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The S = 3
2 Kitaev honeycomb model (KHM) is unique among the spin-S Kitaev models due to a massive

ground-state quasidegeneracy that hampered previous numerical and analytical studies. In a recent work [Jin
et al., Nat. Commun. 13, 3813 (2022)], we showed how an SO(6) Majorana parton mean-field theory of the
S = 3

2 isotropic KHM explains the anomalous features of this Kitaev spin liquid (KSL) in terms of an emergent
low-energy Majorana flat band. Away from the isotropic limit, the S = 3

2 KSL generally displays a quadrupolar
order with gapped or gapless Majorana excitations, features that were quantitatively confirmed by density-matrix
renormalization group simulations. In this paper, we explore the connection between the S = 3

2 KHM with
Kugel-Khomskii models and discover exactly soluble examples for the latter. We perform a symmetry analysis
for the variational parton mean-field Ansätze in the spin and orbital basis for different quantum liquid phases
of the S = 3

2 KHM. Finally, we investigate a proposed time-reversal symmetry-breaking spin liquid induced by
[111] single-ion anisotropy and elucidate its topological properties as well as experimental signatures, e.g., an
unquantized thermal Hall response.

DOI: 10.1103/PhysRevB.108.075111

I. INTRODUCTION

The celebrated S = 1
2 Kitaev honeycomb model (KHM)

[1] bridges different research fields, i.e., the theory of inte-
grable models, topological quantum computation, and Mott
insulators under strong spin-orbit coupling [2–5]. The eigen-
states of the KHM display exact spin fractionalization into
static Z2 fluxes and Majorana matter fermions, resulting in
short-range spin correlations characteristic of quantum spin
liquids (QSLs) [6]. Kitaev’s [1] interest was to instantiate a
simple strongly correlated Hamiltonian hosting non-Abelian
anyon excitations, therefore providing a toy model for fault-
tolerant quantum computation. This motivation explains both
the surprise and the excitement about proposals of KHM
implementations in heavy-ion Mott insulators [7] that later
coined the term Kitaev materials [2–5].

Kitaev materials generally display long-range ordered
ground states stabilized by other symmetry-allowed ex-
changes [8–17], and intense research has focused on the
search for compounds approaching the Kitaev spin liquid
(KSL) [2,4,18]. One noteworthy example is α-RuCl3 [19],
which transitions from a zigzag ordered state [20] to a mag-
netically disordered phase under the application of a moderate
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in-plane magnetic field [21–26]. The disordered phase is remi-
niscent of the chiral spin liquid (CSL) predicted by Kitaev [1],
a point supported by experiments reporting half-quantization
of the thermal Hall coefficient [27,28] but which is currently
under debate [29–31].

A recent alternative route to a KSL in α-RuCl3 was pro-
posed for heterostructures involving monolayers in contact
with graphene [32,33]. The proximity effect strains the insu-
lator [32] and can enhance the relative importance of Kitaev
interactions [4,11]. Another promising direction involves Ki-
taev materials with 3d magnetic ions [34–36]. As an example,
the cobalt-based Kitaev material Na3Co2SbO6 [37] was pro-
posed to reach the KSL state by reducing its trigonal crystal
field through pressure or strain [36]. The 3d materials were
also essential for conceiving higher-spin Kitaev materials with
S > 1

2 [38–41]. They provide experimental motivation to re-
visit what were once purely theoretical questions. The spin-S
KHMs retain two characteristics of the famous S = 1

2 case
[42]: (i) there is one conserved operator per plaquette defining
a static Z2 flux, and (ii) one can define a Jordan-Wigner trans-
formation and obtain emergent Majorana fermion excitations
for half-integer spin S. These two characteristics are sufficient
to ensure ultra-short-ranged spin correlations entailing a QSL
ground state [42]. Nevertheless, these results did not yield
an exact solution or a quantitative theory for the KSLs with
S > 1

2 .
An alternative approach is to start from the semiclassical

large-S limit [43], where the KHM can be mapped onto a
toric-code model [44] over dimers forming a fixed kekule
pattern, which provides an adequate understanding of the
model for S > 3

2 . The breakdown of this approximation for
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FIG. 1. The mean-field ground-state phase diagram of the S = 3
2

Kitaev honeycomb model (KHM) with [001] single-ion anisotropy
(SIA) in the zero-flux sector. The A0 phase is a Dirac quantum spin
liquid (QSL) with spin-quadrupolar order 〈T z〉 = Qz < 0. In the Az

(B) phase, the spinon excitations are gapped with Qz < 0 (Qz > 0).
At the isotropic point (blue star), the ground state is a Dirac QSL
with Qz = 0. The bold blue line at Dz = ∞ with Jz < 8 (Jz > 8)
represents the effective gapless (gapped) S = 1

2 Kitaev spin liquid
(KSL). The gapless phases in S = 3

2 and 1
2 KHMs can continuously

connect to each other through the A0 phase.

S = 1
2 and 1 is interpreted as the formation of QSLs with

mobile fractionalized excitations, as evinced by independent
numerical studies [45,46]. The specific case S = 3

2 marks the
borderline of the stability of the large-S KSL [43] and has
proven to be a challenging numerical problem due to a pile-up
of low-energy excitations [47].

The proposal that S = 3
2 Kitaev exchanges are rele-

vant for two-dimensional (2D) van der Waals magnets
[38,40,41,48,49] provides a strong experimental motivation to
readdress the nature of this exotic QSL. In our recent work
[47], we tackled this problem by studying the S = 3

2 KHM in
terms of SO(6) Majorana partons [50–53]. It allows an exact
mapping of the Z2 fluxes [42] into static Z2 gauge operators
in analogy to the S = 1

2 KHM [47]. However, despite the
presence of a static gauge field, the ensuing Majorana problem
is fully interacting which prevents a full exact solution.

A parton mean-field theory (PMFT) of this model per-
turbed by flux-conserving [001] single-ion anisotropy (SIA)
unveiled a rich phase diagram with four types of QSLs (see
Fig. 1): (i) a quantum spin-orbital liquid at the isotropic
point (Jγ = 1), (ii) a gapless QSL dubbed A0 phase adiabat-
ically connected with the S = 1

2 KSL, (iii) the same as (ii)
for the gapped S = 1

2 KSL, and (iv) a gapped QSL dubbed
B phase with vanishingly small flux excitations. The pre-
dictions of PMFT are in remarkable and even quantitative
agreement with state-of-the-art density-matrix renormaliza-
tion group (DMRG) simulations on 3 × 4 tori and 4 × 8
cylinders. The abundance of low-energy excitations, which
hampered previous DMRG simulations of the isotropic KHM,
can be attributed to an almost zero-energy flat band of Majo-
rana fermion excitations within the framework of PMFT.

Our previous work [47] also included a perturbative study
of the isotropic S = 3

2 KHM under the [111] SIA that
naturally arises in minimal models of van der Waals mag-
nets [38,40,41]. Within the zero-flux sector, this perturbation

induces a three-site interaction that in turn leads to a spon-
taneous time-reversal symmetry (TRS)-breaking QSL. This
S = 3

2 KSL thus shares similarities with the celebrated S = 1
2

chiral KSL induced by a magnetic field [1] but is distinguished
from it by its coexistence with an octupolar order parameter
and a zero total Chern number [47].

In this paper, we explore the connection of the S = 3
2

KHM with Kugel-Khomskii (KK) models by studying the
S = 3

2 operators in terms of pseudodipole σ
γ
i and pseudo-

orbital operators T γ
i [52–58]. This facilitates the identification

of similarities with integrable KK models [56,59–70], and
in doing so, we discover soluble examples. Moreover, the
connection to KK models allows for a reinterpretation of the
quantum liquid phases. We also provide a symmetry classi-
fication of the PMFT and discuss properties of the quantum
liquid phases, particularly the one breaking TRS in the pres-
ence of the experimentally relevant [111] SIA.

The paper is structured as follows. Section II reviews es-
sential results on the theory of integrable KK models and
the spin-S KHM. It then translates these results to the S = 3

2
case using the pseudodipole and pseudo-orbital operators.
Section III presents details for the parton representation of
an exactly solvable model directly related to the S = 3

2 KHM.
This section also discusses the effects of symmetry constraints
on the allowed order parameters and their relations to the
properties of the previously uncovered QSLs phases. Sec-
tion IV discusses the origins of the first-order phase transition
to the TRS breaking S = 3

2 KSL as well as its observed topo-
logical properties. We conclude in Sec. V with open questions
for future research.

II. REVIEW OF SOME EXACT RESULTS

A. Soluble vector models and spin-S KHMs

We start by recalling a class of exactly solvable spin-
S models directly related to the KHM. Consider a set of
operators �a (a = 1, 2, . . . , 2q + 3, q ∈ N0) defined over a
2q+1-dimensional Hilbert space which forms a basis for the
Clifford algebra:

{
�a

i , �
b
i

} = 2δab,
[
�a

i , �
b
j

] = 0, if i �= j, (1)

with i and j labeling points on a graph. Several algorithms
have been developed to generate models whose Hilbert space
is restricted to a subalgebra whose dimension scales poly-
nomially with the number of lattice bonds [60,71]. They
proposed the class of vector models [60]:

Hvec =
∑
〈i j〉a

Ja�
a
i �

a
j , (2)

in which each site i does not form an a bond more than once.
All vector models commute with an extensive number of local
operators given by an ordered product � on the elementary
plaquettes [60].

