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Dynamical quantum phase transitions in Sachdev-Ye-Kitaev Lindbladians
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We study the open quantum dynamics of the Sachdev-Ye-Kitaev (SYK) model described by the Lindblad
master equation, where the SYK model is coupled to Markovian reservoirs with jump operators that are either
linear or quadratic in the Majorana fermion operators. Of particular interest for us is the time evolution of
the dissipative form factor, which quantifies the average overlap between the initial and time-evolved density
matrices as an open quantum generalization of the Loschmidt echo. We find that the dissipative form factor
exhibits dynamical quantum phase transitions. We analytically demonstrate a discontinuous dynamical phase
transition in the limit of a large number of fermion flavors, which is formally akin to the thermal phase transition
in the two-coupled SYK model between the black-hole and wormhole phases. We also find continuous dynamical
phase transitions that do not have counterparts in the two-coupled SYK model. While the phase transitions are
sharp in the limit of a large number of fermion flavors, their qualitative signatures are present even for a finite
number of fermion flavors, as we show numerically.
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I. INTRODUCTION

The physics of open quantum systems has recently at-
tracted growing interest. Since coupling to the external
environment is unavoidable in realistic physical systems, an
understanding of open quantum systems is important for
quantum technology [1]. Notably, dissipation is not neces-
sarily a nuisance that destroys quantum coherence and the
concomitant quantum phenomena; rather, dissipation can even
lead to physical phenomena that have no analogs in closed
quantum systems. For example, engineered dissipation can
be utilized to prepare a desired quantum state [2–4]. Dissi-
pation can also give rise to unique non-Hermitian topological
phenomena [5]. Furthermore, open quantum systems exhibit
phase transitions that cannot occur in closed quantum sys-
tems at thermal equilibrium [6–14]. Prime recent examples
include the entanglement phase transitions induced by the
competition between the unitary dynamics and the quantum
measurements [15–19]. Despite these recent advances, the
interplay of strong many-body interactions and dissipation, as
well as the consequent phase transitions, has yet to be fully
understood.

In the theory of phase transitions, it is important to develop
a prototypical model that captures the universal behavior.
Recently, open quantum generalizations of the Sachdev-Ye-
Kitaev (SYK) model [20,21] were proposed in Refs. [22,23]
as a prototype of open quantum many-body systems. In
this model, dissipation is formulated by the Lindblad master
equation [24,25], which is different from the non-Hermitian
SYK Hamiltonians [26–29]. The original SYK Hamiltonian
is a fermionic model with fully coupled random interac-
tions and exhibits quantum chaotic behavior [20,21,30–36].
Similarly, the SYK Lindbladian is a prototype that exhibits
the strongly correlated chaotic behavior of open quantum
systems [37–47]. As an advantage, the SYK Lindbladian is

analytically tractable in the limit of the large number of
fermion flavors even in the presence of dissipation. In
Refs. [22,23], the decay rate was analytically calculated in
this limit, by which a transition between the underdamped
and overdamped regimes was demonstrated. Still, the open
quantum dynamics of the SYK Lindbladians remains mainly
unexplored. As a prototype of open quantum many-body
systems, the investigation into the SYK Lindbladians should
deepen our general understanding of open quantum physics.

In this paper, we find the dynamical quantum phase tran-
sitions in the SYK Lindbladians. We study the open quantum
dynamics of the SYK Lindbladians and especially focus on
the time evolution of the dissipative form factor. This quanti-
fies the average overlap between the initial and time-evolved
density matrices and serves as a partition function of the open
quantum dynamics, similarly to the Loschmidt echo for the
unitary dynamics of closed quantum systems. We find the
singularities of the dissipative form factor as a function of
time, which signal the dynamical quantum phase transitions
similarly to the unitary counterparts [48–57]. Notably, this
quantum phase transition appears only in the dynamics in
contrast with the conventional phase transitions for thermal
equilibrium or ground states. In particular, we investigate the
SYK Hamiltonian coupled to Markovian nonrandom linear
dissipators and random quadratic dissipators. In the limit of
the large number N of fermions, we analytically obtain the
dissipative form factor and demonstrate the discontinuous dy-
namical phase transition, which is formally akin to the thermal
phase transition in the two-coupled SYK model between the
black-hole and wormhole phases [58]. We also show the con-
tinuous dynamical transition that has no counterparts in the
original two-coupled SYK model. Furthermore, we numeri-
cally show that signatures of the dynamical quantum phase
transitions remain to appear even for finite N although the
singularities are not sharp.
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The rest of this paper is organized as follows. In Sec. II, we
start by introducing the models and review the quantity of our
interest, the dissipative form factor. In Sec. III, we study the
SYK Lindbladian with nonrandom linear jump operators. We
discuss both numerics of the large N saddle point equations
and the analytical approach in the large q limit. In Sec. IV,
we study the SYK Lindbladian with random quadratic jump
operators. We conclude in Sec. V.

II. SYK LINDBLADIANS AND
DISSIPATIVE FORM FACTOR

We consider Markovian dynamics of the density matrix
ρ(t ) described by the Lindblad master equation [1],

d

dt
ρ(t ) = L(ρ(t ))

≡ −i[H, ρ(t )] +
∑

a

[
Laρ(t )La† − 1

2
{La†La, ρ(t )}

]
,

(1)

where H is the Hamiltonian and {La} is a set of jump operators
that describe the dissipative process with the external environ-
ment. In our models, the Hamiltonian is given by the q-body
SYK Hamiltonian:

HSYK = iq/2
∑

1�i1<i2<···<iq�N

Ji1i2···iqψ
i1ψ i2 · · ·ψ iq . (2)

Here, ψ i=1,...,N are Majorana fermion operators satisfying
{ψ i, ψ j} = δi j . Ji1···iq are real independent Gaussian dis-
tributed random variables with zero mean and variance given
by

(Ji1···iq )2 = σ 2
J = J2(q − 1)!

