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Excitons in twisted AA′ hexagonal boron nitride bilayers
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The twisted hexagonal boron nitride (hBN) bilayer has demonstrated exceptional properties, particularly the
existence of electronic flat bands without needing a magic angle, suggesting strong excitonic effects. Therefore,
a systematic approach is presented to study the excitonic properties of twisted AA′ hBN using the Bethe-
Salpeter equation based on single-particle tight-binding wave functions. These are provided by a one-particle
Hamiltonian that is parameterized to describe the main features of ab initio calculations. The Bethe-Salpeter
equation is then solved in the so-called excitonic transition representation, which significantly reduces the
problem dimensionality by exploiting the system’s symmetries. Consequently, the excitonic energies and the
excitonic wave functions are obtained from the direct diagonalization of the effective two-particle Hamiltonian
of the Bethe-Salpeter equation. We have studied rotation angles as low as 7.34◦. The model allows the study of
commensurate and incommensurate moiré patterns at much lower computational cost than the ab initio version of
the Bethe-Salpeter equation. Here, using the model and effective screening of the Keldysh type, we could obtain
the absorption spectra and characterize the excitonic properties of twisted hBN bilayers for different rotation
angles, demonstrating how this property affects the excitonic energies and localizations of their wave functions.
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I. INTRODUCTION

Two-dimensional (2D) materials and their heterostruc-
tures are ideal candidates for many technological applications
[1–4]. In particular, they are suitable for nanophotonics ap-
plications [5–7]. These kinds of materials can give rise to
strong light-matter interactions through a myriad of dipole-
type polaritonic excitations, such as infrared-active phonons
[8], excitons in 2D semiconductors [9–11], and plasmons
in doped 2D materials [12]. In 2D semiconductors, the ap-
pearance of strongly bound excitons opens the possibility
of realizing efficient energy transfer by driving charge ex-
citons via applied electric fields [13,14]. Furthermore, they
are used in solar cells [15] and photodetectors [16]. In this
context, a 2D hexagonal boron nitride (hBN) monolayer is a
semiconductor with a wide band gap, which exhibits strong
correlation effects. For instance, excitons are characterized
by binding energies of about 2 eV, which makes hBN an
excellent candidate for applications in optoelectronic devices
in the deep-ultraviolet region [17,18]. On the other hand,
heterostructures made out of 2D hBN monolayers are also of
great interest. For example, by twisting an hBN bilayer, one
can obtain flat bands without the necessity of magic angles
[19,20] due to an enhancement of the correlation effects, thus
improving its excitonic properties.

The Bethe-Salpeter equation is the most common approach
to study the excitonic phenomena in condensed-matter sys-
tems. It is a four-point equation that allows the calculation of
the two-particle correlation function and describes the propa-
gation of two particles within the Green’s function formalism
[21]. Its k-space representation is often used to deal with peri-
odic systems [22,23]. Unfortunately, the ab initio form of the
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Bethe-Salpeter equation can be extremely cumbersome and
hard to solve, even for periodic systems with few atoms per
unit cell, for example, the commensurate twisted hBN bilayer,
whose excitonic properties are impossible to compute by this
means, even for its smallest unit cell. It translates into the need
for sophisticated numerical approaches and the necessity of
huge computational resources [24–27].

Typically, one first computes the quasiparticle band struc-
tures fed into the Bethe-Salpeter equation using a combination
of density functional theory (DFT) and many-body per-
turbation theory [28–30] (e.g., GW approximation) and
time-dependent DFT [31–33]. Instead of performing these ex-
pensive band structure calculations, one can directly employ a
continuum or a tight-binding model to get them, significantly
reducing the complexity of the problem. The continuum
model works well for twisted systems with extensive unit cells
or, equivalently, minimal rotation angles [34,35]. In this case
an effective continuum Hamiltonian can be written in k space
that is often expanded in Bloch states, forming a momentum
lattice that is then truncated [36]. This approach allows fast
and precise calculation of the band structure of the twisted
systems within a reduced range of energies. However, it is
still being determined if the excitonic properties are correctly
described, since the model needs to include a detailed local
atomic description. This latter is crucial for the correct compu-
tation of the dielectric function. Despite this, the approach has
shown to be a good approximation for the case of nontwisted
AA′ and AB hBN bilayers but might fail to predict their
optical response satisfactorily [30].