An even larger number of integrable models can be de-
fined with the operators �ab = 1

2i [�
a, �b] (a < b and q � 1)

[65,68]. For concreteness, we express these generalizations
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FIG. 2. Conventions for the honeycomb lattice that are used
throughout the text. (a) Detail of the honeycomb plaquette. The
colors green, blue, and red correspond to γ = z, x, and y, respec-
tively. At each bond 〈i j〉γ , the interaction between the spins is given
by Jγ Sγ

i Sγ

j , in which γ is defined by the bond. (b) Site counting
convention used in the Jordan-Wigner transformation discussed in
the text together with the labeling convention of the nearest-neighbor
vectors ax,y and next-nearest-neighbor vectors d1,3,5.

only on the honeycomb lattice, where they read

H =
∑
〈i j〉γ

Kγ �
γ

i �
γ

j +
∑
〈i j〉γ

2q+1∑
α=4

(
Kα

γ �
γ

i �
γα

j + K ′α
γ �

γα

i �
γ

j

)

+
∑
〈i j〉γ

2q+1∑
α,β=4

Jαβ
γ �

γα

i �
γβ

j , (3)

with the three bond directions γ expressed by different colors
in Fig. 2.

Next, we can discuss the connection with the spin-S KHM
on the honeycomb lattice given by the Hamiltonian:

HKit =
∑
〈i j〉γ

Jγ Sγ

i Sγ

j , (4)

in which γ labels both the inequivalent bonds on the honey-
comb lattice and the corresponding spin-quantization axis in
the cubic frame [13,14,17].

The operators σ
γ
i = 2Sγ

i satisfy the Clifford algebra in
Eq. (1) only for S = 1

2 , which thus corresponds to the q = 0
vector model. The conserved operators for S = 1

2 are W 1/2
p =

σ z
1σ x

2 σ
y
3 σ z

4σ x
5 σ

y
6 [1] with the label convention set in Fig. 2(a).

Kitaev then provided an exact solution of the S = 1
2 model

using a Majorana fermion representation:

σ
γ

i = −iηγ

i θ0
i , (5)

in which the four Majorana flavors satisfy {ϒα
i , ϒ

β
j } =

2δi jδ
αβ , where ϒ is an η or θ0 flavor. The Hamiltonian in

terms of Majoranas is

HS=1/2
Kit =

∑
〈i j〉γ

Jγ

4
û〈i j〉γ iθ0

i θ0
j , (6)

in which û〈i j〉γ = −iηγ
i η

γ
j are conserved Z2 bond operators

akin to a static gauge field. The product of eigenvalues of
û〈i j〉γ around a plaquette fixes the {W 1/2

p } flux sector [1]. The
ground state in the thermodynamic limit is characterized by
W 1/2

p = +1,∀p [72] with a dispersion of the matter sector

given by

ε(k) = 1
2 |Jz + Jx exp(ik · ax ) + Jy exp(ik · ay)|, (7)

in which ax,y = ± 1
2 x̂ +

√
3

2 ŷ, as shown in Fig. 2.
The KHM for S > 1

2 is not within the class of vector
models since the anticommutator {Sa

i , Sb
i } corresponds to a

quadrupolar operator. Nevertheless, using identities:{
exp
(
iπSα

i

)
, Sβ

i

} = 0, if α �= β,
[
exp
(
iπSα

i

)
, Sα

i

] = 0,

(8)

it is still possible to find one conserved operator W S
p per

plaquette given by [42]

W S
p = − exp

[
iπ
(
Sz

1 + Sx
2 + Sy

3 + Sz
4 + Sx

5 + Sy
6

)]
, (9)

in which the minus sign was inserted to include W 1/2
p as a

specific case. Since spin operators do not commute with W S
p

for any S, one can prove that spin-spin correlations vanish
beyond nearest neighbors, and there is no long-range magnetic
order in any flux eigenstates of spin-S KHMs [42].

The exponential operators in Eq. (8) can also be used for
defining a Jordan-Wigner-like transformation (JWT) leading
to an analytical representation of the Z2 flux sector of the spin-
S KHM [42]. The JWT starts with the definition of a string
operator:

μn =
∏
m<n

exp
[
iπ (Sz

m + S)
]
, (10)

in which m, n label the sites following an order defined by
strings running over the xy bonds [73–76] [see Fig. 2(b)]. At
the nth site, the exchange interactions along the strings are
given by Jt1 St1

n−1St1
n and Jt2 St2

n St2
n+1, where t1, t2 = x, y. We can

then define

ξn ≡ exp
[
iπ
(
St1

n + S
)]

μn, χn ≡ exp
[
iπ
(
St2

n + S
)]

μn, (11)

which satisfies Majorana fermion (hard-core boson) statistics
for half-integer (integer) values of S. For any pair of sites
i j forming a z bond, ui j = eiπSχiχ j is a Hermitian operator
commuting with the Hamiltonian [42], and is directly related
to the bond operators û〈i j〉z discussed above, i.e., they can also
be used to fix the KHM flux sectors. On the other hand, ξn

represents Majorana fermions for the matter sector only when
S = 1

2 , and we need to get into the specifics for understanding
KHM with S > 1

2 .

B. Spin-orbital representation of the spin- 3
2 KHM

For the remainder of this paper, we focus on the S = 3
2

case and derive an alternative representation in terms of a KK
model. We start by defining the spin- 3

2 pseudodipoles σ and
pseudo-orbitals T as follows:

σα
i = −i exp

(
iπSα

i

)
, T z

i = (Sz
i

)2 − 5

4
,

T x
i = 1√

3

[(
Sx

i

)2 − (Sy
i

)2]
, T y

i = 2
√

3

9
Sx

i Sy
i Sz

i , (12)

in which the bar indicates a sum over all permutations of the
operators under it [77]. The definition of σ is motivated by
the exponential operators in Eqs. (8)–(10), and an imaginary
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factor −i ensures that the pseudodipoles satisfy the SU(2)
algebra for S = 1

2 operators. The T z and T x operators are
S = 3

2 quadrupoles that commute with σ and transform as
eg orbital operators by transformations in real space. Includ-
ing the octupolar operator T y which forms a unidimensional
representation of the Oh group [77], T also satisfy the SU(2)
algebra. The algebra of (σ, T) is summarized as follows:[

σα
i , σ

β
j

] = 2iδi jε
αβγ σ

γ
i ,

[
T α

i , T β
j

] = 2iδi jε
αβγ T γ

i ,{
σα

i , σ
β
j

} = {T α
i , T β

j

} = 2δi jδ
αβ,

[
σα

i , T β
j

] = 0, (13)

in which εαβγ is the antisymmetric Levi-Civita symbol. The
(σ, T) operators were extensively used in the description of
j = 3

2 Mott insulators, as they allow an alternative representa-
tion of multipolar interactions and a transparent representation
of global symmetries [52–58,77].

We can then reformulate the S = 3
2 KHM after rewriting

Sγ

i like [53,56]

Sγ
i = −σ

γ

i

2
− σ

γ
i T αβ

i , (14)

in terms of well-known 120◦ compass operators for orbital in-
teractions T xy

i = T z
i and T yz(zx)

i = (−T z
i ± √

3T x
i )/2 [78,79].

The explicit relationship between the |Sz〉 and the |σ z, T z〉
basis states is presented in Appendix A. We note that Eq. (14)
entails that the Sz = ± 3

2 (Sz = ± 1
2 ) states are the eigenstates

of the quadrupolar operator T z with eigenvalue +1 (−1).
Applying Eq. (14) onto the S = 3

2 KHM maps it onto a KK
model [78–81]:

HKit =
∑
〈i j〉γ

Jγ σ
γ
i σ

γ
j

(
1

2
+ T αβ

i

)(
1

2
+ T αβ

j

)
. (15)

This exact mapping turns out to be very useful for un-
derstanding some of the properties of the S = 3

2 KHM. For

example, the commutation [σα
i , T β

j ] = 0 entails in analogy

with the S = 1
2 KHM that

W 3/2
p = σ z

1σ x
2 σ

y
3 σ z

4σ x
5 σ

y
6 = W σ

p (16)

commutes with HKit. The same result is obtained after insert-
ing Eq. (12) into Eq. (9), and then the emergence of conserved
flux operators becomes transparent.