Nq−1
(J ∈ R+), (3)

where · · · denotes the disorder average. We consider two
choices of the jump operators: nonrandom linear and random
quadratic. The nonrandom linear jump operators are

Li = √
μψ i (i = 1, . . . , N, μ ∈ R+). (4)

On the other hand, the random p-body jump operators are

La =
∑

1�i1<···<ip�N

Ka
i1···ip

ψ i1 · · · ψ ip (a = 1, 2, . . . , M ), (5)

where Ka
i1···ip

are complex Gaussian random variables with
zero mean and variance given by

|Ka
i1···ip

|2 = σ 2
K = K2(p − 1)!

N p
(K ∈ R+). (6)

In this paper, we focus on p = 2 for clarity.
Since the Lindbladian is a superoperator that acts on the

density matrix, it is useful to introduce the operator-state
map. Here, we vectorize the density matrix ρ(t ) and regard
it as a state |ρ(t )〉 in the doubled Hilbert space H+ ⊗ H−.1

Correspondingly, we regard the Lindbladian as an operator

1Strictly speaking, this is a sloppy notation when we discuss the
operator-state map for fermionic systems since states in the + and −
sectors may not commute because of the Fermi statistics [59].

acting on the doubled Hilbert space. For the SYK-type models
relevant to this paper, the Lindbladian acting on the doubled
Hilbert space is given by

L = −iH+ + i(−i)qH−

+
∑

a

[
(−i)pLa

+La†
− − 1

2
La†

+ La
+ − 1

2
La

−La†
−

]
, (7)

where H± and La
± act on H±, respectively. While the Hamil-

tonian part acts only on the individual bra or ket space, the
dissipation term couples these two spaces.

A quantity of our central interest is the disorder-averaged
trace of the exponential of the Lindbladian,

F (TL ) = TrH+⊗H− (eTLL), (8)

which we call the dissipative form factor [41,46]. The trace
in Eq. (8) is taken over the doubled Hilbert space H+ ⊗ H−.
As explained shortly, the dissipative form factor quantifies the
average overlap between the initial and time-evolved density
matrices and serves as the Loschmidt echo of open quantum
systems. In the following, we obtain the dissipative form
factor of the SYK Lindbladians, using both the analytical
calculations for large N and the numerical calculations for
finite N , and demonstrate its singularities in the open quan-
tum dynamics—dynamical quantum phase transitions. More
specifically, we analyze (a dissipative analog of) the rate func-
tion of the dissipative form factor:

iS (TL ) ≡ lim
N→∞

ln F (TL )

N
. (9)

Although the spectrum of the Lindbladian is complex, in
general, the rate function is always real since the spectrum
is symmetric about the real axis. We also note that the dissi-
pative form factor does not depend on initial conditions but is
determined solely by the Lindbladian. At TL = 0, we always
have F (TL = 0) = 2N and hence iS (TL = 0) = ln 2.

Several motivating comments are in order. First, in the
absence of dissipation, the dissipative form factor in Eq. (8)
coincides with the spectral form factor of Hermitian Hamilto-
nians. In fact, we have

TrH+⊗H− (eTLL) = TrH+ (e−iTLH+
) TrH− (e+iTL (−i)qH−

)

= |TrH(e−iTLH )|2, (10)

where in the last line we take q ≡ 0 (mod 4) for simplicity.
Since the spectral form factor captures the quantum chaos of
SYK-type Hamiltonians [33], we expect that the dissipative
form factor in Eq. (8) also captures the quantum chaos of SYK
Lindbladians. Accordingly, in the absence of the dissipation,
the definition of the rate function in Eq. (9) coincides with
its unitary analog. In the unitary case, nonanalytical behav-
ior in the rate function as a function of time was proposed
as a diagnostic of the dynamical quantum phase transitions
[48–57]. Here, we extend this idea to the nonunitary case.
We also note that there is another related quantity, dissipative
spectral form factor, introduced in Ref. [47]. The dissipative
spectral form factor captures the complex-spectral correla-
tions of non-Hermitian operators. By contrast, the dissipative
form factor in Eq. (8) is more directly relevant to the open
quantum dynamics since it gives the Loschmidt echo and the
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decoherence rate, as explained below. These two quantities are
thus complementary to understand the quantum chaos of open
systems. While we focus on the dissipative form factor in this
paper, it should be worthwhile to study the dissipative spectral
form factor of the SYK Lindbladians as future work.

