge gap, as the CSL is gapped to all excitations. This
is consistent with our results on excitation spectra discussed
above.

VI. TOPOLOGICAL ENTANGLEMENT ENTROPY

A topological phase can be characterized by the scaling
of the entanglement entropy. The entanglement entropy for
a region with perimeter L is known to scale as S(L) =
αL − γ , where the subleading term γ is a universal constant
called the topological entanglement entropy, which charac-
terizes the topological order in a ground-state wavefunction
[33,34]. Here, we employ the Kitaev-Preskill scheme [33] to
compute γ ,

γ = SAB + SBC + SAC − SA − SB − SC + SABC, (6)

where the partitioning is depicted in Fig. 7(a). In Fig. 7(b),
we show the behavior of γ in the exact ground state obtained
with ED for n = 1/2 density. In the CSL phase, even in small
systems, the computed γ is finite, and close to the expected
value γ = 1

2 log(2) for a ν = 1/2 FQH state [59].

VII. CHIRAL CURRENTS

Quantum Hall states can be identified through the pattern
of the currents in the system. With a finite gap in the bulk
and gapless edge excitations on the boundary, it is expected
that the currents are large at the edges and vanish in the
bulk. Furthermore, the current can be readily measured in
experiments, making it a convenient tool for diagnosing the
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FIG. 7. (a) Partitions used for the topological entanglement en-
tropy calculation. (b) Topological entanglement entropy γ as a
function of g at 1/2 density, obtained from the exact ground state
on different periodic clusters (see Fig. 2). The dashed red line is the
value of γ expected for a ν = 1/2 FQH state.

phase in experimental setups. The NN and NNN currents can
be derived using the continuity equation, resulting in

Jnn = i〈b†
jbi − b jb

†
i 〉,

Jnnn = 2gie±2π/3i〈(1 − ni j )(b
†
jbi − b jb

†
i )〉, (7)

where i and j are nearest-neighbors or next to nearest-
neighbors respectively.

We perform DMRG simulations on a finite cylinder to
compute the edge currents as a function of g, as shown in
Fig. 1(c) [60]. It can be seen that the NN edge currents,
computed across two rungs in one of the edges, in the in-
termediate phase are significantly larger compared to those
in the neighboring phases. The transition points are in good
agreement with those found in [25]. Furthermore, we show
the full current profile in the intermediate phase (g = 0.74)
in Fig. 1(d). It is clear that, in the CSL phase, large NN
currents are only observed at the edges, while they vanish in
the bulk. The full current profile is shown for each phases
in Fig. 8. Clearly, substantial counter-propagating NN edge
currents manifests only in the CSL phase that vanish in the
bulk. On the other hand, most dominant currents in the other
phases are of the NNN nature that originate from the NNN
term in the Hamiltonian.

VIII. ANOTHER INTERMEDIATE PHASE

Notice that Fig. 1(c) also exhibits signatures of another
intermediate phase with nonzero edge currents for 0.25 �
g � 0.4. While its full characterization is beyond the scope
of this paper, we report here our preliminary findings on this
possible new phase.

To detect transition points and obtain the phase diagram
as a function of g, we compute the fidelity-susceptibility χF

defined as

χF (g) = 2

L
lim
δg→0

− ln F (g, δg)

(δg)2
(8)

where the fidelity F is defined as F (g, δg) = |〈ψ (g)|ψ (g + δ

g)〉|. The fidelity susceptibility χF is known to be a good
indicator for quantum phase transition, whose critical point
can be derived via finite-size scaling techniques [61]. In case

FIG. 8. Full current profiles at n = 1/2 filling for the cylinders
with geometry I and with periodic width LPBC = 4 and length LOBC =
8 for three representative values of g inside three phases, namely BEC
(top), CSL (middle), and the 120◦ (bottom) phases. The widths of the
arrows are proportional to the magnitudes of the current, while their
direction indicates the directions of respective currents.

of iDMRG simulations, however, we have

F (g, δg) = lim
L→∞

|η|L, (9)

where η is the dominant eigenvalue of the transfer matrix
constructed from the iMPS ansatze of |ψ (g)〉 and |ψ (g + δg)〉.
Since, for two normalized iMPS |ψ (g)〉 and |ψ (g + δg)〉,
|η| < 1 for δg �= 0, we get F (g, δg) → 0 as L → ∞. The
fidelity susceptibility can be expressed as