The model can be written as a sum of three terms of HKit

as follows:

HKit = Hσ
Kit + HσT

Kit + Hσ,σT
Kit , (17)

each of which still preserves a Z2 flux structure:

Hσ
Kit = 1

4

∑
〈i j〉γ

Jγ σ
γ
i σ

γ
j , (18a)

HσT
Kit =

∑
〈i j〉γ

Jγ σ
γ
i σ

γ
j T αβ

i T αβ
j , (18b)

Hσ,σT
Kit = 1

2

∑
〈i j〉γ

Jγ σ
γ

i σ
γ

j

(
T αβ

i + T αβ
j

)
. (18c)

FIG. 3. (a) Dispersion of Hσ
Kit with flat zero-energy bands (red

thick lines). (b) Strong first-order quantum phase transition induced
by the onset of [001] single-ion anisotropy quantified by Dz.

C. New (soluble) KK models

Before embarking on a study of the full S = 3
2 KHM, we

discuss the individual Hamiltonians of Eq. (18), two of which
turn out to be individually exactly soluble.

First, we focus on Hσ
Kit, which is integrated using the JWT

expressed in Eq. (11) and corresponds to the S = 3
2 exactly

solvable model discussed by Bhaskaran et al. [42]. Its eigen-
states |ψ〉 are direct products |ψ〉 = |�σ 〉 ⊗ |ψT〉, where |�σ 〉
is an eigenstate of the S = 1

2 KHM in terms of σ operators and
|ψT〉 is an arbitrary pseudo-orbital state. Hence, all eigenstates
of Hσ

Kit are 22N -fold degenerate, in which N is the number
of unit cells. The excitations related to |�σ 〉 at a fixed flux
sector correspond to Majorana fermions ξ in Eq. (11) with the
dispersion of Eq. (7). The arbitrariness of orbital states leads
to extra zero-energy flat bands for any choice of exchange
couplings and fluxes [56]; Fig. 3(a) exemplifies this for the
isotropic KHM in the zero-flux sector.

Flat bands are sensitive to small perturbations, and this
can be readily identified in Hσ

Kit. Let us consider SIAs, the
common perturbations related to the coupling between the
magnetic ions orbitals and the crystal field. For S = 3

2 , they
are proportional to

∑
i(S

α
i )2, in which α refers to a direction

in space. The [001] SIA is given by

Hz
SIA = Dz

∑
i

(
Sz

i

)2 = Dz

∑
i

T z
i + const. (19)

that commutes with both W σ
p and Hσ

Kit. The onset of Dz lifts
the S = 3

2 degeneracy by separating the Sz = ± 3
2 from the

Sz = ± 1
2 , turning Hσ

Kit into a direct sum of two S = 1
2 KHMs

separated by a total energy 2N |Dz|, each of them characterized
by a fixed value of T z. The Hσ

Kit ground state then develops
an expectation value 〈T z〉 = +1(〈T z〉 = −1) for infinitesimal
values of Dz < 0 (Dz > 0), as indicated in Fig. 3(b). In sum-
mary, lifting the degeneracy of zero-energy flat bands favors
first-order transitions quantified by parameters reflecting the
symmetries of the perturbations. This mechanism appears at
the isotropic point of the S = 3

2 KHM and will be readdressed
in Sec. III.

More generally, the |Dz| → ∞ limit of the spin operators
reads

lim
|Dz |→∞

Si →
⎧⎨
⎩
(− σ x

i ,−σ
y
i ,

σ z
i

2

)
, Dz > 0,(

0, 0,− 3σ z
i

2

)
, Dz < 0.

(20)

Thus, large positive values of Dz map the S = 3
2 KHM

into its S = 1
2 version with renormalized coupling constant
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Jz → Jz/4, while large negative Dz rapidly maps it into the
S = 1

2 gapped KHM. In other words, the [001] SIA provides
a natural mapping between the S = 3

2 and 1
2 KHMs while also

elucidating the relevance of the 〈T z〉 quadrupolar field.
Second, we study the KK model HσT

Kit which turns out
to be an exactly solvable model within the class given by
Eq. (3). This becomes transparent when using the following
equivalence between � matrices and the spin-orbital operators
(σ, T):

�1 =
√

3

3
{Sy, Sy} = −σ xT y, �2 =

√
3

3
{Sz, Sx} = −σ yT y,

�3 =
√

3

3
{Sx, Sy} = −σ zT y, �4 = T x, �5 = T z, (21)

by which one can re-expresses Eq. (3) as

H =
∑
〈i j〉γ

∑
a,b=x,y,z

Jab
γ σ

γ
i σ

γ
j T a

i T b
j . (22)

We note that a related but different soluble KK model has
been introduced and studied in Ref. [68]. We will discuss the
properties of the exact solution of this new model in the next
section in terms of an SO(6) Majorana parton representation
of the S = 3

2 operators [47].
Third, the last model Hσ,σT

Kit shares the gauge structure of
the other two models, but within a given flux sector, the re-
maining Majorana problem is still quartic and thus not exactly
soluble.

D. Relation between spin-orbital operators
and SO(6) Majorana partons

In Ref. [47], we used an SO(6) Majorana parton represen-
tation of the S = 3

2 operators which allowed us to uncover
the static Z2 gauge field description of the flux operators.
Here, we will clarify the connection with the pseudodipole
and pseudo-orbital operators, which can be written in terms of
SO(6) Majorana partons as follows [50,56,59,60,62,63,65]:

σi = − i

2
ηi × ηi, Ti = − i

2
θi × θi, σ α

i T β
i = −iηα

i θ
β
i ,

(23)

in which α, β = x, y, z and ηi,θi satisfy{
ηα

i , η
β
j

} = {θα
i , θ

β
j

} = 2δi jδ
αβ,

{
ηα

i , θ
β
j

} = 0. (24)

The constraint to the physical Hilbert space is identified
by noticing that Eq. (21) requires that �1

i �
2
i �

3
i �

4
i �

5
i = −I

at all sites. In terms of Eq. (23), the left-hand side of the
equation defines the operator Di given by

Di = iηα
i η

β
i η

γ
i θα

i θ
β
i θ

γ
i . (25)

We then demand that a physical state satisfies Di = 1,∀i.
Equivalently, we can formally write a projector operator
P [82]:

P =
∏

i

1 + Di

2
≡ P′

(
1 + D

2

)
, (26)

in which D =∏2N
i=1 Di, and P′ is the sum over all inequivalent

gauge transformations. A physical state |ψ〉 is considered

physical if and only if |ψ〉 = P|ψ〉. An explicit formula for
D can be derived following Refs. [83,84] and is given in
Appendix C for SO(6) Majorana fermions.

We can now use the partons for an exact solution of the
model in Eq. (18b) as it reads in the new form:

HσT
Kit =

∑
〈i j〉γ

Jγ û〈i j〉γ iθαβ
i θ

αβ
j , (27)

where û〈i j〉γ is the same Z2 bond operator defined for the S = 1
2

KHM and θ xy = θ z, θ yz(zx) = (−θ z ± √
3θ x )/2. Notice that θ y

fermions are absent and lead to zero-energy flat bands at any
flux sector or choice of exchange couplings, in analogy to
Hσ

Kit [56]. The ground state is again in the zero-flux sector
[72], for which the dispersive bands can be gapped or gapless
according to the values of Jγ (see Fig. 4). The isotropic case
in Fig. 4(b) displays a band whose dispersion is exactly ε(k)
in Eq. (7), i.e., it is formally the same as the original Ki-
taev model. This band is sandwiched between two flat bands
with energy given exactly by E = 0 and 3J . Away from the
isotropic limit, the high-energy flat band acquires a dispersion,
and the intermediate bands deviate from ε(k), see Figs. 4(c)
and 4(d). This spin-orbital liquid provides an adequate frame-
work for interpreting the isotropic S = 3

2 KSL [47]; this fact
is explained by the symmetry analysis in Sec. III.

Finally, we would like to point out a few interesting aspects
in relation to the exact solution of the first Hamiltonian Hσ

Kit
in terms of SO(6) Majorana fermions. Although a solution
for this model can be obtained directly through the SO(3)
representation of σ given by Eq. (23) [85], it is instructive
to obtain an alternative representation of the pseudodipoles
through the Di operators [86]. By evaluating Diσi and then
setting Di = 1, we obtain σ

γ

i = −iηγ

i θ0
i , in which

θ0
i ≡ −iθ x

i θ
y
i θ z

i = −iθα
i θ

β
i θ

γ
i . (28)

The expression for the pseudodipoles is the same as the
one expressed for the S = 1

2 KHM in Eq. (5), but the fact
that θ0

i is now a product of three Majorana flavors demands
more careful analysis. Here, θ0

i satisfies the Majorana fermion
algebra {θ0

i , θ0
j } = 2δi j and {θ0

i , η
γ
j } = 0, so that the spectrum

of matter excitations of Hσ
Kit can still be exactly known by

mapping the Hamiltonian to a free fermionlike problem. How-
ever, the dimension of the θ0

i Hilbert space is twice that of a
conventional Majorana fermion, which reflects the indepen-
dence of Hσ

Kit in relation to orbital states. Here, θ0
i is also very

sensitive to local orbital operators such as the SIA in Eq. (19),
which is represented like

Hz
SIA = −

∑
j

Dziθ
x
j θ

y
j . (29)

Combining Eqs. (28) and (29), we observe that the SIA along
the z direction freezes the Majorana flavors θ x and θ y and al-
lows the replacement θ0

i → −sign(Dz )θ z
i in accordance with

our previous discussion.
Remarkably, although Hσ

Kit and HσT
Kit are individually

exactly soluble, their sum is not due to the same site com-
mutation: [

θ0
i , θ

γ
i

] = 0. (30)
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FIG. 4. (a) Phase diagram of the spin-orbital model HσT
Kit on the plane Jx + Jy + Jz = 1 with positive coupling constants, in which the dark

blue area corresponds to gapless phases. The graphics [(b)–(d)] correspond to the spectrum of excitations along high-symmetry lines with the
following coupling constants (b) Jx = Jy = Jz = 1, (c) Jx = Jy = 1.0, Jz = 0.7, and (d) Jy = 0.1, Jx = Jz = 0.45.

