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Decay rates of almost strong modes in Floquet spin chains beyond Fermi’s Golden Rule
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The stability and dynamics of almost strong zero and π modes in weakly nonintegrable Floquet spin chains
are investigated. Such modes can also be viewed as localized Majorana modes at the edge of a topological
superconductor. Perturbation theory in the strength of integrability breaking interaction Jz is employed to
estimate the decay rates of these modes, and compared to decay rates obtained from exact diagonalization.
The structure of the perturbation theory and thus the lifetime of the modes is governed by the conservation of
quasienergy modulo 2π/T , where T is the period of the Floquet system. If there are 4n − 1 bulk excitations
whose quasienergies add up to zero (or π/T for a π mode), one obtains a decay channel of the Majorana mode
with a decay rate proportional to J2n

z . Thus the lifetime is sensitively controlled by the width of the single-particle
Floquet bands. For regimes where the decay rates are quadratic in Jz, an analytic expression for the decay rate in
terms of an infinite temperature autocorrelation function of the integrable model is derived, and shown to agree
well with exact diagonalization.
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I. INTRODUCTION

The study of topological phenomena is a frontier topic
in condensed matter physics, with the classification of topo-
logical phases showing further enrichment under periodic or
Floquet driving [1,2]. At the single-particle level, topological
phenomena are well understood, with the defining character-
istics being a bulk boundary correspondence, where a nonzero
bulk topological invariant predicts the number of edge modes.
However, the effect of weak interactions on the stability of
edge modes in topological systems in general, and Floquet
topological systems in particular, is not fully understood. With
Floquet driving and interactions, the system is susceptible to
heating, and one might naively expect all edge physics to
quickly melt away on the same time scales as typical bulk
observables heat. Nevertheless, if the system hosts strong
modes [3–18], typically encountered at the edge of certain
one-dimensional systems, the edge modes can be stable over
time scales much longer than bulk heating times [7,8,11–16].

For Floquet systems with Z2 symmetry, strong modes are of
two kinds, zero modes that are local Majorana operators that
commute with a Floquet unitary, and π modes that are local
Majorana operators that anticommute with the Floquet unitary
[11,19–24]. Since this property is not tied to any eigenstate
of the system, any Floquet eigenstate with open boundary
conditions can show signatures of these edge modes. These
strong modes also anticommute with the Z2 symmetry leading
to eigenspectrum phases. In particular, the zero mode implies
each eigenstate is at least doubly degenerate with the degen-
erate pairs being even and odd under parity (Z2 symmetry),
while the π mode implies every even parity eigenstate has an
odd parity partner whose quasienergy is larger than the former
by π/T (modulo 2π/T ), where T is the Floquet period.

So far, all Floquet spin chains for which strong modes
have been derived can be represented as unitaries of fermion

bilinears [11,20]. Besides an exact construction of the op-
erators, strong modes can also be detected by studying the
infinite temperature autocorrelation function of an operator on
the edge [7,11–14]. If a strong mode exists, and the operator
has an overlap with it, then the infinite temperature auto-
correlation function is long lived, with a lifetime that grows
exponentially with system size [4,5]. This approach can easily
be extended to nonintegrable Floquet spin chains [15,16],
where the nonintegrability is via the application of unitaries
of four-fermion interactions. In this case, one expects that the
correlation function does ultimately decay but possibly after a
very long time.

Employing the diagnostic of the autocorrelation function,
obtaining the interaction dependent lifetime can be notori-
ously difficult, especially when the integrability breaking is
very weak [25]. This is because, for weak integrability break-
ing, the decay is primarily due to finite-size effects, with the
system sizes needed to be in a regime where the decay is
controlled purely by the integrablity breaking terms, being
much too large. For this reason, for weakly nonintegrable
systems, these edge modes are referred to as almost strong
modes (ASM) [7,8,11–14]. In this paper we explore to what
extent perturbation theory can help estimate the decay times
of almost strong modes of weakly nonintegrable Floquet spin
chains. We identity regimes where Fermi’s golden rule (FGR)
is valid, and also regimes where FGR breaks down and higher
powers of the integrability breaking term are needed to cap-
ture the decay.

The paper is organized as follows. We introduce the
model in Sec. II, summarizing the essential properties in the
integrable limit, and introducing the infinite temperature auto-
correlation function. In Sec. III we derive the FGR decay rates
in terms of an appropriate infinite temperature autocorrelation
function of the integrable model. We also highlight regimes
where FGR breaks down and we present a simple argument

2469-9950/2023/108(7)/075112(13) 075112-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.075112&domain=pdf&date_stamp=2023-08-04
https://doi.org/10.1103/PhysRevB.108.075112


YEH, ROSCH, AND MITRA PHYSICAL REVIEW B 108, 075112 (2023)

to determine what powers of the integrability breaking term
control the decay. In Sec. IV we present the numerical results
and compare them to theoretical predictions. We present our
conclusions in Sec. V, while intermediate steps in the deriva-
tions are relegated to the Appendixes.

II. MODEL

We study stroboscopic time evolution of an open chain of
length L according to the Floquet unitary

U = e−i T
2 JzHzz e−i T

2 gHz e−i T
2 JxHxx , (1)

where

Hxx =
L−1∑
i=1

σ x
i σ x

i+1; Hz =
L∑

i=1

σ z
i ; Hzz =

L−1∑
i=1

σ z
i σ z

i+1. (2)

In the above σ
x,y,z
i are Pauli matrices on site i, g is the

strength of transverse field, and Jx,z is the strength of the
Ising interaction in the x, z direction. We will set Jx = 1 in
the following discussion. T qualitatively represents the period
of the drive. In particular, taking T � 1 would recover the
high-frequency limit where the Floquet Hamiltonian is simply
HF = i(ln U )/T = JzHzz/2 + gHz/2 + Hxx/2.

For Jz=0, the Floquet unitary becomes noninteracting,
U0 = U |Jz=0, and the corresponding Floquet Hamiltonian
H0

F = i(ln U0)/T can be solved analytically for periodic
boundary conditions. In particular (see Appendix A) we find

H0
F =

∑
k>0

εk (d†
k dk − d−kd†

−k ), (3)

where d†
k (dk ) are the creation (annihilation) operators of

Bogoliubov quasiparticles, and the bulk dispersion εk is

cos(εkT ) = cos(gT ) cos(JxT ) + sin(gT ) sin(JxT ) cos k. (4)

The quasienergy band εk becomes exactly flat when either
JxT = 0, π or gT = 0, π . The consequence of this on the
decay rate of the edge modes will be emphasized later.