Second, the dissipative form factor in Eq. (8) is related to
the Loschmidt echo, the overlap between the initial and time-
evolved states:

TrH [ρ(0)ρ(TL )]. (11)

With the operator-state map, the Loschmidt echo is written as
the overlap between the two pure states in the doubled Hilbert
space,

〈ρ(0)|ρ(TL )〉 = 〈ρ(0)|eTLL|ρ(0)〉, (12)

where |ρ(0)〉 ∈ H+ ⊗ H− is the state in the doubled Hilbert
space H+ ⊗ H− mapped from the density matrix ρ(0). To
make contact with the dissipative form factor, one needs to
average over the initial states |ρ(0)〉. For example, if we con-
sider a set of states generated from a reference state ρ0 by a
unitary rotation,

ρU = Uρ0U
†, (13)

and average over the Haar random measure, we obtain∫
dU 〈ρU |eTLL|ρU 〉

= Tr
(
ρ2

0

) − 1/L

L2 − 1
Tr (eTLL) + L − Tr

(
ρ2

0

)
L2 − 1

, (14)

where L is the dimensions of the Hilbert space (L = 2N/2

for SYK-type models). Thus, the Loschmidt echo of open
quantum systems is given by the dissipative form factor in
Eq. (8). Here, if we choose ρ0 to be the fully mixed state
ρ0 = 1/L, the first term on the right-hand side of Eq. (14)
vanishes. This is consistent with the fact that the fully mixed
state cannot be decohered any longer. We have to avoid such
a special reference state to connect the dissipative form factor
with the average Loschmidt echo.

Finally, the dissipative form factor in Eq. (8) is also related
to the decoherence rate [38] averaged over initial states. The
decoherence rate D quantifies the early-time decay of purity,
defined by

D = −2 Tr [ρ(0)(dρ(t )/dt )]

Tr [ρ(0)2]

∣∣∣∣
t=0

. (15)

As before, we average over initial states ρU , leading to

Dav = − 2

Tr [ρ2
0 ]

d

dt

∫
dU Tr [ρU (0)ρU (t )]

∣∣∣∣
t=0

. (16)

Thus, the average decoherence rate Dav is given by the time
derivative of the dissipative form factor at t = 0. In particular,
from Eq. (14), Dav is expressed as

Dav = − 2

Tr
[
ρ2

0

] Tr
(
ρ2

0

) − 1/L

L2 − 1
Tr (L). (17)

III. NONRANDOM LINEAR JUMP OPERATORS

We consider the SYK model with the nonrandom linear
jump operators in Eq. (4). We note that this open quantum
model resembles the two-coupled SYK model (Maldacena-Qi
model) [58], although the SYK Lindbladian is non-Hermitian
while the two-coupled SYK model is Hermitian. As we will
show below, there are many analogies between these models.
In Table I, we summarize the similarities and differences
between the two-coupled SYK model and the SYK Lind-
bladian with the linear jump operators. In fact, one obtains
the SYK Lindbladian from the two-coupled SYK model by
an analytical continuation of the coupling μ from a real to
pure imaginary value. In the Hermitian two-coupled SYK
model, the finite temperature partition function was studied
and the Hawking-Page transition (the thermal phase transition
between the black hole and wormhole phases) was identified
[58]. On the other hand, we are here interested in the dissipa-
tive form factor in Eq. (8), where TL plays the role of the real
(rather than imaginary) time.

A. Large N analysis

The steady-state Green’s functions of the SYK Lindbla-
dian were studied in Ref. [23] on the basis of the large N
techniques. Here, we study the dissipative form factor in a
similar fashion by imposing the antiperiodic boundary condi-
tions for the fermion fields. Here, the antiperiodic boundary
conditions arise naturally from the coherent state path inte-
gral representation of Tr eTLL, in much the same way as the
regular Euclidean (imaginary time) path integral. Under these
boundary conditions, the dissipative form factor is given by
the Schwinger-Keldysh path integral,

F (TL ) =
∫

Dψ+Dψ−eiS[ψ+,ψ−], (18)

where the action iS[ψ+, ψ−] is

iS[ψ+, ψ−] =
∫ TL

0
dt

[
−1

2

∑
i

ψ i
+∂tψ

i
+ − 1

2

∑
i

ψ i
−∂tψ

i
− + L(t )

]

=
∫ TL

0
dt

[
−1

2

∑
i

ψ i
+∂tψ

i
+ − 1

2

∑
i

ψ i
−∂tψ

i
− − i

q
2 +1

∑
i1<···<iq

Ji1···iqψ
i1+ · · · ψ iq

+

− (−i)
q
2 +1

∑
i1<···<iq

Ji1···iqψ
i1− · · ·ψ iq

− − iμ
∑

i

ψ i
+(t )ψ i

−(t ) − μ
N

2

∫
dt

]
. (19)
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TABLE I. Analogy between the two-coupled SYK model [58] and the SYK Lindbladian with the nonrandom linear jump operators for
the small coupling μ. The wormhole in the coupled SYK model corresponds to the thermofield double (TFD) state at a certain temperature
determined by μ. Similarly, for the Lindbladian SYK model, the late-time solution corresponds to the infinite temperature TFD state, which is
the stationary state of the Lindbladian.

Two-coupled SYK model SYK Lindbladian with the nonrandom linear dissipators

Left/right system Bra (+)/Ket (–) contour
H = HL

SYK + (−1)
q
2 HR

SYK + iμ
∑

i ψ
i
Lψ

i
R L = −iH+

SYK + i(−1)
q
2 H−

SYK − iμ
∑

i ψ
i
+ψ i

− − μ N
2 I

Inverse temperature β Time TL

Partition function Tr (e−βH ) Dissipative form factor Tr (eTLL)
Energy E = 〈H〉 Lindbladian 〈L〉 (average decoherence rate)
Specific heat C = 〈H2〉 − 〈H〉2

Energy gap Decay rate
Black hole Early time complex solution
Wormhole (TFD) Late time real solution (infinite temperature TFD)
Hawking-Page transition Late time first-order transition (real-complex spectral transition?)
N/A Early time second-order order transition
Real time physics (e.g., chaos exponents) ?