χF (g) = −2 ln |η|, (10)

which remains finite.
We show the fidelity susceptibility obtained using iDMRG

for two different types of cylinders in Fig. 9(a). The emer-
gence of the CSL phase can be identified in the parameter
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FIG. 9. (a) The fidelity susceptibility χF (g) as a function of g for infinite cylinders with two different geometries and with periodic width
LPBC = 4 in the n = 1/2 density regime. The χF (g) shows the existence of a new phase sandwiched between the BEC and the CSL phases.
(b) The total nearest-neighbor edge current J edge 1

nn + J edge 2
nn computed for finite cylinders of geometry I and with periodic width LPBC = 4 for

n = 1/2 density. In the new intermediate phase, reflection × time-reversal symmetry gets spontaneously broken, and the total edge current
becomes finite (positive or negative). Since, the DMRG simulations breaks this Z2 symmetry somewhat randomly, there is a arbitrariness in
the sign of the edge current. That is why transparent symbols are added that represent the currents with opposite signs of the actual DMRG
data. (c) Fidelity susceptibility and overlaps of the exact ground state with various ansatz on the cluster 24a for n = 1/2. Orange line: overlap
with ansatz no. 1 optimized at each point. Blue line: Overlap with DSL wavefunction with uniform spin-dependent NN hopping τ 0. Green line:
Overlap with superfluid ansatz, defined as the equal-weight superposition of all states at fixed density. The emergence of the additional phase
can already be observed, between the two nearby peaks of fidelity susceptibility at g = 0.24 and g = 0.43, which are denoted by the vertical
red lines. The overlap with DSL wavefunction peaks close to the transition between the BEC phase and the additional phase.

range 0.4 � g � 1. Interestingly, there appears to be an addi-
tional phase emerging between the BEC phase and the CSL.
Since the system is invariant under the joint operation of time-
reversal and reflection, total nearest-neighbor edge current
J edge 1

nn + J edge 2
nn , odd under this joint operation, must vanish

for the ground states that respects reflection × time-reversal
symmetry. By performing finite DMRG on finite cylinders,
we find that this reflection × time-reversal symmetry gets
spontaneously broken in this parameter regime, and the total
nearest-neighbor edge current J edge 1

nn + J edge 2
nn attains a finite

(positive or negative) value [see Fig. 9(b)]. The profile of
the total edge current in Fig. 9(b) clearly indicates twofold
degenerate ground-state manifold in this new unknown phase.

We note that the emergence of this additional phase can
already be seen in small size clusters, as observed from ED
calculations. In Fig. 9(c), we show the fidelity susceptibility
as well as the overlap of the exact ground state with various
ansatz on the cluster 24a. We find that the additional phase
also have a large overlap with ansatz no. 1, where now we
optimize the ansatz at each point (orange line). We find that
the optimal ansatz in this phase is in the vicinity of the DSL
wavefunction. Indeed, the overlap with the DSL wavefunction
(blue line), which is obtained by setting the NNN interactions
to zero, is remarkably close with the optimal overlap. One
possible scenario to explain this observation is that the DSL
wavefunction describes the critical wavefunction at the tran-
sition from the BEC phase to the unknown phase. A similar
scenario was put forward in [54]. Finally, the optimal overlap
becomes smaller in the BEC phase, as expected. Instead, in
this regime, large overlaps are obtained with the superfluid
ansatz, which is defined as the equal-weight superposition of
all states at fixed density [62].