In contrast to continuous time, the quasienergy is only
defined modulo 2π/T , εkT ∈ [−π, π ]. Since within the Bo-
goliubov formalism, for each state with energy ε there has to
be a state with energy −ε, two values of ε, ε = 0 and ε = π/T
are special. This is because they have the property that εT =
−εT mod 2π , allowing for topologically protected modes at
those energies. Therefore, two different types of edge modes,
zero mode ψ0 and π mode ψπ can exist, with these modes
appearing or disappearing via the gap closing at 0 or π .
Depending on the choice of parameters, g and T , the sys-
tem may possess none, one, or both of the two edge modes.
When these edge modes exist, they anticommute with the Z2

symmetry, D = σ z
1 . . . σ z

L , of the system, {ψ0,D} = {ψπ,D}.
In the thermodynamic limit of a semi-infinite chain, the zero
and π modes respectively commute and anticommute with
the Floquet unitary, [ψ0,U0] = 0, {ψπ,U0} = 0. Due to this
property, they have infinite lifetime in the thermodynamic
limit. Appendix B presents exact expressions for the 0 and
π modes for the Floquet Ising model U0.

When interactions are turned on, the commutation
(anticommutation) relations between zero (π ) mode and the
Floquet unitary is violated. However, these edge modes are

FIG. 1. The infinite temperature correlation A∞ from exact di-
agonalization for different system sizes L = 8, 10, 12, 14. The plots
show signatures of an almost strong zero mode (top panel) and an
almost strong π mode (bottom panel) that survives for many cycles
n before decaying. Note the different microscopic parameters g, T
for the panels.

still long-lived quasistable modes, and are known as ASM. A
useful quantity to probe this phenomena is the autocorrelation
of σ x

1 ,

A∞(n) = 1

2L
Tr

[
σ x

1 (n)σ x
1

]
, (5)

where n is the stroboscopic time period. This is a good mea-
sure of the almost strong mode dynamics in the presence of
interactions since both zero and π modes are localized on
the edge with O(1) overlap with σ x

1 , Tr[ψ0σ
x
1 ]/2L ∼ O(1)

and Tr[ψπσ x
1 ]/2L ∼ O(1). In the language of Majoranas, σ x

1
is the Majorana on the first site and the edge modes are a
superposition of Majoranas, with largest weight being on the
Majoranas near the boundary. We show an example of A∞(n)
in Fig. 1.

Figure 1 shows examples of ASMs. The top panel is for
g = 0.3, T = 2.0 and shows an almost strong zero mode. The
bottom panel is for a longer period T = 4.0 and a larger trans-
verse field g = 0.6, and shows an almost strong π mode. Both
panels are for the same strength of the integrability breaking
term Jz = 0.02. After an initial transient, the autocorrelation
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decays into a long-lived zero ψ0 (upper panel) or ψπ mode
(lower panel) depending on the value of parameters g, T . The
modes survive for many periods, indicated by the constant
value of the autocorrelation function for the zero mode and
the extra oscillation with the period (−1)n for the π mode.
Eventually, the autocorrelations decay to zero due to interac-
tions. Here the decay occurs around ≈104 time cycles for both
modes. Autocorrelation functions of bulk quantities (with no
overlap with the ASMs) decay much faster, within 1–2 drive
cycles.

For our model, the decay of ASMs can be captured by
perturbation theory in the integrability breaking term. The
interaction enables the scattering between the edge mode and
bulk Majorana operators, with the leading contribution to the
decay arising from resonance conditions, i.e., conditions that
determine when the energy of the edge mode matches the total
energy of certain number of bulk excitations, modulo 2π/T .
In the next section, we derive the decay rate of the infinite
temperature autocorrelation function within second-order per-
turbation theory, i.e., O(J2

z ), equivalently, FGR. Subsequently,
we also discuss resonance conditions, which allow us to pre-
dict the leading power of Jz controlling the decay rates.

III. FGR AND BEYOND FOR INFINITE TEMPERATURE
AUTOCORRELATION FUNCTION

Let us first examine the almost strong zero mode. In gen-
eral, one can decompose the Floquet unitary into two parts,

U = e−iV T e−iH0
F T , (6)

where V is the perturbation applied to the system and
H0

F is the Floquet Hamiltonian of the unperturbed sys-
tem. For the case we study in (1), one can identify
the perturbation with V = JzHzz/2 and H0

F = i(ln U0)/T ,
where U0 = exp(−iT gHz/2) exp(−iT JxHxx/2). Performing a
second-order expansion of V , the Floquet unitary is

U ≈
(

1 − iV T − V 2T 2

2

)
e−iH0

F T . (7)

After a period, the zero mode evolves into ψ0(1) = U †ψ0U ,
and to second order in V , it is given by

ψ0(1) ≈ eiL0T

(
1 + iTLV + T 2GV 2 − T 2

2
FV 2

)
ψ0. (8)

In the above, we have used the notations L0ψ0 =
[H0

F , ψ0], LV ψ0 = [V, ψ0], GV 2ψ0 = V ψ0V , and FV 2ψ0 =
{V 2, ψ0}. Notice that eiL0T ψ0 = U †

0 ψ0U0 = ψ0 comes from
the commutation relation between the zero mode and the
unperturbed Floquet unitary.

After N periods we obtain (see Appendix C)

ψ0(N ) =
[

eiL0T

(
1 + iTLV + T 2GV 2 − T 2

2
FV 2

)]N

ψ0. (9)

Now, we are in the position to calculate the autocorrelation of
the zero mode

A0
∞(N ) = 1

2L
Tr[ψ0(N )ψ0]. (10)

By inserting (9) into the autocorrelation A0
∞ and keeping terms

up to second order in V , one arrives at

A0
∞(N )

= A0
∞(0) − NT 2

2L

(
1

2
Tr[ψ̇0ψ̇0] +

∞∑
n�1

Tr[ψ̇0(n)ψ̇0]

)
,

(11)

where we define ψ̇0 = iLV ψ0, ψ̇0(n) = eiL0nT ψ̇0, and
A0

∞(0) = 1 in our case.
The autocorrelation A0

∞(N ) with decay rate �0 can be ap-
proximated by A0

∞(N ) ≈ A0
∞(0) exp(−NT �0) ≈ A0

∞(0)(1 −
NT �0) within perturbation theory. From this we conclude (see
details in Appendix C) that the FGR decay rate for the zero
mode correlation at second order in the perturbation, and in
the large N limit is

�0 = T

A0∞(0)2L

(
1

2
Tr[ψ̇0ψ̇0] +

∞∑
n=1

Tr[ψ̇0(n)ψ̇0]

)

= 1

A0∞(0)2L

∑
i, j

|〈i|Ṽ | j̃〉|2πδF (εi − ε j ). (12)

|i〉 are the many-particle eigenstates of the unperturbed unitary
U0 with eigenvalue e−iεiT . We define Ṽ = V − ψ0V ψ0 and
| j̃〉 = ψ0| j〉. Using ψ2

0 = 1, one can rewrite Ṽ = [V, ψ0]ψ0,
thus Ṽ can be interpreted as the part of the interaction, which
does not commute with the zero mode and thus changes it.
In the above, the δF function encodes energy conservation
modulo 2π/T , with δF (ε) = ∑

m δ(ε + m2π/T ). In contrast
to the traditional FGR for time-independent Hamiltonians,
here one obtains quasienergy conservation, rather than energy
conservation, due to the Floquet time evolution.