In terms of the collective variables (G, �), we rewrite the
dissipative form factor as

F (TL ) =
∫

DGD� eiS[G,�], (20)

where the action S[G, �] is

S[G, �] = − iN

2
Tr ln[−i(G−1

0 − �)]

+ iq+1J2N

2q

∫ TL

0
dt1dt2

∑
αβ

sαβGαβ (t1, t2)q

+ iN

2

∫ TL

0
dt1dt2

∑
αβ

�αβ (t1, t2)Gαβ (t1, t2)

− i
μN

2

∫ TL

0
dt[G+−(t, t ) − G−+(t, t )]

+ i
μN

2

∫
dt . (21)

Here, α, β = +,− and sαβ is

s++ = s−− = 1, s+− = s−+ = −(−1)
q
2 . (22)

For large N , the path integral in Eq. (20) is dominated by the
saddle point. The large N saddle-point equation is

i∂t1 Gαβ (t1, t2) −
∫

dt3
∑

γ=+,−
�αγ (t1, t3)Gγ β (t3, t2)

= δαβδ(t1 − t2),

�αβ (t1, t2) = −iqJ2sαβGαβ (t1, t2)q−1 + μεαβδ(t1 − t2).

(23)

The dissipative form factor is then calculated from the on-
shell action,

F (TL ) ≈ eiS[G∗,�∗], (24)

where G∗ and �∗ are solutions to Eq. (23).

We compute the expectation value of the Lindbladian from
the derivative of the dissipative form factor:

∂

∂TL
ln F (TL ) = 〈L〉 ≡ Tr(LeTLL)

Tr(eTLL)
. (25)

In our problem, the dissipative form factor is expected to be
self-averaging. For TL = 0, this quantity essentially gives the
average decoherence rate in Eq. (17). Using the canonical
commutation relation, we derive the relation between 〈L〉 and
the correlation function as follows:

〈L〉
N

= − i

q
lim

t→0+
∂t G++(t ) − i

q
lim

t→0+
∂t G−−(t )

+ μ

(
1 − 2

q

)
G+−(0) − μ

2
. (26)

Here, the two-point correlation functions depend only on
the time difference because of the cyclicity of the trace
and concomitant time-translation invariance. Employing the
Kadanoff-Baym equation, we find another representation of
〈L〉 as

〈L〉
N

= i
iq+1J2

q

∫ TL

0

∑
α,β

sαβGαβ (t )qdt + μG+−(0) − μ

2
.

(27)

We rewrite the latter representation as

TL
∂S
∂TL

= J
∂S
∂J

+ μ
∂S
∂μ

, (28)

which is considered to be a Euler relation for the dissipative
form factor.

As shown in Fig. 1, we calculate the rate function iS as
a function of time TL. In these calculations, we obtain the
two different saddle-point solutions, depending on whether
we increase or decrease TL. For given TL, we need to take
the dominant one (i.e., maximizing iS). For the strong dissi-
pation μ = 0.5, the two saddle-point solutions are identical
[Fig. 1(b)]. On the other hand, for the smaller dissipation
μ = 0.1, the two solutions disagree for the intermediate times
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FIG. 1. Time evolution of the rate function (Loschmidt amplitude) iS of the SYK Lindbladian (J = 1) with the nonrandom linear
dissipators for (a) weak dissipation μ = 0.1 and (b) strong dissipation μ = 0.5. We obtain the rate function by solving the large N
saddle-point equation numerically by increasing (blue curve) and decreasing (orange curve) TL . (a) In the weak-dissipation regime, the two
saddle-point solutions are different from each other for 7 � TL � 18, which signals a discontinuous phase transition around TL ≈ 11. The
second-order derivative of the rate function iS is discontinuous around TL ≈ 2, which corresponds to a continuous phase transition. (b) In the
strong-dissipation regime, no dynamical quantum phase transitions occur. In (c) and (d), the derivatives of the rate functions are shown, which
are equivalent to the expectation values 〈L〉 of the Lindbladians [see Eq. (25)]. In (e) and (f), comparisons with finite N results from exact
diagonalization of the Lindbladian are presented for N = 8, 10, 12, where the error bars show sample-to-sample fluctuations.

7 � TL � 18, and the rate function iS exhibits more complex
behaviors as a function of TL. At early time, the Green’s
functions of the dominant saddle point closely resemble the
dissipation-free unitary solution. This saddle corresponds to
the black hole in the two-coupled SYK model. Around TL ≈
2, the second-order derivative of the rate function (Loschmidt
amplitude) exhibits a discontinuous change, which signals the
continuous dynamical quantum phase transition. In addition,
around TL ≈ 11, a discontinuous phase transition occurs when
the other solution arising from dissipation becomes dominant
and remains so for all subsequent TL. This saddle corresponds
to the wormhole in the two-coupled SYK model. For TL →
∞, this dissipative solution indeed relaxes to the steady-state
Green’s function obtained in Ref. [23], and corresponds to
the infinite temperature thermofield double state. It is worth
recalling that, in the finite N spectral analysis in Ref. [23], all
the eigenvalues approach the real axis as we increase the dissi-

pation strength μ, similar to a real-complex spectral transition
in non-Hermitian systems [9,39].