Thus, the set of four operators θ0
i , θ

x,y,z
i do not behave as

mutual Majorana fermions when all present but, instead, are
operators akin to what is known in the literature as Greenberg
parafermions [87–89]. Returning to the JWT expressed in
Eq. (11), it is possible to demonstrate an equivalence between
θ0

i and ξi as well as between θ
γ
i and ξiT

γ
i (the interested reader

can follow Appendix B). In addition to giving an interpre-
tation to the SO(6) Majorana partons in terms of strings of
operators, this observation could possibly be useful for more
general classes of parafermions in S = 3

2 models [90–93].

III. PMFT OF THE S = 3
2 KHM

After having discussed the different representations of
S = 3

2 operators in terms of spin-orbital operators and SO(6)
partons, we would like to study the full S = 3

2 KHM that is
explicitly given by

HKit =
∑
〈i j〉γ

Jγ û〈i j〉γ iθαβ
i θ

αβ
j +

∑
〈i j〉γ

Jγ

4
û〈i j〉γ iθ0

i θ0
j

+
∑
〈i j〉γ

Jγ

2
û〈i j〉γ

(
iθ0

i θ
αβ
j + iθαβ

i θ0
j

)
. (31)

We emphasize that the first line of Eq. (31) is quadratic in
terms of SO(6) Majorana fermions, whereas the second line
is sextic, and the third is quartic. To proceed with analytical
calculations, we need to perform a mean-field decoupling in
terms of the following parameters [47]:

Qγ

i = 〈T γ

i

〉 = −〈iθα
i θ

β
i

〉
, �

λμ
i j = −〈iθλ

i θ
μ
j

〉
, (32)

in which i and j are nearest-neighbor sites, and the averages
are obtained self-consistently. More explicitly, we write

iθ0
i θ

αβ
j + iθαβ

i θ0
j ≈

∑
p=x,y,z

(
Qp

i iθ p
i θ

αβ
j + �

p,αβ

〈i j〉γ iθq
i θ r

i

)

+
∑

p=x,y,z

(
Qp

j iθ
αβ
i θ

p
j + �

αβ,p
〈i j〉γ iθq

j θ
r
j

)
, (33)

iθ0
i θ0

j ≈ −
∑

a=x,y,z

〈
θ c

i θ x
j θ

y
j θ

z
j

〉
iθa

i θb
i

−
∑

a=x,y,z

〈
θ x

i θ
y
i θ z

i θ
c
j

〉
iθa

j θ
b
j

−
∑

a,a′=x,y,z

〈
θb

i θ c
i θb′

j θ c′
j

〉
iθa

i θa′
j . (34)

The quartic averages in Eq. (34) are written in terms of
Eq. (32) using Wick’s theorem, which states

−〈θ c
i θ x

j θ
y
j θ

z
j

〉 = �cx
〈i j〉Q

x
j + �

cy
〈i j〉Q

y
j + �cz

〈i j〉Q
z
j,

−〈θ x
i θ

y
i θ z

i θ
c
j

〉 = Qx
i �

xc
〈i j〉 + Qy

i �
yc
〈i j〉 + Qz

i �
zc
〈i j〉,

−〈θb
i θ c

i θb′
j θ c′

j

〉 = Qa
i Qa′

j − �bb′
〈i j〉�

cc′
〈i j〉 + �bc′

〈i j〉�
cb′
〈i j〉. (35)

The unconstrained PMFT with all parameters introduced in
Eq. (32) was already performed in Ref. [47]. A closer analysis
of Qγ

i and �
λμ
i j of the ground states showed that many of them

vanish or are related by at most a negative sign factor, evincing
symmetry constraints. In the following, we show that such
constraints can be derived by assuming that the S = 3

2 KSL
preserves TRS and spatial symmetry, thus greatly reducing
the number of independent PMFT parameters. We keep our
analysis for exchange parameters along the line Jx = Jy = 1
and Dz = 0, for which it displays one mirror symmetry Mb,
whose mirror operator lies along the a axis, and a π rotation
around the b axis (see Fig. 5). Whenever Z2 gauge operators
were fixed, we assume that the operation was performed in
the zero-flux sector. We also analyze the C3 rotation symmetry
around the c axis on the isotropic model, which is crucial to
understand the strong first-order quantum phase transition that
separates the distinct KSL phases.

A. Symmetries of the S = 3
2 KHM

1. TRS

Due to the oddness of spin under time-reversal T , Eq. (12)
implies that the pseudodipoles and pseudo-orbitals transform

FIG. 5. Two plaquettes of the honeycomb lattice. The figure dis-
plays (i) the crystallographic axes (a, b, c), (ii) the projection of
the (x, y, z) axes onto the ab plane, (iii) the mirror elements Mb

and the C2 rotation axis, and (iv) the distinction between even and
odd sublattices. We also inserted the projections of the x, y, and z
directions in the (a, b) plane following Eq. (40).
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like

T σiT −1 = −σi, T TiT −1 = (T x
i ,−T y

i , T z
i

)
. (36)

By including the effect of complex conjugation T iT −1 = −i,
the corresponding action of T on the SO(6) Majorana partons
is [52]

T ηiT −1 = (ηx
i , η

y
i , η

z
i

)
, T θiT −1 = (θ x

i ,−θ
y
i , θ z

i

)
, (37)

upon which we define the indices tx = tz = 1, ty = −1 for
the matter fermions. The transformation of products of order
parameters and Z2 gauge variables is then given by

T
(
iûγ

i jθ
λ
i θ

μ
j

)
T −1 = tλtμiûγ

i jθ
λ
i θ

μ
j , (38)

where we used T ûγ
i jT −1 = −ûγ

i j . Let us then fix the gauge
operators. If the ground state |ψ0〉 does not break a symmetry
S , then 〈ψ0|O|ψ0〉 = 〈ψ0|SOS−1|ψ0〉. Equation (38) implies
that when O is a product of two matter fermions, the parame-
ters must fulfill

�
λy
〈i j〉γ = �

yλ
〈i j〉γ = 0, if λ �= y. (39)

An important consequence of this relation is that, in a
TRS QSL, θ y hybridizes with other Majorana flavors only
through the on-site order parameters Qz

i = −〈iθ x
i θ

y
i 〉 or Qx

i =
−〈iθ y

i θ z
i 〉.

2. Mirror and C2 rotation

The effect of spatial symmetries on the Kitaev model is
more readily understood in terms of (Sa, Sb, Sc) spins in the
crystallographic frame, whose relation to the spins on the
cubic axes is [13,14,17]

Sx = Sa

√
6

− Sb

√
2

+ Sc

√
3
, Sy = Sa

√
6

+ Sb

√
2

+ Sc

√
3
,

Sz = −
√

2

3
Sa + Sc

√
3
. (40)

The action of R = Mb,C2 on an isolated spin is
R(Sa, Sb, Sc)R−1 ≡ R(Sa, Sb, Sc) = (−Sa, Sb,−Sc) and leads
to

RSi = [−Sy
R(i),−Sx

R(i),−Sz
R(i)

]
. (41)

The most relevant difference between Mb and C2 is that i and
Mb(i) are on opposite sublattices, whereas i and C2(i) are on
the same. The application of Eq. (41) in Eq. (12) implies that

RT z
i = T z

R(i), RT x
i = −T x

R(i), RT y
i = −T y

R(i). (42)

Therefore, if C2 and translation symmetries are preserved,

Qx/y
X = −Qx/y

X ⇒ Qx/y
X = 0. (43)

Hence, the only on-site order parameter allowed by spatial
symmetries is Qz.