The FGR formula (12) has been derived from a short-time
expansion, NT �0 � 1, and it is therefore strictly speaking
only valid if short and long-time behaviors are governed by
the same decay process. This question has been studied in the
context of the memory matrix formalism applied to integrable
systems [26,27] and integrability breaking perturbations [28].
The analysis confirms that the perturbative formula is valid
provided that the investigated mode is the slowest mode in the
system: in this case short- and long-time decay coincide. This
is justified for the almost strong modes studied in this paper.

For the π mode, the only difference comes from the an-
ticommutation relation, eiL0T ψπ = U †

0 ψπU0 = −ψπ . It leads
to extra factors of (−1) in the derivation. One can show (see
Appendix C) that the π mode decay rate at second order in the
perturbation is

�π = T

Aπ∞(0)2L

(
1

2
Tr[ψ̇π ψ̇π ] +

∞∑
n=1

(−1)nTr[ψ̇π (n)ψ̇π ]

)

= 1

Aπ∞(0)2L

∑
i, j

|〈i|Ṽ | j̃〉|2πδF

(
εi − ε j + π

T

)
. (13)

In contrast to the zero mode, the (−1)n prefactor appears in
the first line of (13), and is absorbed into the delta function by
the inclusion of the π/T factor in the argument. The notation
in the second line is slightly different from that for the zero
mode, and is as follows: Ṽ = V − ψπV ψπ and | j̃〉 = ψπ | j〉.
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FIG. 2. Plot of quasienergies of n-particle excitations, n = 1, 3, 7, and a plot, where all these continua are combined, for JxT = 1.5, and
as a function of gT . See Appendix D for a description of how the continua are constructed. The thick dark green lines denote the position of
the Majorana modes. The plot can be used to identify the dominant scattering process leading to a decay of the almost strong modes, see text.

The decay rates derived above for zero and π modes
are only finite when the resonant conditions εi − ε j = 0 and
εi − ε j − π

T = 0, respectively, are fulfilled (modulo 2π/T ).
Our perturbation is V = JzHzz/2 and after a Jordan Wigner
transformation, this can be written as a four Majorana fermion
interaction term σ z

i σ z
i+1 = −a2i−1a2ia2i+1a2i+2, where ai are

the Majorana operators. As a next step one can express those
in terms of the edge-state Majorana ψ0 and ψπ and bulk
operators dk and d†

k . The matrix element |〈i|Ṽ | j̃〉| in FGR
survives only when the perturbation V involves an edge mode
such that Ṽ is nonzero. To affect the edge mode, one of the
operators has to be ψα with α = 0, π , the others can be bulk
modes. Thus in the thermodynamic limit a decay of ψ0 in
second-order perturbation theory is obtained if one finds a
solution of the following equation:

0 = εk1 ± εk2 ± εk3 (mod 2π/T ). (14)

We therefore expect a nonzero decay rate of the ψ0 mode at
second order in Jz only if the three-particle continuum, defined
by the sums and differences of three bulk energies εk , contains
the energy 0. Figure 2 shows different n-particle continua as a
function of gT and for a fixed value of JxT = 1.5.

Similarly, the π mode will decay if one finds a solution for

π/T = εk1 ± εk2 ± εk3 (mod 2π/T ). (15)

Thus one has to check whether the three-particle continuum
contains the quasienergy π/T . If both π and zero modes are
present, scattering processes proportional to ψ0ψπ and two
bulk operators are possible, leading to the condition

π/T = εk1 ± εk2 (mod 2π/T ). (16)

This process is activated if the two-particle continuum in-
cludes the energy π/T . In this paper we discuss the decay of
isolated 0, π modes, leaving the discussion of the decay when
both modes are present to a later publication.

The conditions discussed above easily generalize to higher-
order scattering processes. Matrix elements arising to order
J2n

z involve maximally 4n Majorana fermions and thus
maximally 4n − 1 bulk modes. One therefore obtains a con-
tribution to the decay rate of ψ0 to order J2n

z if a solution
exists for

0 =
4n−1∑
i=1

(±εki ) (mod 2π/T ), (17)

or, equivalently, if the energy 0 is part of the (4n − 1)-particle
continuum of the bulk states. The condition of (17) strongly
restricts the phase space (i.e., the subset of allowed ki values)
available for scattering in a J2n

z -scattering process. Similarly,
the decay of the π mode is triggered for

π/T =
4n−1∑
i=1

(±εki ) (mod 2π/T ). (18)

If both 0, π modes are present, there is a further decay channel
arising from the (4n − 2)-particle continuum,

π/T =
4n−2∑
i=1

(±εki ) (mod 2π/T ), (19)

a regime we plan to explore in future work. The knowledge
of the maxima and minima of the bulk dispersion εk of the
integrable system are sufficient to construct analytically the
m-particle continuum (see Appendix D). As shown in Fig. 2,
the larger the number of excitations the larger is the range of
quasienergies, which can couple to the modes.

Thus, without any further calculation, one can determine
the leading power m in the decay rate, � ∼ Jm

z , of the zero or
π modes. For a given set of parameters, one has to determine
the smallest value of n, which leads to a finite 4n − 1-particle
continuum at either the quasienergy zero or π , see Fig. 2. This
determines the exponent m = 2n in the Jz → 0 limit. This ex-
ponent is shown in Fig. 3, in the region where the edge modes
exist, and accounting for m up to 8. For a large part of the
phase diagram one obtains � ∼ J2

z , but there are also sizable
regions in the phase diagram, where larger exponents are ob-
tained, resulting in a much longer lifetime of the edge modes.
The exponents m get larger and larger upon approaching the
lines gT = 0, π or JxT = 0, π , which is explained by the fact
that the quasiparticle bands become exactly flat in this limit,
see (4). For such exactly flat bands, εk = εc = constant, one
cannot find any solution for (17) and (18) [with the exception
of points where εc/(2π/T ) is a rational number]. Thus, the
decay rate � of edge modes becomes smaller than any power
law in this limit for Jz → 0.