As we change the dissipation strength μ, the presence or
absence of these transitions, and also their characters, change.
For small enough μ, we have the first- and second-order phase
transitions as described above. As we increase μ, for the in-
termediate values of μ, the first-order transition is transmuted
into second order, and we have two second-order transitions.
In Fig. 2, we demonstrate the existence of the two second-
order phase transitions by plotting the Green’s functions at
particular times, G+− at t = 0 and the real part of G++ at
t = TL/2, in addition to the time derivative of the rate function
[i.e., expectation value 〈L〉 of the Lindbladian; see Eq. (25)].
While the singularities in 〈L〉 are somewhat difficult to see
in these plots, the Green’s functions exhibit clearer cusp be-
haviors. Finally, for large enough μ, the two second-order
transitions merge and we do not have any transitions. We
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FIG. 2. Second-order dynamical quantum phase transitions in
the SYK Lindbladian with the nonrandom linear dissipators (q = 4,
J = 1, μ = 0.35). The Green’s functions G+−(0) and Re G++(TL/2)
exhibit cusps at TL ≈ 2.6 and TL ≈ 3.6, while the singularities in 〈L〉
are unclear.

provide the phase diagram in Fig. 3. In the next subsection,
we confirm these behaviors analytically in the large q limit
(see, e.g., Fig. 6).

Furthermore, we obtain the rate function also for finite
N and compare the finite N numerical results with the large
N analytical results [Figs. 1(c) and 1(d)]. While the phase
transitions sharply occur only for large N , the characteristic
behaviors of the phase transitions already have an inkling in
the finite N numerics. In fact, the rate functions for finite N
diminish to nearly zero around the expected discontinuous
phase transition point TL ≈ 11. In addition, around TL ≈ 2,

FIG. 3. Dynamical phase diagram of the SYK Lindbladian with
the nonrandom linear jump operators in terms of time TL and dis-
sipation strength μ (q = 4, J = 1). The three phases are defined by
G++(t ) ∈ R, G+−(t ) �≡ 0 (green region, black hole 1), G++(t ) ∈ C,
G+−(t ) �≡ 0 (blue region, black hole 2), and G++(t ) ∈ R, G+−(t ) �≡ 0
(orange region, wormhole). For the strong dissipation μ � 0.37,
sharp quantum phase transitions are replaced by crossover, and there
are no clear distinction between black hole 1 phase and wormhole
phase through the order parameters G++(t ) and G+−(t ).

the sample-to-sample fluctuations of the rate function are
enhanced, which is consistent with the continuous phase tran-
sition for large N .

B. Large q analysis

The large N saddle point equations are analytically
tractable in the large q limit [31]. Reference [23] utilized the
large q limit of the SYK Lindbladian with the nonrandom
linear jump operators and calculated the stationary properties.
Here, we apply the large q technique to calculate the dissipa-
tive form factor. The large q analysis has to be done separately
for different timescales. In the following, we mainly focus
on the regime where TL is of order O(q ln q), where, as we
show below, both first- and second-order transitions men-
tioned above occur.

We start by expanding the correlation functions for small t
(i.e., t  q) as

G++(t1, t2) = − i

2
sgn(t1 − t2)

(
1 + 1

q
g++(t1, t2) + · · ·

)
,

G+−(t1, t2) = +1

2

(
1 + 1

q
g+−(t1, t2) + · · ·

)
,

G−+(t1, t2) = −1

2

(
1 + 1

q
g−+(t1, t2) + · · ·

)
,

G−−(t1, t2) = − i

2
sgn(t1 − t2)

(
1 + 1

q
g−−(t1, t2) + · · ·

)
.

(29)
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In the large q limit, the Kadanoff-Baym equation reduces to
the Liouville equation,

∂t1∂t2 g++(t1, t2) = −2J 2eg++(t1,t2 ),

∂t1∂t2 g+−(t1, t2) = −2J 2eg+−(t1,t2 ) − 2μ̂δ(t1 − t2), (30)

where we define J and μ̂ by

J2 ≡ 2q−1J 2

q
, μ ≡ μ̂

q
. (31)

The Liouville equation admits multiple solutions, as in the
case of finite q. In the following, we study two types of
solutions with real g++ and complex g++, which we call real
and complex solutions, respectively.

Real solutions.. We solve the Liouville equation for sta-
tionary states as

eg++(t ) = α2

J 2 cosh2(α|t | + γ )
,

eg+−(t ) = α̃2

J 2 cosh2(α̃|t | + γ̃ )
. (32)

The boundary conditions G++(0, 0) = G−−(0, 0) = −i/2
and limt2→t1 ∂t1 g+−(t1, t2) = −μ̂ give the relations

α = J cosh γ , 2α̃ tanh γ̃ = μ̂. (33)

For long time t � q, gαβ becomes of order q, and the ex-
pansion in Eqs. (29) breaks down. Hence, for such a long time,
we use a different approximation [58,60]. Because �αβ (t )
varies much more rapidly than Gαβ in the large q limit, we
can approximate �αβ (t ) by delta functions or its derivative.
From the symmetry of the function, we can approximate

�++(t ) = �−−(t ) � ρδ′(t ),

�+−(t ) = −�−+(t ) � νδ(t ), (34)

where ρ and ν are of order q. However, the convolution with
�++(t ) and �−−(t ) leads to the derivative of Gαβ , which
already exists in the Kadanoff-Baym equation and gives the
subleading contribution in the large q expansion. Therefore,
we can ignore them, and the equation becomes

i∂t G++(t ) − νG−+(t ) = 0,

i∂t G+−(t ) − νG−−(t ) = 0,

i∂t G−+(t ) + νG++(t ) = 0,

i∂t G−−(t ) + νG+−(t ) = 0, (35)

where ν is related to the parameter of the t  q solution by

ν =
∫ ∞

−∞
�+−(t )dt = μ

tanh γ̃
. (36)

Here, the delta function μδ(t ) is included as the boundary
conditions of g+−(t ) at the origin by ∂t g+−(0) = −μ̂. We
rewrite the above condition as