Using single-particle tight-binding states as input for the
Bethe-Salpeter equation in real space has proven very success-
ful [37–41]. Here we employ a parameterized single-particle
tight-binding model to include quasiparticle corrections.
When this approach is applied to periodic systems, their
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symmetries are exploited to reduce the problem’s dimension-
ality remarkably. The latter is possible because the number of
electron-hole pairs needed to solve the Bethe-Salpeter equa-
tion can be hugely reduced by considering only nonequivalent
hole sites [39]. Then one can use the excitonic transition
basis, built on single-particle wave functions, to write down
the effective two-particle Hamiltonian of the Bethe-Salpeter
equation.

Taking all this into account, the aim of this paper is
twofold. First, we present a systematic approach to studying
the excitonic properties of twisted AA’ hBN bilayers using
the Bethe-Salpeter equation based on adequate tight-binding
models. Using moderate computational resources, the model
allows us to analyze systems with unit cells with thousands
of atoms. For the sake of simplicity, we describe the Bethe-
Salpeter kernel, i.e., the direct Coulomb interaction and the
exchange effects, by a model potential or, in other words, an
effective screening. This approximation is only valid when
the model potential is relatively smooth. To solve the Bethe-
Salpeter equation, we write it down in the basis of excitonic
transitions, which are constructed using the tight-binding
single-particle wave functions. Second, we apply the model
to twisted AA′ hBN bilayers for several rotation angles to
study their excitonic properties. Note that even though we
have employed our model to hBN bilayers of the AA′ type,
its application to other vertical stacking systems is straight-
forward. Also, considering other 2D crystalline structures is
possible as long as suitable tight-binding models and a smooth
electron-hole interaction model potential are available.

This work is organized as follows. Section II describes
the single-particle model that defines the electronic properties
of nontwisted and twisted AA′ hBN bilayers. Section III is
devoted to presenting the details of the two-particle model.
All the approximations used here are listed, and the explicit
form of the real-space representation of the Bethe-Salpeter
equation is shown. Section IV presents the results obtained for
commensurate twisted AA′ hBN bilayers and the discussion.
The conclusions are set out in Sec. V. Finally, most of the
technical information is given in the Appendix.

II. SINGLE-PARTICLE MODEL

We define the tight-binding Hamiltonian used to de-
scribe the one-particle electronic properties of a nontwisted
AA′ hBN bilayer. To do so, we will assume that the elec-
tronic properties of an hBN bilayer at low energies are well
described, within the one-particle approximation, by a pz

tight-binding Hamiltonian, H1P. In the second quantization
formalism, H1P takes the following form:

H1P = − t‖
∑

〈i, j〉,α
(c†

α,icα, j + H.c.)

− t⊥
M∑
i, j

(c†
1,ic2, j + H.c.)

+
M/2∑

i

[
�B

(
cB

i

)†
cB

i + �N
(
cN

i

)†
cN

i

]
, (1)

TABLE I. Parameters used here to describe the one-particle elec-
tronic structure of AA′ hBN bilayers.

BN NN BB

Vppπ [eV] −1.932 −1.162 −1.323
Vppσ [eV] 0.398 0.153 0.817
β1 3.739 11.91 4.156
β2 6.292 8.317 5.940
t‖ [eV] −2.725 0.222 0.019

where 〈i, j〉 indicates summation over nearest and next-
nearest neighbors, and cα,i is the annihilation operator for a
pz electron at site i within the α layer, with α = 1, 2. The
operator cB

i (cN
i ) annihilates an electron at the ith boron (ni-

trogen) site. Therefore, �N and �B are the on-site energies
of nitrogen and boron atoms, respectively. Finally, M is the
number of atoms in the system, and t‖ is the intralayer hopping
parameter, i.e., the interaction between atoms within the same
layer. At the same time, t⊥ stands for the interlayer hopping
parameter, i.e., the interaction between atoms at different
layers.