IX. CONCLUSIONS

In this paper, we systematically classify CSLs on the hon-
eycomb lattice relevant to Rydberg atom experiments using

the PSG analysis. We show that the CSL wavefunctions con-
structed from the Gutzwiller-projected parton wavefunctions
are able to capture the intermediate disordered phase in chiral
Rydberg atom arrays. In particular, our results resolve the
previously unclear nature of the intermediate phase found in
Ref. [25]. In the context of Rydberg atom experiments, our
paper provides a general framework, which can be utilized
to search for CSLs in other lattice models. Given the fast
experimental progress in the field, it would be interesting to
extend our approach to other lattices, which are immediately
available in tweezer arrays [2,63].
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APPENDIX A: ADIABATIC ELIMINATION AND
TRUNCATION OF THE DIPOLAR INTERACTIONS

In the main text we introduced the following Hamiltonian:

H0 =
∑
i �= j

(
ai

bi

)†( −t a
i j wi je−i2φi j

wi jei2φi j −t b
i j

)(
a j

b j

)

+ μ

2

∑
i

(
na

i − nb
i

)
, (A1)

where i labels the sites of a honeycomb lattice, ti j = t/d3
i j ,

wi j = w/d3
i j , and di j is the distance between sites i and j. The

hopping phase φi j is the angle between the position vectors of
sites i and j. The operators a†

i and b†
i create hard-core bosons

[(a†
i )2 = (b†

i )2 = 0] on site i, subject to the constraint a†
i b†

i =
0 (at most one particle per site).

We argued that when μ � ti j,w one can adiabatically
eliminate the a particles, and we considered an effective
model where the particle created by a† is integrated out.
Thus, the effective model only includes the hard-core bosonic
particle created by b†, while a particles only appear in vir-
tual processes. When the hopping amplitudes are truncated
to nearest-neighbor distance RT = 1 (in units of one lattice
spacing) the effective Hamiltonian reads

H = −
∑
〈i j〉

b†
jbi − 2g

∑
〈〈i j〉〉

b†
jbie

sik j 2π i/3(1 − nk ) + H.c.

+ 4g
∑
〈i j〉

nin j, (A2)

where g = w2/4t , the site k is the only possible site be-
tween the next-nearest-neighbor sites i and j that can be
reached with two virtual nearest-neighbor hoppings, and
sik j = sign(r jk × rki ) (see Fig 10). The density-density inter-
action term nin j comes from the virtual process of the form
(bia

†
k )(a jb

†
i ) = bina

j b
†
i upon dropping a constant term in the

effective Hamiltonian, and its amplitude is twice the amplitude
of the density-assisted chiral hopping due to the fact that it
gets contributions from two virtual processes, starting from
sites i and j.

The effective Hamiltonian (2) lives in a reduced Hilbert
space and it is thus more amenable to numerical calculations.
However, its fairly simple form relies on the truncation of the
hopping coefficients ti j and wi j at nearest-neighbor distance.
Extending the range of the real hopping RT up to next-nearest
neighbor (RT = √

3), leads to six extra chiral hopping terms,

FIG. 11. Ground-state topological entanglement entropy γ (left)
and low-lying gaps of the effective Hamiltonian (right) when
μ → ∞ and for RT = a (blue) and RT = √

3a (orange), for N = 24
(top) and N = 28 (bottom). The dashed red horizontal line on the left
panels denotes the value γ = log

√
2 expected for a chiral spin liquid

ground state.

which are depicted in Fig. 10, as well as an additional density-
density interaction term between next-nearest-neighbor
sites.

In this Appendix we discuss the effect of finite μ and
of larger truncation distances RT . We do so by performing
exact diagonalization for the ground state of the model Eq. (1)
both in the limit μ → ∞ and at finite μ, when RT = 1 and
RT = √

3. We refer to “truncated model” in connection to
hopping truncation, and to “effective model” in connection to
truncation of the Hilbert space following elimination of the a
particles. For simplicity we focus on the filling sector where
the total number of particles is N/4, where N is the number
of sites. In fact, the following analysis is aimed at probing
the validity of the adiabatic elimination at different hopping
truncations RT , and does not aim at probing the stability
of a CSL phase at finite μ and RT > 1 in a generic filling
sector.

We now provide numerical evidence from exact diago-
nalization on periodic clusters of 24 and 28 sites that the
μ → ∞ effective model hosts a chiral spin liquid phase for
both RT = 1 and RT = √

3. Figure 11 shows the topological
entanglement entropy γ extracted from the partitions depicted
in Fig. 4 of the main text, and the lowest eigenvalues of the
effective Hamiltonian. Whereas the former exhibits a bump
approaching the value log

√
2, the latter shows an approximate

twofold degeneracy of the ground state in the same narrow
parameter range, pointing at the emergence of a chiral spin
liquid (CSL) regime. We note that the extending RT from 1 to√

3 has two effects: it shifts to the right the CSL phase and
it changes the nature of the large-g phase, as can be inferred
from the different value of γ and structure of the energy levels.