To evaluate the effect of symmetry operators over �
λμ
i j , we

first observe that Eq. (41) implies that

Rηi = [−η
y
R(i),−ηx

R(i),−ηz
R(i)

]
,

Rθi = [−θ x
R(i),−θ

y
R(i), θ

z
R(i)

]
. (44)

After defining

sλ =
{−1, if λ = x, y

1, if λ = z,
(45)

Eq. (44) yields

Mb
(
iûγ

i jθ
λ
i θ

μ
j

) = sλsμiûm(γ )
Mb

j Mb
i
θ

μ

Mb
j
θλ

Mb
i
,

C2
(
iûγ

i jθ
λ
i θ

μ
j

) = sλsμiûm(γ )
C2(i)C2( j)θ

λ
C2(i)θ

μ

C2( j), (46)

in which m(x) = y, m(y) = x, and m(z) = z are indices related
to the bond transformation under R. The C2 symmetry of the
Hamiltonian then implies �

λμ

〈i j〉γ = sλsμ�
λμ

〈i j〉m(γ )
, which leads

to

�zx
〈i j〉z

= �xz
〈i j〉z

= �
zy
〈i j〉z

= �
yz
〈i j〉z

= 0,

�
λμ

〈i j〉y
= sλsμ�

λμ

〈i j〉x
. (47)

Applying a similar reasoning to Mb, we find

�
λμ

〈i j〉y
= sλsμ�

μλ

〈i j〉x
,

which in combination with Eq. (47) gives

�
λμ

〈i j〉x
= �

μλ

〈i j〉x
, �

λμ

〈i j〉y
= �

μλ

〈i j〉y
. (48)

The results gathered in this section imply that �zx
〈i j〉x

is the only
nonzero mixed-flavor order parameter �, and all others either
vanish or are related to it by symmetry. We also confirmed this
constraint numerically along the line Jx = Jy.

3. C3 symmetry

The isotropic point is a critical point of strong first-order
phase transitions [47] which motivates a closer look. The
key symmetry distinction of the KHM in this point to others
discussed above is its invariance under C3 rotations, whose
effect on spins is given by

C3

⎛
⎝Sx

rX
Sy

rX
Sz

rX

⎞
⎠ =

⎡
⎣Sy

(R3r)X
Sz

(R3r)X
Sx

(R3r)X

⎤
⎦, (49)

in which we see that the sublattices remain invariant under
rotation. The corresponding parton transformations are

C3

⎛
⎝ηx

rX
η

y
rX

ηz
rX

⎞
⎠ =

⎡
⎣η

y
(C3r)X

ηz
(C3r)X

ηx
(C3r)X

⎤
⎦,

C3

⎛
⎝θ x

rX
θ

y
rX

θ z
rX

⎞
⎠ =

⎛
⎜⎝− 1

2 0 −
√

3
2

0 1 0√
3

2 0 − 1
2

⎞
⎟⎠
⎡
⎣θ x

(C3r)X
θ

y
(C3r)X

θ z
(C3r)X

⎤
⎦. (50)

These equations are enough to enforce several constraints
between the order parameters that are tabled explicitly in
Appendix E. The quadrupolar order parameters satisfy

Qz
X = −1

2
Qz

X +
√

3

2
Qx

X ,

Qx
X = −1

2
Qx

X −
√

3

2
Qz

X ,

075111-7



W. M. H. NATORI, HUI-KE JIN, AND J. KNOLLE PHYSICAL REVIEW B 108, 075111 (2023)

FIG. 6. The graphics [(a)–(c)] exemplify the Majorana dispersion of the S = 3
2 Kitaev spin liquid (KSL) on the (a) isotropic, (b) gapped

Jz = 1.01, and (c) gapless Jz = 0.99 cases. Panel (d) shows the evolution of the quadrupolar expectation value Qz as a function of Jz.

and therefore,

Qz
X =0. (51)

In other words, if the isotropic KSL does not break symme-
tries, then we do not expect any pseudo-orbital order at the
isotropic point. This result is in sharp contrast to the semiclas-
sical QSL proposed in Ref. [43] since the kekule pattern of the
dimers impose an order of Qz and Qx.

B. Constrained mean-field Hamiltonian

The symmetry-constrained PMFT parameters for the zero-
flux sector can be summarized as follows:

Qx = Qy = 0, Qz
A = Qz

B, �ab
〈i j〉γ = �ba

〈i j〉γ ,

�ab
〈i j〉y

= sasb�
ab
〈i j〉x

, �xz
〈i j〉z

= �zx
〈i j〉z

= 0, �
λy
〈i j〉γ = �

yλ
〈i j〉γ = 0,

if λ �= y, (52)

i.e., there are only eight independent, nonvanishing parame-
ters to be computed self-consistently:

Qz, �aa
〈i j〉z

, �aa
〈i j〉x

, �zx
〈i j〉x

. (53)

For SIA-preserving mirror C2 and TRS, the results above are
valid for Dz �= 0. At the isotropic point, we find only three
nonvanishing and independent parameters given by �aa

〈i j〉z
. The

order parameters obtained through unconstrained PMFT in
Ref. [47] are consistent with these results, thus demonstrating
that the S = 3

2 KSLs are the most general S = 3
2 Majorana

QSLs preserving all the symmetries of the model while mini-
mizing the energy.

We are now ready to give an in-depth description of the
different KSL phases starting with the isotropic case [47], as
shown in Fig. 1. Here, C3-symmetry constraints enforce that
Hσ,σT

Kit,MFT = 0, such that the KHM at this point is described
by HσT

Kit perturbed by a model whose entries are proportional
to J[�aa

〈i j〉z
]2 from the six-fermion interaction of Hσ

Kit, see
Eq. (35). The qualitative properties of the isotropic KSL can
be understood from the parent Hamiltonian HσT

Kit but with an
interaction-induced small dispersion to the isotropic QSL flat
bands and renormalization of the dispersive bands, as can be
seen by comparing Figs. 6(a) and 4(b).

The symmetry constraint preventing the hybridization of
θ y in (quasi-)zero-energy bands with mobile θ x,z fermions
only appears at the isotropic point and for Dz = 0. For
all other (Jz, Dz ) points, a nonzero Qz = 〈T z〉 expectation
value appears, reducing the energy by strongly affecting the
low-energy flat band. The presence of the flat band, there-
fore, explains the strong first-order phase transitions in the

neighborhood of the isotropic point. Figures 6(b) and 6(c)
show that the Majorana fermion dispersion of both the gapped
(Jz > 1) and the gapless (Jz < 1) phases are very different
from the isotropic one, even for small deviations of Jz = 1.
Once the transition occurs, Fig. 6(d) indicates that Qz varies
slowly as a function of Jz.

Let us now consider the gapped KSL exemplified by those
on the line Jz > 1, Dz = 0. A qualitative picture of this KSL is
understood by starting from Jx = Jy = 0 (or Jz → ∞), which
displays a 2N -fold degenerate ground state composed by all
direct products of antiferromagnetic dimers with Sz = ± 3

2 .
All states in this manifold are characterized by the same
quadrupolar order Qz = +1 at all sites. Introducing small
values of Jx and Jy allows us to derive a toric code model [1] at
the 12th order in perturbation theory for S = 3

2 . The toric-code
exchange coupling thus scales as (Jz )−11, which implies a
rapid decay of the flux gap. This feature is manifest in the
DMRG simulations, for which the plaquette operators W σ

p are
disordered in the gapped phase [47]. Indeed, PMFT estimates
a flux gap �flux � 10−6 for Jz � 1.2, an energy difference that
is smaller than the truncation error of DMRG simulations with
4000 kept states.

The S = 3
2 KSL for 0 < Jz < 1 and Dz = 0 is gapless,

characterized by a negative Qz, and can be directly related to
the S = 1

2 gapless KSL. Recall the discussion in Sec. II, where
we showed how the S = 3

2 KHM is projected onto the S = 1
2

KHM with renormalized Jz when Dz → +∞. The gapless
S = 1

2 KSLs are then adiabatically connected, e.g., without
opening a gap, to the S = 3

2 KSL phases along the path in the
(Jz, Dz ) region.

In the Dz → ∞ limit, the point Jz = 8 marks the phase
transition between the gapless and the gapped S = 1

2 KHM
phases, as shown in Fig. 1. This S = 1

2 gapped phase is not
adiabatically connected to the S = 3

2 discussed above since
they are characterized by Qz parameters with different signs,
and any path connecting these phases in the (Jz, Dz ) parameter
space passes through a first-order quantum phase transition.