Here intralayer hopping parameters are considered con-
stant, although interactions up to second-nearest neighbors
are included. As a result, we have three types of interactions,
namely, boron-nitrogen (tBN

‖ ), nitrogen-nitrogen (tNN
‖ ), and

boron-boron (tBB
‖ ) interactions. In contrast, to correctly repro-

duce the electronic properties of hBN bilayers, the interlayer
hopping parameters must follow Vpp interactions,

t⊥(r) = n2Vppσ e−β1(r−c0 )/c0 + (1 − n2)Vppπe−β2(r−c0 )/c0 , (2)

where n = r · ez/r is the direction cosine of the vector r that
joins two atoms at different layers and r = |r|. The parameters
Vppπ , Vppσ , β1, and β2 are fit to ab initio calculations. As for
intralayer hopping parameters, we have three types of inter-
layer hopping parameters: tBN

⊥ , tNN
⊥ , and tBB

⊥ . Additionally, all
interactions are zero for distances bigger than a cutoff radio,
rcutoff = 7 Å. The best-fit values of all these parameters are
listed in Table I. In the Appendix, a detailed explanation of
how the parameters were tested for different hBN bilayers and
the errors associated with the parameters, listed in Table II,
can be found.

TABLE II. Errors of the hopping parameters of the pz tight-
binding model at one standard deviation for a (3,2) twisted hBN
bilayer.

Errors

Interactions Vppσ Vppπ β1 β2

Intralayer BB − 0.044 − −
Intralayer NN − 0.155 − −
Intralayer BN − 0.007 − −
Interlayer BB 0.022 0.189 0.513 0.575
Interlayer NN 0.038 0.573 12.272 0.863
Interlayer BN 0.040 0.055 0.253 0.124
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FIG. 1. Right panel. Single-particle tight-binding (red lines) and
DFT (blue lines) electronic band structure of a nontwisted hBN
bilayer of type AA′. The tight-binding model reproduces the indirect
band gap around the K point. Although this model is not in quanti-
tative agreement with DFT calculations, it qualitatively reproduces
their features at low energies, i.e., near the K point. Left panel. The
corresponding normalized DOS for the tight-binding model.

A. Nontwisted AA′ hBN bilayer

To validate the model, we computed the band structure and
the density of states (DOS) of a nontwisted AA′ hBN bilayer.
It was done by directly diagonalizing the periodic version of
Eq. (1). For this purpose we used a linear combination of
localized atomic orbitals, chosen as Bloch functions. The band
structure for a (�, K, M,�) k path and the corresponding
DOS are shown in Fig. 1. It can be seen that the tight-binding
model (red lines) has an indirect band gap going from some
point near the K point at the valence band to the K point at
the conduction band, whose size is approximately 7.87 eV.
This latter value was obtained after adjusting the parameters
to reproduce the band gap at the � point provided by GW
calculations [40,41]. Besides that, this model qualitatively
reproduces the main features found for AA′ hBN bilayer in
DFT calculations (blue lines in Fig. 1, near the K point),
as long as a scissor operation is performed to reproduce the
GW band gap correctly. The corresponding normalized DOS
for our tight-binding model is presented in the right panel of
Fig. 1. Once the model has been validated, we study the case
of twisted AA′ hBN bilayers.

B. Twisted AA′ hBN bilayer

Each layer of the bilayer system has a unit cell made of two
atoms, one boron and one nitrogen, defined with the following
unit vectors:

a1 = a(1, 0)

a2 = a(
√

3, 1)/2. (3)

The superlattice of a commensurate twisted hBN bilayer can
be determined by its unit vectors, which are established via
two integers, m1 and m2, as usual [42,43]:

L1 = m1a1 + m2a2

L2 = −m2a1 + (m1 + m2)a2. (4)

FIG. 2. The lattice structure of twisted hBN bilayer for
(m1, m2) = (2, 1). Solid blue and dotted violet lines represent the
first and second layers, respectively. Here, the second layer is rotated
with respect to the first one. The unit vectors of layer 1 (layer 2)
are denoted by a1 and a2 (a′

1 and a′
2), while the unit vectors of

the superlattice (L1 and L2) are given by L1 = m1a1 + m2a2 and
L2 = −m2a1 + (m1 + m2)a2.