It is worth mentioning that the FGR formula is valid for
any perturbation regardless of the symmetry. For example, a
perturbation in the form of a y-direction transverse field breaks
Z2 symmetry. However, in second order, such a perturbation
already involves many-Majorana scattering processes since σ

y
l
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FIG. 3. Plot of the exponent m characterizing the decay of the zero mode (left panel) and the π mode (right panel) by bulk scattering
processes. The decay rate is predicted to be proportional to Jm

z for Jz → 0 where the exponent m is encoded in the color of the plot. The
exponent m = 2n is determined from the condition whether the energy of the mode is part of the (4n − 1)-particle continuum, see Fig. 2 and
text. Only those regions in parameter space are shown where the corresponding mode exists. The dashed white lines show the boundary of
the existence for π mode (left panel) and 0 mode (right panel), and we focus on the region where only one kind of edge mode is allowed. The
crosses denote parameter values investigated in Figs. 4 and 5.

is a string of Majoranas σ
y
l = (−ia1a2) . . . (−ia2l−3a2l−2)a2l .

Here we consider the Z2-symmetric perturbation V = JzHzz/2
such that the perturbing term has only four Majoranas. This
allows for a simpler physical picture for describing different
decay channels.

In the following section, we present numerical results to
support these ideas.

IV. RESULTS AND DISCUSSION

A. Almost strong zero mode

We first focus on the almost strong zero mode and how it
is influenced by second-order processes. Two cases are stud-
ied, g = 0.2, 0.3 with T = 2.0 where the system possesses
only a zero mode. They correspond to the top two crosses
in the left panel of Fig. 3. The decay rate is dominated by
second-order perturbation as the three-particle continuum is
closed at zero quasienergy. The autocorrelation function of σ x

1
are computed from exact diagonalization, with the results for
L = 14 presented in top panels (left and middle) of Fig. 4. The
rescaled plots are shown in the corresponding bottom panels.
The rescaled autocorrelation functions approach the FGR pre-
diction for small Jz. In addition, the numerically fitted decay
rates, shown for two different system sizes, are in agreement
with the perturbative result (12), see inset of Fig. 4.

To go beyond the region where second-order perturbation
theory is valid, we consider a shorter period T = 1.5 with
g = 0.3. This corresponds to the lower single cross in the left
panel of Fig. 3. Here, the system only possesses a zero mode
but the resonance condition is satisfied by fourth-order per-
turbation instead of second-order perturbation theory. Notice
that the third-order perturbation cannot be the leading order
here because the decay rate is a positive number, and it should
stay positive when Jz → −Jz. Therefore, the leading-order
contribution can only be an even-order perturbation.

The autocorrelation function and the numerically fitted de-
cay rate are presented in the right panels of Fig. 4. As we are

probing a higher-order perturbation process, the time scales
for a given value of Jz become much longer, and finite sys-
tem size effects and deviation from exponential behavior (see
below) become more apparent in comparison to the second-
order cases. In addition, the value of Jz cannot be taken to be
as small as in the second-order region. The fitted decay rates
and the plot of the autocorrelation functions as function of J4

z n
in the lower right panel of Fig. 4 clearly support a decay rate
proportional to J4

z in the small Jz limit.
Deviations from simple exponential behavior appear both

in regimes where the decay rates are proportional to J2
z and

J4
z . In the middle panel of Fig. 4, the autocorrelation function

starts to clearly deviate from exponential decay for Jz = 0.01.
Larger effects are seen in the right panel of Fig. 4, where
decay rates are proportional to J4

z . For all parameters where
the curves do not follow a simple exponential decay in the
long-time limit, we also observe finite-size effects as shown
in Appendix E where numerical results for L = 12 and 14
are compared. Mathematically, deviations from exponential
behavior at the long time scale nT , n 
 103, reflects that
the imaginary part of the self-energy of the Majorana mode
depends on frequency in the small frequency scale ∼1/(nT ).
This arises because bulk quasienergies are discrete in a finite-
size system. Nevertheless, as shown by the scaling plots, finite
system size effects do not spoil the key features of the per-
turbative processes in the parameter region we have probed.
Hence, the numerical results fully support the perturbative
argument.

B. Almost strong π mode

Now, we turn to the decay of the π mode. We first focus
on two different periods, T = 4.0 and T = 8.25, that allow
the existence of a π mode for a range of g. We study two
cases, g = 0.6, T = 4.0 and g = 0.3, T = 8.25 corresponding
to the middle and bottom crosses in the right panel of Fig. 3.
The decay is due to resonances that are second order in Jz.
The autocorrelation function is presented in the top panels
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FIG. 4. Almost strong zero mode. Top panels: The infinite temperature autocorrelation of σ x
1 for L = 14 with g = 0.2, T = 2.0 (left),

g = 0.3, T = 2.0 (middle) and g = 0.3, T = 1.5 (right) for different strengths of the integrability breaking term Jz. As Jz decreases, the
lifetime increases. Each data set is fitted with an exponential function C exp(−NT �fit ) where the decay rate is determined from the average
�fit = (�80% + �20%)/2 where �80%(20%) is the inverse time at which the correlator is 0.8(0.2)C. Bottom panels: The autocorrelation function is
rescaled to be 1 in the quasistable region, and the time is rescaled to J2

z n (J4
z n) for the second (fourth)-order perturbation process. For g = 0.2,

T = 2.0 (left) and g = 0.2, T = 3.0 (middle), the rescaled autocorrelation function approaches the FGR theoretical values �ThT , which equals
0.0082J2

z (left) and 0.054J2
z (middle) for small Jz. The inset shows the ratio between the numerically fitted decay rate �Fit and the theoretical

decay rate �Th for L = 12, 14. The horizontal red line marks �Fit/�Th = 1 and the error bar of each data point shows the range between �80%

and �20%. The numerical results validate second-order perturbation in Jz. For g = 0.3, T = 1.5 (right), the rescaled autocorrelation function
and the inset that plots �FitT vs Jz on a log-log scale, are consistent with �Fit ∝ J4

z for small Jz.

(left and middle) of Fig. 5. In the corresponding bottom pan-
els in Fig. 5, the rescaled autocorrelation function is plotted
and shown to approach the FGR prediction for small Jz. The

numerically fitted decay rates are plotted in the corresponding
insets of Fig. 5 and are shown to be consistent with the FGR
result (13).