TLμ = tanh γ̃ ln
q

σ
, (37)

where we introduce an order O(1) parameter:

σ = qe−νTL . (38)

The solution of Eqs. (35) with the correct boundary conditions
is then

G++(t ) = −iA cosh ν

(
TL

2
− t

)
,

G+−(t ) = A sinh ν

(
TL

2
− t

)
, (39)

with G−+(t ) = −G+−(t ), iG−−(t ) = (iG++(t ))∗, G++(TL −
t ) = G++(t ), and G+−(TL − t ) = −G+−(t ). The matching of
the t  q and t � q solutions at the overlapping region fixes
the parameters as

A = e− ν
2 TL , α = α̃ = qν

2
, γ̃ − γ = σ. (40)

The conditions in Eqs. (33), (36), and (40) determine the free
parameters α, α̃, γ , γ̃ , A, and ν as functions of μ̂ and TL. Note
γ = 0 for μ̂ = 2J tanh σ . For μ̂ > 2J tanh σ , there is no
real positive solution for γ . We compare the large q solution
with the numerical solutions for q = 96 in Fig. 4, which are
consistent with each other.

From Eq. (27), we obtain the expectation value of the
Lindbladian as

〈L〉
N

= μ̂

q2

(
tanh γ

tanh γ̃
− 1 + ln

cosh γ

cosh γ̃

)
. (41)

Accordingly, the rate function of the dissipative form factor is

iS (σ, γ )

= TLμ̂

q2

(
−1 + tanh γ

tanh γ̃
+ ln

cosh γ

cosh γ̃
+ σ

tanh γ̃

)
+ σ

q
.

(42)

Complex solutions.. In the real solution in Eq. (32), the pa-
rameters α, α̃, γ , and γ̃ are real. We now relax this condition
and look for the complex solution. In particular, we look for
the solution of the form

eg++(t ) = α

J 2 cosh2(α|t | + iγi )
,

eg+−(t ) = α̃2

J 2 cosh2(α̃|t | + γ̃ )
. (43)

In particular, the ++ component takes the same form as
the real-time finite temperature SYK correlation functions,
where the inverse temperature is given by β = 2γi/(J cos γi ).
The boundary conditions G++(0, 0) = G−−(0, 0) = −i/2
and limt2→t1 ∂t1 g+−(t1, t2) = −μ̂ give the relations

α = J cos γi, μ̂ = 2α̃ tanh γ̃ . (44)

Again, ν is related to γ̃ through

qν = q
∫ ∞

−∞
�+−(t )dt = μ̂

tanh γ̃
. (45)

We again introduce σ = qe−νTL . Matching the solution of
|t |  q and |t | � q, we obtain

α = α̃, γ̃ = σ, (46)

which determines γi as

cos γi = μ̂

2J tanh γ̃
= μ̂

2J tanh σ
. (47)
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FIG. 4. Comparison between the analytically obtained real solution for large q (red dashed curve) and the numerically obtained solution
for q = 96 (blue solid curve). The other parameters are chosen to be J = 1, μ̂ = 0.5, and TL = 700. The vertical axis is q�αβ � J 2egαβ .

Therefore, all parameters are expressed in terms of σ . Note
γi = 0 for μ̂ = 2J tanh σ . For μ̂ < 2J tanh σ , there is no real
positive solution for γi. Then, σ is related to given TL and μ̂

by

TL = q tanh γ̃

μ̂
ln

q

σ
= q tanh σ

μ̂
ln

q

σ
. (48)

In Fig. 5, we compare the analytical solutions for large q with
the numerical solutions for q = 96. The large q solution with
t  q is consistent with the numerical solution at the early
time but deviates from it with time. On the other hand, the
large q solution with t � q agrees well with the numerical
solution with a slight deviation at the early time. The rate
function is now written as

iS (γ , σ )

= 1

q
tanh γ̃ ln

q

σ

× Re

(
− 1 + i

tan γi

tanh γ̃
+ ln

cos γi

cosh γ̃
+ σ

tanh γ̃

)
+ σ

q

= TLμ̂

q2

(
− 1 + ln

cos γi

cosh γ̃
+ σ

tanh γ̃

)
+ σ

q
. (49)

Dissipative form factor as a function of TL.. We are now
ready to study the behavior of the dissipative form factor of
the SYK Lindbladian for large q. While we are interested in
the dissipative form factor as a function of TL, we can instead
vary the parameter σ and then determine iS (σ ) and TL(σ )
as functions of σ . We therefore first plot TL as a function of
σ in Fig. 6, using Eqs. (37) and (48). For sufficiently small
μ̂/J , we find that TL is not a monotonic function and have

three solutions for fixed TL, one real solution and two complex
solutions. For μ̂/(2J ) � 1, on the other hand, TL is a mono-
tonic function of σ but not smooth at σ = Arctanh(μ̂/2J ).
For μ̂ > 2J , we do not have complex solutions, and TL is
a smooth monotonic function of σ . We note that the precise
location of the weak and strong μ regions depends on q. Since
we use q = 4 in Fig. 1 and q = 96 in Fig. 6, the weak and
strong μ regimes are different.

Next, we study the dissipative form factor. Since iS (σ ) it-
self is a smooth monotonic function of σ , the phase transitions
in iS (TL ) are determined by the phase transitions in TL(σ ) as
a function of σ . Therefore, for small μ̂ where TL(σ ) is not
monotonic, we have the discontinuous phase transition. On
the other hand, for large enough μ̂, we do not have phase
transitions. In the intermediate regime with μ̂/(2J ) � 1 and
μ̂/(2J ) < 1, we have a continuous phase transition.