IV. EFFECT OF OUT-OF-PLANE SIA

In this section, we study the S = 3
2 KHM perturbed by an

experimentally relevant out-of-plane SIA. We find that the re-
sulting QSL breaks TRS and displays topologically nontrivial
bands which are reminiscent of the chiral QSL of the KHM
where it is induced by an out-of-plane magnetic field applied
to the gapless S = 1

2 KSL [1]. In the present case, TRS break-
ing occurs spontaneously without an external magnetic field,
like cases of SU(N) Heisenberg models in the large-N limit
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[94–96] or Kitaev models on graphs containing plaquettes
with an odd number of vertices [52,53,63,82,97]. However,
we will show that, in the case of the S = 3

2 KHM, the sum of
the Chern numbers is equal to zero, resulting in a nonchiral
ground state.

A. Three-spin interaction induced by SIA

We now consider an out-of-plane SIA given by

HSIA = −Dc

∑
j

(
Sc

j

)2
, (54)

in which the c axis is indicated in Fig. 5. Such a SIA is
predicted to be relevant for the recently proposed S = 3

2 Ki-
taev materials on the honeycomb lattice [38,40,41]. Moreover,
Ref. [40] proposes that strain can tune the van der Waals
magnets into a model dominated by Kitaev interactions and
out-of-plane SIA. Therefore, Eq. (54) is the simplest perturba-
tion to the KHM, which has direct experimental implications.
This term can be rewritten in terms of pseudodipoles and
pseudo-orbitals using Eq. (21) as follows:

HSIA = Dc

3

∑
j

(
σ x

j + σ
y
j + σ z

j

)
T y

j , (55)

in which we dropped off an unimportant constant. The pres-
ence of pseudodipoles in this expression shows that HSIA

does not commute with W σ
p and creates flux excitations.

Recent studies of the S = 1
2 KHM have developed a piece

of machinery to study non-flux-conserving perturbations us-
ing variational methods [98,99] or extensions of PMFT
[100–102]. For simplicity, we will focus on the zero-flux
sector within the third-order perturbation theory.

The SIA induces a three-spin-orbital interaction preserving
the flux sector in analogy to the effect of a magnetic field on
the S = 1

2 KHM [1]. A straightforward way to show this is to
rewrite Eq. (55) as

HSIA = −Dc

3

∑
j

i
(
ηx

j + η
y
j + ηz

j

)
θ

y
j , (56)

which is analogous to the representation of an applied mag-
netic field on S = 1

2 systems [1]. Notice that the only matter
flavor involved in HSIA is θ y, indicating a direct influence on
the flat bands. The third-order perturbation theory of HSIA

displays a flux-conserving three-body interaction:

H (3) = κ
∑

〈i j〉α〈 jk〉β

(
σα

i T y
i

)(
σ

γ
j T y

j

)(
σ

β

k T y
k

)
, (57)

in which i and k are second-nearest neighbors, j is the site
bridging them, and κ ∼ (Dc/3)3. The SO(6) Majorana repre-
sentation also provides an adequate representation of H (3), as
it is clear by rewriting

σα
i T y

i = −iηα
i θ

y
i ,

σ
β

k T y
k = −iηβ

k θ
y
k ,

σ
γ

j T y
j = (−iηα

j η
β
j

)(−iθ z
j θ

x
j

)
, (58)

FIG. 7. Evolution of the octupolar parameter Qy as a function of
the three-site interaction quantified by κ for κ ∈ (0, 0.2]. The κ = 0
point marks a strong first-order phase transition that is followed by a
smooth increase of Qy.

which leads to

H (3) = −κ
∑

〈i j〉α〈 jk〉β
Û〈ik〉

(
iθ y

i θ z
j

)(
iθ x

j θ
y
k

)
, (59)

where Û〈ik〉 = û〈i j〉α û〈 jk〉β .
The general zero-flux mean-field decoupling of H (3) is

given by

H (3)
MFT = κ

∑
〈i j〉α〈 jk〉β

Û〈ik〉
[
�

yz
i j

(
iθ x

j θ
y
k

)+ �
xy
jk

(
iθ y

i θ z
j

)]

− κ
∑

〈i j〉α〈 jk〉β
Û〈ik〉

[
�

yx
i j

(
iθ z

j θ
y
k

)+ �
zy
jk

(
iθ y

i θ x
j

)]

+ κ
∑

〈i j〉α〈 jk〉β
Û〈ik〉

[
ξ

yy
ik

(
iθ z

j θ
x
j

)+ Qy
j

(
iθ y

i θ
y
k

)]
, (60)

in which we introduced second-nearest neighbor order param-
eters:

ξ
yy
ik = −〈iθ y

i θ
y
k

〉
. (61)

A nonzero κ in Eq. (60) provides a positive feedback
loop involving the formation of an octupolar order param-
eter Qy and the onset of second-nearest neighbor hoppings
between θ

y
i particles. This implies that the isotropic S = 3

2
KSL is unstable to breaking TRS under the influence of H (3).
Since Qy �= 0 implies TRS breaking, parameters such as �

yx
i j

and �
yz
i j can now acquire nonzero values and enhance the

hybridization between θ y flat band states and itinerant Majo-
rana fermions. The complete hybridization of the low-energy
flat bands leads to the first-order phase transition indicated
in Fig. 7. For κ = 0.001, we find that Qy

A = Qy
B ≈ 0.28

and second nearest-neighbor hopping parameters ξ
yy
r,r+dα,A =

−ξ
yy
r,r+dα,B ≈ −0.115, in which dα=1,3,5 is indicated in Fig. 2.

A small value of κ also leads to a large difference between
the dispersion of the isotropic model in Fig. 6(a) and the CSL
dispersion in Fig. 8(a).

B. Topological properties of the time-reversal
symmetry-breaking spin liquid

Next, we discuss the topological properties of the TRS-
breaking S = 3

2 KSL. After the sudden jump of the octupolar
order parameter for infinitesimal κ , it grows slowly; for
concreteness, we fix κ = 0.001. In this case, the CSL is
characterized by three narrow bands, in which the one closer
to zero is particularly flat, see Fig. 8(a).
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FIG. 8. (a) Band structure of the spontaneous time-reversal sym-
metry (TRS)-breaking quantum spin liquid (QSL) at κ = 0.001.
Notice that all bands display narrow dispersions. Panels [(b)–(d)]
display the z component of the Berry curvature �, in which (b)
corresponds to the lowest-energy band, (c) to the intermediate-energy
band, and (d) to the highest-energy band.

Their topological properties can be quantified by the Berry
curvature:

�n(k) = ∇k × An(k), (62)

in which An(k) = i〈un(k)|∇k|un(k)〉 is the Berry connection
of the nth eigenstate |un(k)〉 labeled by the wave vector k.
We computed the Berry curvature [103], and Figs. 8(b)–8(d)
display the density plot of the z direction of �n(k) of the
negative energy bands. We compute the Chern number of the
three negative energy bands:

Cn = 1

2π

∫
BZ

d2k�z
n(k), (63)

and checked that bands with opposite energy dispersion dis-
play opposite Chern numbers. The lowest, intermediate, and
highest energy bands have Chern numbers C = 1, 0, and −1,
respectively. Hence, two of the bands are topologically non-
trivial, but the whole system has a total Chern number equal
to zero. Therefore, no chiral edge mode crosses the gap around
zero energy, and the system is not a CSL.

Another function that illustrates the nontrivial properties of
the band topology is the Hall conductivity σ (ε) [104]:

σ (ε) = 1

V

∑
k,εk<ε

�z(k), (64)

which is indicated in Fig. 9(a). Since the Majorana bands are
gapped, σ (ε) = 0 for low energies. Then it jumps to σ (ε) = 1
due to the integration of �z(k) of the lowest positive-energy
band, as expected from its Chern number indicated in Fig. 8.
The Hall conductivity is kept constant in the gap between
the lowest and second-lowest positive-energy bands. After
reaching the second band, σ (ε) oscillates in accordance to
the nonzero values of �z(k) then returns to σ (ε) = 1. Finally,
σ (ε) drops sharply to zero as the integration occurs at the
highest energy band. The nontrivial topological features with
periodic boundary conditions are reflected by the existence
of edge states with open boundary conditions, as indicated in
Fig. 9(b). In this case, high-energy modes connect the two
topologically nontrivial bands. Low-energy edge modes are
also observed in Fig. 9(c), but they do not connect the bands
and are topologically trivial.