For example, the twisted AA′ hBN bilayer with (m1, m2) =
(2, 1) is shown in Fig. 2. The rotation angle between layers
can be obtained as follows:

cos (θ ) = m2
1 + 4m1m2 + m2

2

2
(
m2

1 +1 m2 + m2
2

) . (5)

In this work we have studied four pairs of indices m1 and m2,
namely, (2,1), (3,2), (4,3), and (5,4). These indices are equiv-
alent to rotation angles given by θ = 21.79◦, 13.17◦, 9.43◦,
and 7.34◦. Although all the calculations were performed using
periodic boundary conditions from here on, it is essential to
mention that our model can also be applied to incommensurate
twisted hBN bilayers.

The ab initio calculation shows that flat bands can be
obtained without a magic angle by twisting AA′ hBN bilayers
[20]. Flat bands emerge at large rotation angles, for example,
at 13.17◦. Our simple model qualitatively reproduces this
feature of twisted AA′ hBN bilayers. In Fig. 3(a) we show
the band structure of a twisted hBN bilayer for two pairs
of (m1, m2) indices, namely, (m1, m2) = (2, 1) and (3,2). Al-
though the band structure for the (m1, m2) = (2, 1) case does
not show any flat band [see left panel of Fig. 3(a)], note how
the states at the K point begin to flatten. In fact, by decreasing
the rotation angle to θ = 13.17◦, real flat bands emerge, as
seen in the right panel of Fig. 3(a), since they are isolated
from the other bands by about 0.01 eV. For rotation angles (θ )
smaller than 13.17◦, the width of the flat bands diminishes.
This feature can be better appreciated by plotting the DOS for
various angles, as is done in Fig. 3(b). Note how sharp peaks
emerge within the band gap of a typical AA′ hBN bilayer as
the rotation angle decreases [see Fig. 3(b)]. For angles smaller
than 21.79◦, these peaks are a signature of flat bands near the
conduction and valence band edges.

After having presented and proven the validity of our
model, we proceed to its application to study the excitonic
properties of twisted AA′ hBN bilayer. This study is done in
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(a)

(b)

FIG. 3. Panel (a). Single-particle band structures of a twisted
AA′ hBN bilayer with (m1, m2) = (2, 1) for the left panel and
(m1, m2) = (3, 2) for the right one. Such band structures were ob-
tained from our one-particle tight-binding model. In the left panel,
note how the valence and conduction bands begin to flatten near the
K point, being more pronounced on the right panel, where truly flat
bands appear. This effect agrees with ab initio calculations previously
reported [20]. Panel (b). In this plot we display a zoom of the
single-particle DOS near the conduction and valence band edge for
several rotation angles. In this way it can be observed how sharp
peaks emerge inside the band gap of a nontwisted AA′ hBN bilayer
as the rotation angle decreases.

the next section, where we briefly review the Bethe-Salpeter
equation and introduce our approach to treating excitonic ef-
fects on periodic 2D systems.

III. BETHE-SALPETER EQUATION

A. Reciprocal space representation

In condensed matter, the Bethe-Salpeter equation (BSE)
describes bound states in a two-body particle system that, in
the k space, is often written as an effective eigenvalue problem
for electron-hole pairs [39,40],

(
E1P

kc − E1P
kv

)
�λ

kvc +
∑
k′v′c′

〈kvc|Keh|k′v′c′〉�λ
k′v′c′ = Eλ�λ

kvc,

(6)

where E1P
kc and E1P

kv are the single-particle conduction
and valence band energies, respectively. The electron-hole

interaction kernel is denoted by Keh, and

|kn1n2〉 = |kn1〉 ⊗ |kn2〉, (7)

with |kn1〉 being a single-particle Bloch function obtained
from the one-particle Hamiltonian (1). Additionally, Eλ stands
for the λth excitonic energy and �λ