In Fig. 7, we plot the rate function as a function of TL for
each of the three saddle points (two complex and one real
solutions). For the early time, one of the complex solutions
is dominant and corresponds to the wormhole saddle, while
at later times, the real solution is dominant and corresponds to
the black hole saddle. We also compare the analytic results for
large q with the numerics at for q = 96, which show a good
agreement.

We also find that the complex solution and the real solution
are actually continuously connected by the other complex
solution, which is difficult to find in finite q numerics. This
is similar to what was found in the two-coupled SYK model
in Ref. [58]. In their model, we have the first order phase tran-
sition between the black hole and wormhole phases. We also
have a “hot wormhole” (or “small black hole” in the context
of the ordinary Hawking-Page transition) solution in the large

FIG. 5. Comparison between the large q complex solution and the numerical solutions (q = 96, J = 1, μ̂ = 0.5, TL = 700). The vertical
axis is q�++ � J 2eg++ for the left panel and G+− for the right panel.
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FIG. 6. TL as a function of σ in the large q solutions for q = 96. Left: For the weak dissipation μ̂ = 0.5, TL is not a monotonic function of
σ , and for fixed TL , there are one real and two complex solutions in the intermediate regime. Right: For the strong dissipation μ̂ = 1.9, TL is a
monotonic function of σ , but the derivative is not continuous when the real and complex saddles meet.

q limit, which connects the two solutions. This means that
we have a continuous behavior of the entropy as a function
of energy in the microcanonical ensemble. It is an interesting
future problem to understand the analog of this statement in
our open quantum dynamical phase transition.

IV. RANDOM QUADRATIC JUMP OPERATORS

We consider the SYK Lindbladian with the random
quadratic jump operators described in Eq. (5) with p = 2. The

model shows first-order and second-order dynamical quantum
phase transitions. Similar to the case for the nonrandom lin-
ear jump operators, the dissipative form factor of the SYK
Lindbladian with the random quadratic jump operators is ex-
pressed as a path integral on a circle of circumference TL with
the antiperiodic boundary conditions for the fermion fields.
Repeating the procedure in Ref. [23], we introduce auxiliary
fields so the path integral action becomes linear in the jump
operators. After disorder averaging, the action is expressed
in terms of the Green’s functions and self-energies of the
fermions as well as the auxiliary fields:

1

N
iS[G, �, Gb, �b] = 1

2
ln det

(
i
[
G0(t1, t2)−1 − �(t1, t2)

]) − R ln det
([

Gb0(t1, t2)−1 − �b(t1, t2)
])

− J2

2q
iq

∫∫ TL

0
dt1dt2 sαβGαβ (t1, t2)q − 1

2

∫∫ TL

0
dt1dt2 �αβ (t1, t2)Gαβ (t1, t2)

+ RK2

2p

∫∫ TL

0
dt1dt2 Gb

αβ (t1, t2)Gαβ (t1, t2)p − R
∫∫ TL

0
dt1dt2 �b

αβ (t1, t2)Gb
αβ (t1, t2), (50)

where R ≡ M/N is the ratio of the number of jump operators
to the number of fermion flavors. The dissipative form factor
in terms of this collective action is given by

F (TL ) =
∫

DGD�DGbbD�b eiS[G,�,Gb,�b]. (51)

We take the large N limit while fixing q, J, K, and R. In
this limit, the saddle point of the action gives the dissipa-
tive form factor and thereby the rate function. The saddle
point equations are the same as in Ref. [23]. However, the
boundary conditions are different. For fermions, we have the
antiperiodic boundary conditions: Gαβ (t + TL ) = −Gαβ (t ),

FIG. 7. Rate function iS in the large q limit with q = 96 and J = 1 for (left) μ̂ = 0.5 and (ight) μ̂ = 1.9. For comparison, we also plot
the numerical solutions of the saddle point equations (blue and orange dots).
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FIG. 8. Dynamical phase diagram of the SYK Lindbladian with
the random quadratic jump operators in terms of time TL and dis-
sipation strength K (q = 4, J = 1, R = 2). The three phases are
defined by G++(t ) ∈ R, G+−(t ) ≡ 0 (green region, black hole 1),
G++(t ) ∈ C, G+−(t ) ≡ 0 (blue region, black hole 2), and G++(t ) ∈
R, G+−(t ) �≡ 0 (orange region, wormhole).

�αβ (t + TL ) = −�αβ (t ). For the auxiliary fields, we have
the periodic boundary conditions: Gbαβ (t + TL ) = Gbαβ (t ),
�bαβ (t + TL ) = �bαβ (t ). The large N rate function is then
simply given by the right-hand side of Eq. (50), evaluated
using the saddle point Green’s functions G∗, Gb∗ and self-
energies �∗, �b∗:

iS (TL ) = 1

N
iS[G∗, �∗, Gb∗, �b∗]. (52)

We solve the saddle-point equations numerically and calcu-
late the rate function as a function of TL for several values of
the parameters J, K, and R. We search for various saddle point
solutions by slowly increasing (decreasing) TL starting from a
small (large) initial value. By doing so, we obtain three kinds
of saddle point solutions that correspond to three different
dynamical phases, summarized as the phase diagram in Fig. 8.

Figure 9 shows the Green’s functions corresponding to
these three phases. Here, we fix J = 1, R = 2, and K = 0.5,
and consider three different values of TL. First, Fig. 9(a) shows
the Green’s functions at TL = 2, characteristic of the early
time phase. In this phase, the same-sector Green’s functions,
namely, G++(t ) and G−−(t ), are nonzero but purely real.