FIG. 5. Almost strong π mode. Top panels: The autocorrelation function of σ x
1 for L = 14 with g = 0.6, T = 4.0 (left), g = 0.3, T = 8.25

(middle) and g = 0.55, T = 5.0 (right) for different Jz. Here we multiply the autocorrelation function by (−1)n so that the time evolution is
smooth, like a zero mode. In addition, we fit the time evolution to an exponential decay in the same manner as was done for the zero mode case
discussed in Fig. 4. Bottom panels: The corresponding rescaled autocorrelation function vs rescaled time J2

z n (J4
z n) for the second (fourth)-order

perturbation process. For g = 0.6, T = 4.0 (left) and g = 0.3, T = 8.25 (middle), the rescaled autocorrelation function approaches the FGR
theoretical values �ThT , which equal 0.16J2

z (left) and 1.1J2
z (middle) for small Jz. The inset shows the ratio between the numerically fitted

decay rate �Fit and the theoretical decay rate �Th for L = 12, 14. The horizontal red line marks �Fit/�Th = 1 and the error bar of each data
point shows the range between �80% and �20%. The numerical results validate second-order perturbation in Jz. For g = 0.3, T = 1.5 (right), the
rescaled autocorrelation function and the inset showing �FitT vs Jz on a log-log scale, are consistent with �Fit ∝ J4

z for small Jz.
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To explore resonances arising from higher-order processes,
a different period T = 5.0 is considered with g = 0.55. This
corresponds to the top cross in the right panel in Fig. 3,
where the system only possesses a π mode but the resonance
condition is matched by fourth-order perturbation theory in-
stead of second-order perturbation theory. The autocorrelation
function and the numerically fitted decay rate are presented in
the right panels of Fig. 5. As with the zero mode case, the
finite system size effect is apparent at L = 14 for higher-order
processes, making the range of Jz that can be probed, more
limited. Despite the deviation from exponential decay of the
autocorrelation function, we can still estimate the decay rate
by the same fitting method as before since the decay rates for
L = 12, 14 overlap for Jz values as small as Jz = 0.01. The
rescaled autocorrelation function plotted in the bottom right
panel tends to saturate for small Jz. Qualitatively, the scaling
of the decay rate shows a behavior consistent with J4

z for small
Jz, in agreement with the resonance conditions deduced from
studying the many-particle continuum.

The finite system size effects are visible in both second-
and fourth-order dominated processes. When second-order
processes are dominant, the finite system size effect is severe
for g = 0.3, T = 8.25, for the small Jz value of Jz = 0.001
(middle panels). Here, the autocorrelation function deviates
considerably from an exponential decay, and fails to collapse
to the FGR prediction. This can also be observed in the
increasing error bars in the fitted decay rate. On the con-
trary, the finite system size effect is not essential for g = 0.6,
T = 4.0 (left panels) as the rescaled autocorrelation functions
collapse well around the FGR prediction for small Jz. When
fourth-order processes dominate (right panels), as with the
zero mode case, the finite-size effects become more severe,
with the autocorrelation functions following a slower decay
than exponential for small Jz. A more detailed discussion of
finite-size effects is presented in Appendix E.

Finally, we would like to stress the connection between
this work and prethermalization [8,29]. If in a Floquet sys-
tem the driving frequency ω is much larger than all other
energy scales, then the heating rate, which drives the system
to infinite temperature, is exponentially small [30,31]. Here,
we investigate a somewhat different question: we assume
that the system has already reached infinite temperature, and
we explore under this condition, the stability of topological
boundary modes. We are also not focusing on the limit where
the frequency is much larger than the relevant bandwidth.
Nevertheless, the physics, which leads to exponentially small
decay rates is actually fully consistent with our approach.
In Fig. 3, this is encoded in the fact that the exponent n
gets larger and larger when one approaches parameters where
the Floquet bands become flat (JxT = 0, π or gT = 0, π ).
A power-law decay rate � ∼ J2n

z = e−2n ln(1/Jz ) is equivalent
to an exponential suppression (with logarithmic corrections),
� ∼ e−c/W , provided that n ∝ 1/W , where W is the band-
width of the relevant band. Such a behavior follows from (17)
and (18) when one considers first the limit of vanishing Jz and
afterwards the limit of a vanishing bandwidth (the two limits
do not commute).

To see this more clearly, note that for a decay rate ∝ J2n
z

of the zero mode, one needs to satisfy the following mod-
ulo 2π : n1εmax = n2εmin, n1 + n2 = 4n − 1 (see Appendix D).
This implies n1 + n2 = (n2 − n1)(εmax + εmin)/(εmax − εmin).

Thus, in the limit of a narrow bandwidth Jz � (εmax −
εmin)/(εmax + εmin) � 1, we expect that the decay rate is ap-
proximately given by J2n

z ∼ e−c/W , where W = εmax − εmin

and c depends logarithmically on Jz. This argument does not,
however, take into account n-dependent combinatorial pref-
actors in the decay rate, which can lead to extra logarithmic
corrections, see Refs. [30,31].

V. CONCLUSIONS

While periodically driven many-particle systems tend to
heat up to infinite temperatures, almost strong modes can,
nevertheless, have very long life times. Besides the size of in-
tegrability breaking terms, here the decisive factor is the phase
space available for scattering. The conservation of quasiener-
gies governs which states are available for scattering and thus
controls in which order of perturbation theory one can obtain
finite-decay rates. Our study tests this physics numerically in
the perhaps most simple setting of a Floquet version of the
one-dimensional Ising model, which can host two types of
almost strong modes, zero and π modes. A major advantage of
the model is that it can be simulated in a straightforward way
on quantum computers [32], even if present-day devices are
too noisy to explore the extremely long time scales relevant in
our study.

Alternatively, our study can be viewed as an investigation
of the stability of Majorana modes in static or periodically
driven [33] one-dimensional topological superconductors
with respect to quasiparticle poisoning. While nominally de-
scribed by the same type of Hamiltonian, the edge modes in
the superconducting realization are more stable with respect to
noise, with a low-temperature environment strongly reducing
scattering in comparison to our infinite-temperature calcu-
lation. In the Floquet case, the precise preparation protocol
could also play a decisive role for the stability of the system
[33]. Although we focus on a one-dimensional system in
this paper, the Floquet FGR is generic and can be applied
to study systems in higher dimension, e.g., two-dimensional
higher-order Floquet topological superconductors [34,35].

To further explore the stability of almost strong modes
and topological qubits, either in solid state realizations or
in a quantum computer, it will be interesting to extend our
study to noisy environments and to systems where phonons
provide on the one hand cooling, and on the other hand novel
quasiparticle poisoning channels.
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APPENDIX A: BULK DISPERSION RELATION
IN FLOQUET TRANSVERSE-FIELD ISING MODEL

In this Appendix, we present a detailed derivation of the
bulk dispersion of the Floquet transverse-field Ising model.

075112-7



YEH, ROSCH, AND MITRA PHYSICAL REVIEW B 108, 075112 (2023)

The same techniques can also be applied in the continuous
time case. The Floquet unitary is

U0 = UzUxx, (A1)

where

Uz = exp

(
−ig

T

2
Hz

)
; Uxx = exp

(
−iJx

T

2
Hxx

)
. (A2)

Hz and Hxx are defined in (2) describing transverse field and
Ising interactions respectively. The model can be mapped to
a bilinear spinless Fermion model through the Jordan-Wigner
transformation,

c†
j =

∏
l< j

σ z
l σ−

j ; c j =
∏
l< j

σ z
l σ+

j , (A3)

where σ±
j = (σ x

j ± iσ y
j )/2. Therefore, the spin interactions

can be expressed in terms of c and c† as follows:

σ z
i = 1 − 2c†

i ci, (A4)

σ x
i σ x

i+1 = c†
i c†

i+1 + c†
i ci+1 + c†

i+1ci + ci+1ci. (A5)

We impose periodic boundary conditions and perform a
Fourier transformation,

c j = eiπ/4

√
L

∑
k

eik jck, c†
j = e−iπ/4

√
L

∑
k

e−ik jc†
k , (A6)

where L is the system size. The spin Hamiltonians in k space
are

Hz =
∑
k>0

[ckc†
k − c†

kck + c−kc†
−k − c†

−kc−k], (A7)

Hxx = 2
∑
k>0

[cos k(c†
kck − c−kc†

−k ) + sin k(c†
kc†

−k + c−kck )].