We conclude by studying the effect of finite μ on the
ground state of the Hamiltonian (1) with RT = √

3. In
Fig. (12) we plot the lowest energy gap for several values
of μ ranging from 3 to 100. We observe convergence (uni-
formly in g) to the μ = ∞ curve obtained from the effective
model with chiral hopping terms depicted on the right of
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FIG. 12. Lowest energy gap for several values of μ on a periodic
cluster with N = 24 for the full model Eq. (1).

Fig. 10. Despite the lowest energy gap is not enough to un-
equivocally identify a CSL phase at finite μ, its functional
dependence on g assumes more relevance when compared
to the data presented in Fig. 11 and suggests a widening
of the CSL regime with decreasing μ (that, we note, is not
monotonous).

APPENDIX B: MORE ON PSG CLASSIFICATION

The symmetry group on the honeycomb lattice that we are
interested in is generated by translations along x and y, reflec-
tion accompanied by time-reversal Tσ , and π/3 rotation cen-
tered on a hexagonal plaquette R. Each algebraic PSG class
is characterized by the SU(2) representation of each sym-
metry generator: gx(x, y, s), gy(x, y, s), gσ (x, y, s), gR(x, y, s),
respectively. This can be further simplified by working in a
specific gauge. Here, we choose a gauge defined as [45]

gx(x, y, s) = τ 0, (B1)

gy(x, y, s) = εxτ 0, (B2)

gσ (x, y, s) = εx+y(y+1)/2gσ (s), (B3)

gR(x, y, s) = εxy+x(x−1)/2gR(s), (B4)

where ε = ±1, with ε = −1 indicates that the unit cell is
doubled in the spinon space. Within this gauge choice, each
PSG is characterized by the representations of reflection,
gσ (A, B), and π/3 rotation, gR(A, B), for each sublattice A
and B. The representation matrices satisfy the equations (for
a detailed derivation, see [45])

gσ (A)gσ (B) = gσ (B)gσ (A) = εσ τ 0, (B5)

(gσ (A)gR(B))2 = (gσ (B)gR(A))2 = εσRτ 0, (B6)

(gR(A)gR(B))3 = (gR(B)gR(A))3 = εεRτ 0. (B7)

We find 24 different classes of algebraic PSG, which are
listed in Table I.

For each algebraic PSG, we now determine the mean-field
amplitudes ui j allowed by symmetry up to NNN links. The

TABLE I. PSG representations of point-group symmetries on
the honeycomb lattice. Taking into account the two possible signs
ε = ±1 gives 24 distinct algebraic PSG’s in total.

No. gσ (A/B) gR(A/B) εσ εεR εσR

1 τ 0/τ 0 τ 0/τ 0 + + +
2 −τ 0/ − τ 0 τ 0/ − τ 0 + – +
3 τ 0/ − τ 0 τ 0/τ 0 – + +
4 −τ 0/τ 0 τ 0/ − τ 0 – – +
5 −iτ 2/iτ 0 τ 0/τ 0 + + –
6 −iτ 2/iτ 0 τ 0/ − τ 0 + – –
7 iτ 2/iτ 0 τ 0/τ 0 – + –
8 iτ 2/iτ 0 τ 0/ − τ 0 – – –
9 −iτ 2/iτ 0 τ 0/a + + –
10 −iτ 2/iτ 0 τ 0/ − a + – –
11 iτ 2/iτ 0 τ 0/a – + –
12 iτ 2/iτ 0 τ 0/ − a – – –

consistency conditions for u1 and u2 are

u†
1 = −(−1)χgσ (A)u1gσ (B)†,

u†
1 = gR(A)gR(B)gR(A)u1gR(B)†gR(A)†gR(B)†,

u=
2 − (−1)χgR(B)gσ (A)u2gσ (B)†gR(A)†, (B8)

where χ = 0 for singlet terms and χ = 1 for triplet terms.
The six solutions are shown in the main text. Each ui j can be
propagated to the entire lattice using rotations, which act as

ui j = gR(i)uR−1(i)R−1( j)gR( j)†, (B9)

followed by translations, which act similarly with gx,y.