The standard signature for edge states in CSLs is the ther-
mal Hall conductivity, which displays half-quantization due
to the presence of zero-energy chiral Majorana edge states
[1,27,28]. For a flux-fixed background, we can estimate the
thermal Hall conductivity through [104]

κH (T ) = − 1

T

∫ ∞

0
dε ε2σ (ε)

∂ f

∂ε
(ε, T ), (65)

in which f (ε, T ) is the Fermi-Dirac distribution. Figure 9(d)
shows the numerically computed κH (T )/T . In contrast to
CSLs, it vanishes at low temperatures and then rapidly grows
to a peak at a temperature scale when the chiral edge modes
between the higher-energy bands are thermally populated,
which is like the behavior of topological magnon insulators.
The value of the peak can still be quantified in terms of the
thermal Hall conductivity of the chiral S = 1

2 KSL, which
reads [27,28]

κ
1/2
KSL

T
= 1

2

(
π2k2

B

3h̄

)
Ch, (66)

in which Ch = ±1 according to the direction of the applied
magnetic field. In contrast to the chiral S = 1

2 KSL, the
TRS-breaking QSL discussed here does not reach the plateau,
as indicated in Fig. 9(d).

FIG. 9. Topological characterization of the time-reversal symmetry (TRS)-breaking quantum spin liquid (QSL). Panel (a) displays its Hall
conductivity σ (ε) evaluated according to Eq. (64). Panel (b) shows the QSL dispersion in open boundary conditions, highlighting emergent
low-energy edge states in red that are detailed in panel (c). Panel (d) displays the thermal Hall conductivity κH (T )/T and indicates a peak
tending to the characteristic half-quantization value before decreasing monotonically with increasing temperature.
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V. CONCLUSIONS AND OUTLOOK

In this paper, we have provided a detailed study of the
S = 3

2 KHM, emphasizing its similarities with and relations
to exactly solvable KK models [56,59,60,62–70,105]. Our
analysis mapped out the local symmetries of the model and
analyzed the nature of the S = 3

2 KSL phases. We showed
that the model still contains an exact static Z2 gauge field,
and in a given flux sector, it is a sum of bilinear Majorana
operators and quartic and sextic interactions. The presence
of an exactly soluble part of the S = 3

2 KHM, e.g., a kinetic
term before the parton mean-field decoupling, also rational-
izes the remarkable quantitative agreement between PMFT
and DMRG simulations found previously [47].

The symmetry analysis was crucial for understanding
the first-order phase transition occurring when introducing
anisotropies in the couplings. Namely, it provides tight con-
straints for the order parameters and shows the emergence
of a low-energy Majorana flat band. The pseudodipole and
pseudo-orbital operators in a KK-like representation of the
model were useful for uncovering similarities between the
S = 3

2 [111] SIA and the S = 1
2 out-of-plane magnetic field.

The latter motivated us to study the S = 3
2 KHM with this

experimentally relevant SIA, and we argue that the system
displays spontaneous TRS breaking. Some of the Majorana
bands of the resulting QSL acquire nonzero Chern numbers,
but the TRS phase is different from the standard chiral QSL
because the sum over the Chern number of all bands is zero.
Hence, no quantization of the thermal Hall conductivity is
expected at very low temperatures but only a broad maximum
at finite temperatures.

Our work opens a number of avenues for future research.
It would be interesting to verify if the techniques that we
apply for the S = 3

2 KHM in this paper can be generalized
for higher-spin systems with S = (2n − 1)/2 (n ∈ N), as sug-
gested by the exactly solvable models discussed in Sec. II.
We foresee that such a study can provide a complementary
approach to the large-S limit of this model [43] but within a
natural extension of Kitaev’s [1] formalism. It would also be
consistent with a recent study showing that half-integer KHMs
always display deconfined Z2 fermionic gauge charges [106].
Another open problem concerns the systematic study of the
S = 3

2 KHM in different flux sectors, in the presence of dis-
order or vacancies. The introduction of flux excitations would
also allow the computation of different dynamical response
functions for experimental detection following Ref. [64].

Finally, it would be very worthwhile to systematically
study implementations of the S = 3

2 KHM in van der Waals
magnets. Studies using ab initio [38,40] and quantum chem-
istry [41] methods suggest that the Kitaev exchange is present
in van der Waals ferromagnets such as CrI3 and CrXTe3

(X = Si, Ge) due to the strong spin-orbit coupling of their
ligands. The theoretical studies indicate that the Kitaev in-
teraction should be substantially smaller than the Heisenberg
one, a result that is consistent with the data from a recent
neutron scattering experiment on CrI3 [107]. However, the
same theories also suggest that strain can dramatically change
the exchange constants and even induce a model dominated
by Kitaev interactions and [111] SIA [40]. This strain is
experimentally feasible, as it can be applied mechanically

or by proximity effects in metal-insulator heterostructures
[32,33]. When combined with better strategies for quantifying
exchange constants [108], microscopic studies can help to dis-
cover QSL candidates in higher-spin and spin-orbital systems.
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APPENDIX A: PSEUDODIPOLAR AND PSEUDO-ORBITAL
MATRIX REPRESENTATION ON THE BASIS

OF S = 3
2 SPINS

The equivalence between |S = 3
2 , Sz〉 vectors and vectors

|sz = 1
2σ z, τ z = 1

2 T z〉 can be written like

∣∣S = 3
2 , Sz = 3

2

〉 = ∣∣sz = − 1
2 , τ z = 1

2

〉
,∣∣S = 3

2 , Sz = 1
2

〉 = −∣∣sz = 1
2 , τ z = − 1

2

〉
,∣∣S = 3

2 , Sz = − 1
2

〉 = ∣∣sz = − 1
2 , τ z = − 1

2

〉
,∣∣S = 3

2 , Sz = − 3
2

〉 = −∣∣sz = 1
2 , τ z = 1

2

〉
. (A1)

In the ordered basis {|S = 3
2 , Sz〉} with decreasing Sz, the σγ

operators are represented by

σ = (−ρx ⊗ ρx, ρx ⊗ ρy,−ρ0 ⊗ ρz ),

T = (ρx ⊗ ρ0, ρy ⊗ ρz, ρz ⊗ ρz ), (A2)

in which ργ are the Pauli matrices, and ρ0 is the 2 × 2 identity.

APPENDIX B: JWT OF THE S = 3
2 KITAEV MODEL

In this Appendix, we discuss the JWT introduced in
Ref. [42] using the pseudodipole and pseudo-orbitals opera-
tors. Let us label the sites on the honeycomb lattice according
to their positions along the xy chains with the indexes (l, m),
in which l + m even (odd) corresponds to points on the A (B)
sublattice, see Fig. 2(b). The JWT represents the spin operator
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by combining a string of spins with a fermionic operator c(†)
(l,m)

on the edge as follows:

σ+
(l,m) =

[∏
m′<m

∏
l ′

σ z
(l ′,m′ )

][∏
l ′<l

σ z
(l ′,m)

]
c†

(l,m),

σ z
(l,m) = 2c†

(l,m)c(l,m) − 1. (B1)

The c(l,m) (canonical) fermions are conveniently combined
into the Majorana fermions:

θ0
(l,m) =

{
1
i [c(l,m) − c†

(l,m)], if l + m is even,

c(l,m) + c†
(l,m), if l + m is odd.

χ(l,m) =
{

c(l,m) + c†
(l,m), if l + m is even.

1
i [c(l,m) − c†

(l,m)], if l + m is odd,
(B2)

which are used to represent the matter and gauge sectors,
respectively. It is straightforward to prove that they satisfy the
algebra: {

θ0
(l,m), θ

0
(r,s)

} = {χ(l,m), χ(r,s)} = 2δ(l,m),(r,s),{
θ0

(l,m), χ
0
(r,s)

} = 0. (B3)

For simplicity, we set the following notation for the nearest
neighbors:

(r, s)γ =

⎧⎪⎨
⎪⎩

(r + 1, s), if γ = x,

(r − 1, s), if γ = y,

(r, s − 1), if γ = z,

(B4a)

as well as a bond operator:

μ̂
γ

(r,s) =
{−iχ(r,s)χ(r,s−1), if γ = z,

1, otherwise.
(B4b)

In terms of the equations above, the model Hσ
Kit defined on the

main text reads

Hσ
Kit = i

4

∑
l+m even

Jγ μ̂
γ

(l,m)θ
0
(l,m)θ

0
(l,m)γ

. (B5)

Since μ̂2
(l,m) = 1 and [Hσ

Kit, μ̂(l,m)] = 0, μ̂z
(r,s) can be regarded

as a Z2 bond operator that can be fixed. Such an operation is
equivalent to fixing the eigenstates W σ

p in Eq. (16), thus defin-
ing the flux sector. Notice that the SO(6) Majorana partons
lead to the same mapping but with extra gauge variables on
the x and y bonds.