(A8)

The Floquet unitary can now be written as a product of uni-
taries in k space

U =
∏
k>0

U k
z U k

xx, (A9)

where

U k
z = exp

[
−i

gT

2
(ckc†

k − c†
kck + c−kc†

−k − c†
−kc−k )

]
, (A10)

U k
xx = exp[−iJxT (cos k(c†

kck − c−kc†
−k )

+ sin k(c†
kc†

−k + c−kck ))]. (A11)

It is useful to consider a 4 × 4 matrix representation of
U k

z and U k
xx. We choose four orthogonal bases: |0〉, |1〉 =

c†
kc†

−k|0〉, |2〉 = c†
k |0〉, and |3〉 = c†

−k|0〉. In this basis U k
z and

U k
xx are as follows:

U k
z =

⎛
⎜⎜⎝

exp(−igT ) 0 0 0
0 exp(igT ) 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, (A12)

U k
xx =

(
uxx 02×2

02×2 I2×2

)
, (A13)

where uxx is a 2 by 2 matrix

uxx = I2×2 cos(JxT ) − i sin(JxT )(σx sin k − σz cos k).
(A14)

Finally, the multiplication of these two matrices leads to

Uk = U k
z U k

xx =

⎛
⎜⎜⎝

α β 0 0
−β∗ α∗ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, (A15)

where

α = e−igT [cos(JxT ) + i sin(JxT ) cos k], (A16)

β = −ie−igT sin(JxT ) sin k. (A17)

Since UkU
†
k = 1, one obtains |α|2 + |β|2 = 1. Focusing on the

upper-left 2 × 2 block, the two eigenvalues exp(±iεkT ), are
given by

exp(±iεkT ) = Re[α] ± i
√

1 − Re[α]2. (A18)

By examining the real part of (A18) with (A16), one arrives at

cos(εkT ) = cos(gT ) cos(JxT ) + sin(gT ) sin(JxT ) cos k.

(A19)

The above is the bulk dispersion reported in (4). Note that the
quasienergy band εk becomes exactly flat when either JxT =
0, π or gT = 0, π .

The upper-left 2 × 2 block can be rewritten in an exponen-
tial form by employing |α|2 + |β|2 = 1 and (A18),

(
α β

−β∗ α∗

)
= exp

[
−i

εkT√
1 − Re[α]2

(−Im[α] iβ
−iβ∗ Im[α]

)]
.

(A20)

Accordingly, the Floquet Hamiltonian for a given k momen-
tum is derived from H0

F,k = i ln(U k
z U k

xx )/T . One obtains

H0
F,k = εk√

1 − Re[α]2

⎛
⎜⎜⎝

−Im[α] iβ 0 0
−iβ∗ Im[α] 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠. (A21)

Representing the above in terms of fermion bilinears, the full
Floquet Hamiltonian is

H0
F =

∑
k>0

εk√
1 − Re[α]2

(c†
k c−k )

(
Im[α] −iβ∗

iβ −Im[α]

)(
ck

c†
−k

)
.

(A22)

Diagonalizing the above via a Bogoliubov transformation
leads to the Floquet Hamiltonian (3),

H0
F =

∑
k>0

εk (d†
k d−k )

(
1 0
0 −1

)(
dk

d†
−k

)
, (A23)
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where (d†
k d−k ) = (c†

k c−k )S with the transformation matrix S
given by

S =

⎛
⎜⎜⎝

√
1−Re[α]2+Im[α]√

(
√

1−Re[α]2+Im[α])2+|β|2
iβ∗√

(
√

1−Re[α]2+Im[α])2+|β|2
iβ√

(
√

1−Re[α]2+Im[α])2+|β|2

√
1−Re[α]2+Im[α]√

(
√

1−Re[α]2+Im[α])2+|β|2

⎞
⎟⎟⎠.

(A24)

APPENDIX B: ZERO MODE AND π MODE IN FLOQUET
TRANSVERSE-FIELD ISING MODEL

In this Appendix, we present analytic expressions for the
zero and π modes of the Floquet transverse-field Ising model.
First, we introduce Majorana operators on odd and even sites
following the convention that l runs over 1 to system size L,

a2l−1 =
l−1∏
j=1

σ z
j σ

x
l ; a2l =

l−1∏
j=1

σ z
j σ

y
l . (B1)

Next, we construct a generic operator as a linear combination
of single Majorana operators, ψ = ∑

n cnan. After one period
of time evolution, the operator is still a superposition of single
Majoranas

U †
0 ψU0 = Kψ, (B2)

where ψ is (c0 c1 · · · )T , a column vector representation of
ψ = ∑

n cnan. The corresponding K in the same representa-
tion is

K =

⎛
⎜⎜⎜⎜⎜⎜⎝

cg sg

−sgcJx cgcJx cgsJx sgsJx

sgsJx −cgsJx cgcJx sgcJx

−sgcJx cgcJx cgsJx sgsJx

sgsJx −cgsJx cgcJx sgcJx

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(B3)

Above, we use the shorthand notation: cg = cos(gT ), sg =
sin(gT ), cJx = cos(JxT ), and sJx = sin(JxT ). The zero and π

modes satisfy the eigenvalue equation

Kψ0 = ψ0; Kψπ = −ψπ, (B4)

which guarantees commutation and anticommutation rela-
tions with the Floquet unitary. Here, we simply write down
the answer, which can be checked by direct substitution into
(B4),

ψ0 ∝
∑
l=1

{[
cos

(
gT

2

)
a2l−1 + sin

(
gT

2

)
a2l

]

×
[

tan

(
gT

2

)
cot

(
JxT

2

)]l−1
}

, (B5)

ψπ ∝
∑
l=1

{[
sin

(
gT

2

)
a2l−1 − cos

(
gT

2

)
a2l

]

×
[
− cot

(
gT

2

)
cot

(
JxT

2

)]l−1
}

. (B6)

When applying FGR (12) and (13), we numerically construct
the normalized zero and π modes according to the analytic
expressions (B5) and (B6). Note that the commutation and an-
ticommutation relations only hold in the thermodynamic limit.
However, the analytic solutions are localized on the edge
with commutation and anticommutation relations spoiled by
a number, which is exponentially small in the system size.
Hence, one can still apply FGR with a finite system size
truncation of (B5) and (B6).