APPENDIX C: OVERLAPS

In Figs. 13(a) and 13(b), we present the overlaps OED
GW

with the low-lying states in the k = (0, 0) momentum sector
at g = 0.1 and g = 0.7. This provides additional insights into

FIG. 13. Overlaps OED
GW with low-lying states in the k = (0, 0)

momentum sector up to the 10th excited state at (a) g = 0.1 and
(b) g = 0.7 for 1/2 density. (c) Overlaps for 1/4 density at g = 0.2.
The markers are colored according to the level of the state.
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FIG. 14. The spectrum of iMPS transfer matrix in the Q = 0 and
Q = 1 sectors as functions of the twist angle θPBC for g = 0.74 and
density n = 1/2. Here, we consider an infinite cylinder (geometry I)
with periodic width LPBC = 4 and iMPS bond dimension χ = 4000.

the behavior of the overlaps. It can be seen more clearly that
at g = 0.7, the overlap is the largest with the ground state.
Furthermore, there is an additional low-lying state with a mod-
est overlap, possibly representing the topological ground state
in the thermodynamic limit. In contrast, such clear pattern is
not observed at g = 0.1. Instead, the overlaps are seen to be
decreasing with system size.

In the case of 1/4 density, the approximate twofold degen-
eracy can already be observed clearly from the ED spectra,
even on small-size clusters. In addition, as seen in Fig. 13(c),
both of the nearly-degenerate states have huge overlaps with
the optimal wavefunction ansatz.

APPENDIX D: DETAILS ON DMRG SIMULATIONS

We perform density matrix renormalization group
(DMRG) [35–38] simulations using matrix-product state
(MPS) [37,38] anstaz for both finite and infinite cylinders,
where we take periodic boundary conditions along the one

axis with length LPBC = 4 (8 lattice sites). For finite-size
cylinders, we make use of the ITensor library [64] with
home-grown DMRG codes. For infinite cylinders, we employ
the TeNPy library [65] that uses infinite MPS (iMPS) [66,67]
ansatz for infinite DMRG (iDMRG) [68,69] simulations. The
MPS bond dimension for the simulations has been taken in the
range χ ∈ [2000, 4000] resulting in cut-off errors of the order
of 10−5 to 10−7 depending on the system parameters. For
completeness, we analyze two different cylinder geometries,
namely the geometries I and II as sketched in [70].

APPENDIX E: TRANSFER MATRIX SPECTRUM

The nature of the excitation spectrum can be examined by
looking at the spectrum of the transfer matrix of the iMPS
ansatz in the iDMRG simulations (see [56,57]). For that pur-
pose, we inject a twist angle θPBC by putting a θPBC-flux across
the periodic direction cylinder, and follow the spectrum of
the iMPS transfer matrix. It is to be noted that the iMPS
correlation length ξi of a low-energy excitation is related to
the transfer matrix eigenvalue λi as ξi = −1/ ln |λi|.

In Fig. 14, we show the low-lying iMPS transfer matrix
spectrum in the charge Q = 0 and Q = 1 sectors at g = 0.74
as a function of the twist angle θPBC for an infinite cylinder
(geometry I). Interestingly, for both Q = 0 and 1, the spectrum
is not symmetric around θPBC = π , which could be attributed
to a remnant effect due to the absence of time-reversal sym-
metry. Nevertheless, the results do not show any signatures
of a Dirac cone behavior, which would have appeared as lin-
ear dispersion around the minimum gap [56,57]. Instead, the
transfer matrix spectrum is consistent with a Chern insulator,
where the dispersion becomes quadratic around the minimum
gap for Q = 0. However, for Q = 1, we see a sharp jump
in the spectrum around θPBC ≈ 0.9π , which could be a nu-
merical artifact of finite iMPS bond dimension, which we set
here to χ = 4000.
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