We need to include the pseudodipoles to complement the
JWT defined in Eq. (B1). For this purpose, it is convenient to
represent T γ using hard-core bosons [d(l,m), d†

(l,m)] at each site
of the lattice as follows [109,110]:

[d(l,m), d(r,s)] = [d(l,m), d†
(r,s)] = 0, if (l, m) �= (r, s),

{d(r,s), d†
(r,s)} = 1, {d(r,s), d(r,s)} = {d†

(r,s), d†
(r,s)} = 0. (B6)

The isomorphism between the hard-core boson Fock space
and the pseudo-orbital operators are ensured by the relations:

T y
(l,m) = 1 − 2d†

(l,m)d(l,m), T z
(l,m) = d†

(l,m) + d(l,m),

T x
(l,m) = i[d†

(l,m) − d(l,m)], (B7)

in which we settled an equivalence between |nd〉 and eigen-
states of T y. Since [σα

(r,s), T β

(l,m)] = 0, we also demand that
the hard-core bosons commute with the Majorana fermions in
Eq. (B3). By mapping the orbitals into a Fock space through
Eq. (B7), one can define the operators θα

(l,m):

θ
γ

(l,m) = θ0
(l,m)T

γ

(l,m). (B8)

Notice that the Hilbert space of θγ is two times larger than
the one of θ0 and that it is shared by the three operators
defined in Eq. (B8). In a model that retains both θ0 and θα ,
one should bear in mind that the identity T xT yT z = i leads to
the constraint:

θ0
(l,m) = −iθ x

(l,m)θ
y
(l,m)θ

z
(l,m), (B9)

which is the same as we derived in terms of SO(6) partons.
The algebraic relations of the operators derived in this Ap-

pendix satisfy all properties expected for Majorana fermions,
except for the same-site commutation relation between θ0

i and
θα

i . More explicitly,{
θα

(l,m), θ
β

(r,s)

} = 2δαβδ(l,m),(r,s),{
θ0

(l,m), θ
α
(r,s)

} = 0, if (l, m) �= (r, s),[
θ0

i , θα
i

] = 0. (B10)

The mixture of bosonic and fermionic properties in Eq. (B10)
is reminiscent of the concept of parastatistics introduced by
Green [87], whose interest was to generalize the method of
second quantization and demonstrate the theoretical possibil-
ity of free particles that do not obey the usual symmetrization
principles. Green’s parafermions are characterized by a field
ak that is divided into p components [87,88] that is represented
like [89]

ak =
p∑

α=1

f (α)
k ξ

(α)
k , (B11)

in which f (α)
k is a canonical fermion (boson) for parafermions

(parabosons), and ξ
(α)
k is a Majorana fermion. We can then

see that θα is not a Green’s parafermion since it is constructed
by a combination of a Majorana fermion and operators in
terms of hard-core bosons. Given this qualification, θ0 and
θα follow the spirit of Green’s parafermions by displaying
algebraic properties that are neither bosonic nor fermionic.
Another usage of the term parafermion refers to the Zk-clock
generalizations of Majorana fermions [90–93]. Although θγ is
not within this class of operators, they can be also understood
as a Majorana fermion generalization.

APPENDIX C: PROJECTION OPERATOR
OF SO(6) MAJORANA FERMIONS

Let us discuss the explicit formula for the D operator in
Eq. (26). It is convenient to define the matter fermions in terms
of fermionic operators with well-defined occupation numbers
such as

f γ
r = η

γ

rA + iηγ

rB

2
. (C1)

075111-12



QUANTUM LIQUIDS OF THE S = 3
2 … PHYSICAL REVIEW B 108, 075111 (2023)

A closed formula for the projector P can be exactly derived
in this case by showing that D is given by [83,84]

D = (−1)θ det Quπ̂
∏
〈i j〉γ

u〈i j〉γ , (C2)

in which θ is the function of the lattice boundary conditions
derived in Refs. [83,84], and π̂ is the parity of the f γ

r occu-
pation numbers. The matrix Qu relates the Majorana fermions
{θγ

i } and the matter eigenstates at a fixed flux, and the product
det Qu

∏
〈i j〉γ u〈i j〉γ is gauge invariant. The projection operator

selects |ψ0〉 states satisfying a parity condition of bond and
then performing an equal weight linear superposition of all
gauge transformations acting on |ψ0〉 [82].

APPENDIX D: MEAN-FIELD DECOUPLING
OF THE S = 3

2 KHM

Following Eqs. (14), (23), (5), and (28), the S = 3
2 spin

operators are represented by [47]

Sγ = i

2
ηγ
(
θ0 + 2θαβ

)
. (D1)

Let us write the sites of the honeycomb lattice using a two-site
basis on the triangular lattice, for which the KHM reads

HKit =
∑

r

iJγ

4
ûrA;rγ B

(
θ0

rA + 2θ
αβ
rA

)(
θ0

rγ B + 2θ
αβ
rγ B

)
, (D2)

in which rγ = r + aγ , with az = 0. The exactly solvable
model HσT

Kit requires no mean-field decoupling, and its map-
ping to a free fermion problem is still given by Eq. (27).
The nonintegrable model Hσ,σT

Kit is quartic in terms of SO(6)
partons and its most general decoupling given by

Hσ,σT
Kit,MFT =

∑
r,γ ,λ

Jγ

2
urA;rγ B

(
Qλ

Aiθλ
rAθ

αβ
rγ B + Qλ

Biθαβ
rA θλ

rγ B

)

+
∑
r,γ ,λ

Jγ

2
urA;rγ B�

ν,αβ
rA,rγ Biθλ

rAθ
μ
rA

+
∑
r,γ ,λ

Jγ

2
urA;rγ B�

αβ,ν
rA,rγ Biθλ

rγ Bθ
μ
rγ B, (D3)

in which the Greek letters are specified by the antisymmetric
symbol with ελμν = 1. Finally, although Hσ

Kit is integrable, the
algebraic relation in Eq. (30) requires that we perform a mean-
field decoupling. Its most general decoupling is given by

Hσ
Kit,MFT =

∑
r,γ ,λ,λ′

t (6),λλ′
rA;rγ B urA;rγ Biθλ

rAθλ′
rγ B

+
∑
r,λ

∑
X=A,B

t (6),λμ
0,X

(
iθλ

rX θ
μ
rX

)
, (D4)

in which

t (6),λλ′
rA;rγ B = Jγ

4

(
Qλ

rAQλ′
rγ B−�

μμ′
〈i j〉γ �

νν ′
〈i j〉γ +�

μν ′
〈i j〉γ �

νμ′
〈i j〉γ

)
,

t (6),λμ
0,A =

∑
γ ,ρ

Jγ

4
�

νρ
rA;rγ BQρ

rγ BurA;rγ B,

t (6),λμ
0,B =

∑
γ ,ρ

Jγ

4
Qρ

rA�
ρν
rA;rγ BurA;rγ B. (D5)

Once the flux sector is fixed, the order parameters in Eq. (32)
are evaluated self-consistently.

APPENDIX E: C3 SYMMETRIES
AND ORDER PARAMETERS

In this Appendix, we table the explicit relationships be-
tween the order parameters �ab

〈i j〉γ due to the C3 rotation
symmetry. For order parameters that do not involve θ y

fermions, we find⎛
⎜⎜⎜⎜⎜⎝

�zz
〈i j〉x

�xx
〈i j〉x

�xz
〈i j〉x

�zx
〈i j〉x

⎞
⎟⎟⎟⎟⎟⎠= 1

4

⎛
⎜⎜⎜⎜⎜⎝

1 3
√

3
√

3

3 1 −√
3 −√

3

−√
3

√
3 1 −3

−√
3

√
3 −3 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�zz
〈i j〉z

�xx
〈i j〉z

�xz
〈i j〉z

�zx
〈i j〉z

⎞
⎟⎟⎟⎟⎟⎠,

(E1a)⎛
⎜⎜⎜⎜⎜⎝

�zz
〈i j〉y

�xx
〈i j〉y

�xz
〈i j〉y

�zx
〈i j〉y

⎞
⎟⎟⎟⎟⎟⎠= 1

4

⎛
⎜⎜⎜⎜⎜⎝

1 3 −√
3 −√

3

3 1
√

3
√

3
√

3 −√
3 1 −3

√
3 −√

3 −3 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�zz
〈i j〉z

�xx
〈i j〉z

�xz
〈i j〉z

�zx
〈i j〉z

⎞
⎟⎟⎟⎟⎟⎠.

(E1b)

Conversely, if θ y fermions are involved, we find⎛
⎜⎜⎜⎜⎜⎝

�
xy
〈i j〉x

�
zy
〈i j〉x

�
yx
〈i j〉x

�
yz
〈i j〉x

⎞
⎟⎟⎟⎟⎟⎠= 1

2

⎛
⎜⎜⎜⎜⎜⎝

−1
√

3

−√
3 −1

−1
√

3

−√
3 −1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�
xy
〈i j〉z

�
zy
〈i j〉z

�
yx
〈i j〉z

�
yz
〈i j〉z

⎞
⎟⎟⎟⎟⎟⎠,

(E2a)⎛
⎜⎜⎜⎜⎜⎝

�
xy
〈i j〉y

�
zy
〈i j〉y

�
yx
〈i j〉y

�
yz
〈i j〉y

⎞
⎟⎟⎟⎟⎟⎠= 1

2

⎛
⎜⎜⎜⎜⎜⎝

−1 −√
3

√
3 −1

−1 −√
3

√
3 −1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�
xy
〈i j〉z

�
zy
〈i j〉z

�
yx
〈i j〉z

�
yz
〈i j〉z

⎞
⎟⎟⎟⎟⎟⎠.

(E2b)
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