APPENDIX C: FGR FOR THE DECAY OF THE INFINITE
TEMPERATURE AUTOCORRELATION

In this Appendix, we provide the full derivation of the FGR
decay rate of the infinite temperature autocorrelation of almost
strong zero and π modes. The full Floquet unitary consists of
two parts: one arising from a perturbing interaction V and the
other arising from the unperturbed Floquet Hamiltonian H0

F ,

U = e−iV T e−iH0
F T . (C1)

To second order in V , one obtains

U ≈
(

1 − iV T − V 2T 2

2

)
e−iH0

F T . (C2)

Now, we consider the time evolution of the zero and π modes
after one period, U †ψηU with η = 0 or π for zero and π

modes respectively. Up to second order

ψη(1) = eiL0T

(
1 + iTLV + T 2GV 2 − T 2

2
FV 2

)
ψη. (C3)

The notations are as follows: L0ψη = [H0
F , ψη], LV ψη =

[V, ψη], GV 2ψη = V ψηV , and FV 2ψη = {V 2, ψη}. After N
periods

ψη(N ) =
[

eiL0T

(
1 + iTLV + T 2GV 2 − T 2

2
FV 2

)]N

ψη.

(C4)

The infinite temperature autocorrelation is given by

Aη
∞(N ) = 1

2L
Tr[ψη(N )ψη]. (C5)

We will only expand up to second order in V and denote Aη
∞,n

to be the autocorrelation function to nth order in V . At the
zeroth order, one does not pick up any terms containing V , so
that

Aη

∞,0(N ) = 1

2L
Tr

[{
eiL0T Nψη

}
ψη

] = eiηN , (C6)

where we have applied the commutation relation eiL0T ψη =
eiηψη and employed the normalization Tr[ψηψη]/2L = 1.

At first order, LV appears once in the expansion

Aη

∞,1(N )

= 1

2L

N−1∑
n=0

Tr
[{

eiL0T (N−n)(iTLV )eiL0T nψη

}
ψη

]
. (C7)

With cyclic permutation within the trace, one can show that
Tr[{eiL0T O1}O2] = Tr[O1{e−iL0T O2}] for arbitrary operators
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O1 and O2. Also, from the commutation relations, the first-
order expansion is further simplified as

Aη

∞,1(N ) = eiηN

2L

N−1∑
n=0

Tr[{(iTLV )ψη}ψη] = 0. (C8)

Note that we have used eiη = e−iη (e2iη = 1) since we
only consider η = 0 or π . The above quantity is traceless
due to the cyclic property of the trace: Tr[{LV ψη}ψη] =
Tr[ψη{−LV ψη}] = 0.

Last, at second order, one has GV 2 once, FV 2 once or LV

twice in the expansion,

Aη

∞,2(N ) = 1

2L

N−1∑
n=0

Tr
[{

eiL0T (N−n)(T 2GV 2 )eiL0T nψη

}
ψη

]

− 1

2L

N−1∑
n=0

Tr

[{
eiL0T (N−n)

(
T 2

2
FV 2

)
eiL0T nψη

}
ψη

]

+ 1

2L

n+m=N−1∑
n�1,m�0

Tr
[{

eiL0T (N−n−m)(iTLV )eiL0T n

×(iTLV )eiL0T mψη

}
ψη

]
. (C9)

In the first and second trace, one obtains an overall
factor eiηN . Moreover, Tr[{GV 2ψη}ψη] = Tr[V ψηV ψη] and
Tr[{FV 2ψη}ψη] = 2Tr[ψηVV ψη]. Combining them and sum-
ming over n leads to a simple form

1

2L

N−1∑
n=0

Tr
[{

eiL0T (N−n)(T 2GV 2 )eiL0T nψη

}
ψη

]

− 1

2L

N−1∑
n=0

Tr

[{
eiL0T (N−n)

(
T 2

2
FV 2

)
eiL0T nψη

}
ψη

]

= −eiηN NT 2

2
× 1

2L
Tr[ψ̇ηψ̇η], (C10)

where we define ψ̇η = iLV ψη. Now the last piece is the term
with LV in (C9). As we have learnt from the first-order ex-
pansion, eiL0T (N−n−m) and eiL0T m contribute an overall factor
eiη(N−n). Then, one associates the first iLV with the last ψη by
cyclic permutation. After summing over m, one obtains

1

2L

n+m=N−1∑
n�1,m�0

Tr
[{

eiL0T (N−n−m)(iTLV )eiL0T n

×(iTLV )eiL0T mψη

}
ψη

]
= −NT 2

2L

N∑
n�1

eiη(N−n)
(

1 − n

N

)
Tr

[
ψ̇η(n)ψ̇η

]
, (C11)

where we define ψ̇η(n) = eiL0T nψ̇η.
On combining the above results, the autocorrelation

function up to second order in V is

Aη
∞(N ) ≈ Aη

∞,0(N ) + Aη

∞,2(N ), (C12)

where

Aη

∞,0(N ) = eiηN (C13)

Aη

∞,2(N )

= −eiηN NT 2

2L

⎛
⎝1

2
Tr[ψ̇ηψ̇η] +

∞∑
n�1

eiηnTr[ψ̇η(n)ψ̇η]

⎞
⎠.

(C14)

Note that we approximate the upper bound of the summa-
tion N by ∞, and therefore the (1 − n/N ) in the summation
is replaced by 1. Since we study quantities where the life-
time is long, N is chosen to be a large number. In addition,
Tr[ψ̇η(n)ψ̇η] decays fast with a time scale much smaller
than N . Therefore, we can simply replace N by ∞ in the
summation.

The autocorrelation function with decay rate �η can be
formulated as Aη

∞(N ) = eiηN e−�ηNT ≈ eiηN (1 − �ηNT ). By
comparing this to the second-order expansion, we obtain the
FGR decay rate

�η = T

2L

(
1

2
Tr[ψ̇ηψ̇η] +

∞∑
n=1

eiηnTr[ψ̇η(n)ψ̇η]

)
, (C15)

which is the first line in (12) for η = 0 and (13) for η = π .
One can reformulate the terms in the round parenthesis as

1

2
Tr[ψ̇ηψ̇η] +

∞∑
n�1

eiηnTr[ψ̇η(n)ψ̇η]

=
∑
i, j

|〈i|ψ̇η| j〉|2
(

1

2
+

∞∑
n=1

ei(εiT −ε j T +η)n

)
, (C16)

where |i〉 and | j〉 are eigenbases of U0. The relation between
Dirac delta function and summation of exponential is given by

∞∑
m=−∞

2πδ(x + 2πm) =
∞∑

n=−∞
eixn = 2

(
1

2
+

∞∑
n=1

eixn

)
.