The cross-sector Green’s functions G−+(t ) and G+−(t ) are
identically zero, indicating that the + and − sectors are still
decoupled. Next, Fig. 9(b) shows the Green’s functions at
TL = 5, characteristic of the intermediate time phase. The
cross-sector Green’s functions are still zero, but the same-
sector Green’s functions acquire a nonzero imaginary part.
Since both phases are analogous to the black hole in the
two-coupled SYK model, we label them as black hole 1
(BH1) and black hole 2 (BH2), respectively. Finally, Fig. 9(c)
shows the Green’s functions for TL = 10, characteristic of
the late time phase. Now the cross-sector Green’s functions
become nonzero, showing that the + and − sectors are now
coupled. This phase is thus analogous to the wormhole in
the two-coupled SYK model, so we label it wormhole (WH).
Interestingly, G++(t ) and G−−(t ) once again become purely
real for the wormhole phase. As a consistency check, it is
worth noting that for very large TL, the Green’s functions relax
to the steady-state Green’s functions discussed in Ref. [23].

Next, let us observe how the rate function behaves as we
time evolve through the three dynamical phases. As an aside,
for finite dissipation, we expect iS (TL ) → 0 as TL → ∞ if
the steady state is unique. However, in our numerics, we find
a divergent piece that grows linearly at late times. In the
subsequent analysis, we subtract this piece and only consider
the regularized rate function defined as

iSreg(TL ) ≡ iS (TL ) − K2R

24
TL. (53)

We first fix J = 1 and R = 2, and vary the dissipation
strength K from 0.3 to 1.5. The rate function as a function
of time TL is plotted in Fig. 10. The legend shows the charac-
terization for each phase. At every time point, the dominant
phase is the one with the larger rate function. For K � 1.1,
all three phases occur. The transition from early time (black
hole 1 phase) to the intermediate time (black hole 2 phase)
is first order for K � 0.8 and second order for K � 0.8. The
transition from black hole 2 phase to wormhole phase is al-
ways first order. For K � 1, there are only two phases since
black hole 2 phase (shown in blue) is always subdominant.
We next fix J = 1 and K = 0.3, and vary R from 5 to 30.
The time evolution of the rate function is shown in Fig. 11,
which exhibits similar behavior. We have the three distinct
phases even for R as large as 30. The intermediate to late time
transition is second order while the early to intermediate time
transition is second order for R � 15 and first order R � 15.

FIG. 9. Representative saddle point Green’s functions G++(t ) and G+−(t ) in the SYK Lindbladian with the quadratic jump operators
(J = 1, K = 0.5, and R = 2) for (a) black hole 1 (BH1) phase (TL = 2), (b) black hole 2 (BH2) phase (TL = 5), and (c) wormhole (WH) phase
(TL = 10).
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FIG. 10. Time evolution of the rate function in Eq. (52) for various values of the dissipative strength K (q = 4, J = 1, R = 2).

FIG. 11. Time evolution of the rate function in Eq. (52) for various values of the dissipative strength R (q = 4, J = 1, K = 0.3).
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The dynamical phase diagram shown in Fig. 8 summa-
rizes the above results. Notably, while the phase diagram for
the nonrandom linear dissipators in Fig. 3 and that for the
random quadratic dissipators in Fig. 8 look similar to each
other, the definitions of the phases differ. Specifically, the
black hole phases in the SYK Lindbladian with the linear
dissipators accompany G+− �= 0, which contrasts with those
with the quadratic dissipators satisfying G+− = 0. This dif-
ference arises from the presence or absence of fermion parity
symmetry (in the strong sense [10]). On the one hand, strong
fermion parity symmetry is respected in the SYK Lindbladian
with the quadratic dissipators and hence can be spontaneously
broken. In fact, the phase transitions between the black hole
phases and the wormhole phase can be interpreted as the spon-
taneous breaking of strong fermion parity symmetry, in which
G+− serves as an order parameter. On the other hand, the
SYK Lindbladian with the linear dissipators explicitly breaks
strong fermion parity symmetry. As a result, we generally
have G+− �= 0 in all phases, and the phase transitions cannot
be understood as spontaneous symmetry breaking.

V. DISCUSSION

In this paper, we have investigated the open quantum dy-
namics of the SYK Lindbladians and found the dynamical
quantum phase transitions of its dissipative form factor. For
the nonrandom linear dissipators, we have found both discon-
tinuous and continuous dynamical phase transitions. While
the former is formally analogous to the thermal phase tran-
sition in the two-coupled SYK model, the latter does not have
a Hermitian counterpart. For the random quadratic dissipators,
we have found the continuous phase transition that has no
counterparts in the original SYK model. More precise char-

acterizations of these phase transitions are still lacking and
are left as a future problem.

More broadly, there are many open questions in the far-
from-equilibrium properties of open quantum many-body
systems. We expect that the SYK Lindbladians studied in this
work, and generalizations thereof, can be further investigated
as a prototype of open quantum many-body systems. For
example, it would be interesting to calculate the dissipative
spectral form factor [47,61,62], which may better capture the
complex-spectral correlations of non-Hermitian operators. It
is also notable that the operator growth has recently been stud-
ied in generic open quantum systems [63–65]. Since the SYK
Lindbladians should be a prototype for the dissipative quan-
tum chaos, it is worthwhile studying their operator growth.

Note added. Recently, Ref. [66] appeared on arXiv, which
has a substantial overlap with the current paper. We also note
another related work [67].
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