(C17)

Therefore, the FGR decay rate can be expressed as

�η = 1

2L

∑
i, j

|〈i|ψ̇η| j〉|2πδF

(
εi − ε j + η

T

)
, (C18)

where δF (ε) = ∑
m δ(ε + m2π/T ) is the δ-function encoding

energy conservation modulo 2π/T . The matrix element can
be further recast as

|〈i|ψ̇η| j〉| = |〈i|(V − ψηV ψη )ψη| j〉| = |〈i|Ṽ | j̃〉|, (C19)

where we use ψ2
η = 1 and define | j̃〉 = ψη| j〉 and Ṽ = V −

ψηV ψη. Finally, we arrive at the results in the second lines of
(12) and (13),

�η = 1

2L

∑
i, j

|〈i|Ṽ | j̃〉|2πδF

(
εi − ε j + η

T

)
. (C20)
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FIG. 6. The infinite temperature autocorrelation of ψ̇0, Bn = Tr[ψ̇0(n)ψ̇0]/2L (left and middle) and the decay rate (right). Jz is the
perturbation strength and the results are Jz independent on multiplying by 1/J2

z . The left panel shows a fast decay that supports the
approximation in (C14). The fluctuation becomes large at later times for L = 10, which is the revival effect of a finite-size system. This
can be clearly seen in the middle panel, where the revivals occur later as the system size increases. To take finite system size into account, we
truncate the summation of n in (C15) up to the minimum value in the middle plot. In the right panel, we show how the decay rate converges as
the upper bound of the summation (denoted by n on the x axis) increases.

In Fig. 6 we use the zero mode as an example to demon-
strate the numerical computation of the infinite temperature
autocorrelation B∞(n) = Tr[ψ̇0(n)ψ̇0]/2L, and the decay rate
derived from it based on (12).

APPENDIX D: MANY PARTICLE QUASI-ENERGY
CONTINUUM

In this Appendix, we illustrate how to numerically con-
struct the manyparticle quasienergy continuum. For fixed
parameters Jx, g, T , the bulk quasienergy spectrum εkT is a
continuum within the interval [εminT, εmaxT ], where εmin =
min{ε0, επ } and εmax = max{ε0, επ }, where εk is given in (4).
In this paper, the perturbation we consider is Jz

∑
i σ

z
i σ z

i+1 =
−Jz

∑
i a2i−1a2ia2i+1a2i+2, i.e., a four Majorana interaction

term. In the language of Feynman diagrams, the decay rate
comes from the self-energy diagram obtained from contract-
ing say n number of four Majorana interaction terms with two
external lines left out. At 2n-th order, there are 4n − 1 internal
lines. The resonance condition is numerically determined by
constructing the 4n − 1 particle quasienergy continuum from
the bulk dispersion.

Let us start with the one-particle continuum. Each internal
line can represent either the creation or annihilation of a
quasiparticle because a Majorana is a linear combination of
the creation and annihilation operator of a complex fermion
(or Bogoliubov particle). The one-particle continuum is
therefore [εminT, εmaxT ] ∪ [−εmaxT,−εmaxT ]. For n = 1, we
have to consider the three-particle continuum. The possible
combinations are: create (annihilate) three quasiparticles,
create (annihilate) two quasiparticles and annihilate (create)
one quasiparticle. The three-quasiparticle continuum is there-
fore [3εminT, 3εmaxT ] ∪ [−3εmaxT,−3εmaxT ] ∪ [(2εmin −
εmax)T, (2εmax − εmin)T ] ∪ [(εmin−2εmax)T, (εmax−2εmin)T ].
For larger n, the construction is similar, and we do not show
it here.

Once all the energy continuum are constructed, one has to
fold them into the window [−π, π ] since quasienergies are
only defined modulo 2π . For a given continuum, [a, b], we
shift it into the [−π, π ] interval as follows. First we shift

[a, b] → [a′, b′], (D1)

where

a′ = a − 2π

⌊
a + π

2π

⌋
, (D2)

b′ = b − 2π

⌊
a + π

2π

⌋
, (D3)

with the floor function � �. Based on the three possible con-
ditions we further fold [a′, b′] into the [−π, π ] interval in the
following different manners.

If b′ − a′ > 2π ,

[a′, b′] → [−π, π ]. (D4)

If b′ > π and b′ − a′ < 2π

[a′, b′] → [a′, π ] ∪ [−π, b′ − 2π ]. (D5)

If b′ < π and b′ − a′ < 2π ,

[a′, b′] → [a′, b′]. (D6)

These three conditions cover all possible cases for a given
interval [a′, b′].

APPENDIX E: FINITE SYSTEM SIZE EFFECTS
IN NUMERICAL RESULTS

In numerical computations, we obtain the autocorrelation
functions in the thermodynamic limit by increasing the system
size until the results saturate. In Fig. 7 we show a comparison
of the decay of the almost strong modes for two different
system sizes, L = 12 and L = 14. In the second-order region
(left and middle panels of Fig. 7), the finite system size effects
arise in the tails, in particular, L = 12 shows a slower decay
at late times.

The perfect exponential decay comes from the fact that
the energy spectrum is continuous in the thermodynamic limit
and hence the delta function condition is obeyed in the FGR
formula. However, for finite system sizes, the discrete energy
spectrum will be detected at time scales long as compared to
the inverse of the energy spacing of the multiparticle exci-
tations. In bare perturbation theory to order J2n

z , the relevant
level spacing is proportional to 1/L4n−1. Due to the 4n − 1
bulk energies involved in the scattering process, there are
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FIG. 7. Top panels: Almost strong zero mode. Bottom panels: Almost strong π mode. Comparison between the infinite temperature
autocorrelation functions for L = 12, 14. The parameters g, T, Jz are chosen to be the same as Figs. 4 and 5. For second-order perturbation
(left and middle panels), L = 12 shows a slowly decaying tail, which is a finite system size effect. L = 14 also shows finite system size
effects, which manifest as a deviation from saturation from the thermodynamic limit (nonoverlapping of L = 12, 14 plots) for n � 106. For
fourth-order processes (right panels), the life times for small Jz are longer than n = 106. At these times, the system size effect is already strong
for L = 14.

O(L4n−1) multiparticle energies
∑4n−1

i=1 (±εki ) entering, e.g., in
(17) or (18). Thus, finite-size effects are expected when the
decay rate � ∼ W (Jz/W )2n becomes smaller than W/L4n−1

where W is the relevant quasiparticle bandwidth. Thus finite-
size effects are expected for Jz � W/L3/2 for n = 1 (left and
middle panels of Fig. 7) and for Jz � W/L7/4 for n = 2 (right

panels of Fig. 7). This is roughly consistent with our nu-
merical results. Note that the estimate above does not take
into account that bulk scattering leads to a finite lifetime
of bulk modes, which can further suppress finite-size effects
because the many-particle level spacing is exponentially small
in L [36].
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