kvc are the expansion
coefficients of the λth excitonic state |�λ〉 in terms of
electron-hole excitations in the reciprocal space, given by
|�λ〉 = ∑

vc k�λ
kvc|kvc〉. Here

|kvc〉 = a†
ckavk|∅〉, (8)

with |∅〉 denoting the vacuum state. For simplicity, the spin
of the electrons and holes is not considered, i.e., only singlet
states were studied. This assumption can be justified since
triplet states are dark when the spin-orbit coupling is not
strong enough to induce spin flips, as is the case for ideal
hBN systems [44]. Additionally, only vertical transitions for
the electron-hole pairs have been considered, leading to a
vanishing wave vector of its center of mass, Q = 0 in ke =
kh + Q = k. Under these conditions, the λth six-dimensional
excitonic wave function can be expressed in terms of Bloch
functions and excitonic weights,

�λ(re, rh) =
∑
vck

�λ
kvcϕck(re)ϕ∗

vk(rh), (9)

where re and rh are the positions of the electron and hole,
respectively.

B. Real-space representation

The conduction (valence) states near the band gap are
concentrated in boron (nitrogen) atoms for AA′ hBN bilay-
ers [20,39]. Under these circumstances one can approximate
Eq. (8) as

|kvc〉 ≈ a†
BkaNk|∅〉

≈ 1

M

∑
β,α

a†
BαaNβeik·(α−β)|∅〉. (10)

The sum runs over electron (α) and hole (β) positions, while
N and B are nitrogen and boron atoms, respectively. This latter
sum can be further simplified by noting that for electron-hole
pairs, it is enough to know their relative position, namely, R =
α − β. Hence, the Eq. (10) sum can be rewritten as follows:

|kvc〉 ≈ 1

M

∑
β,R

a†
N+R,β

aNβeik·R|∅〉

≡ 1√
M

∑
R

eik·R|Rvc〉,
(11)

where we have defined |Rvc〉 as

|Rvc〉 = 1√
M

∑
β

a†
N+R,β

aNβ|∅〉. (12)

The states |Rvc〉 are the elementary excitonic states in real
space. Equivalently, |Rvc〉 can be seen as the Bloch state
describing the motion of an electron-hole pair of size R.

Let us say a few words about the advantages of this type of
basis. First, since the system under study (AA′ hBN bilayers)
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is periodic, it is unnecessary to consider all the electron-hole
pairs. By symmetry properties, examining only nonequivalent
hole positions within the bilayer is enough, significantly re-
ducing the problem’s dimensionality. Second, by restricting
electrons to be only at boron sites, the number of electron-hole
pairs is decreased again. This assumption is based on previous
results reported in Ref. [39], where authors found that near the
gap, the valence (conduction) Bloch states are concentrated
on nitrogen (boron) atoms, which has been corroborated in
Refs. [40,41].

Finally, considering up to first-order effects and neglecting
exchange ones, the electron-hole interaction kernel of the BSE
is diagonal. Although these approximations seem very drastic,
their application to hBN bilayers results in good agreement
with more complex and cumbersome models, such as Bethe-
Salpeter calculations based on the GW approximation.

We have closely followed the work presented in Ref. [39].
However, we improve this model to adequately describe the
excitonic properties of twisted AA′ hBN bilayers. First, we
allow the electrons to be at boron sites and nitrogen ones.
By doing this, we expect to correctly consider the complex
atomic environment which characterizes twisted bilayer sys-
tems. Second, in Ref. [39] the kinetic part of the real-space
BSE is obtained by first-order perturbation theory, which
leads to a next-nearest-neighbor approximation in the exci-
tonic transition space. In this work we follow a different
approach, detailed below, that allows us to consider all types
of interactions at once, albeit at a higher computational cost.
Finally, instead of expanding the BSE Hamiltonian with a set
of one-particle tight-binding s orbitals, we use a set of pz

orbitals, which has been demonstrated to reproduce better the
results of DFT calculations for nontwisted and twisted AA′
hBN bilayers.

We now obtain the explicit representation of the BSE in
real space. We substitute Eq. (11) into Eq. (6) to do so. After
some manipulations, we obtain

Eλ�λ
Rvc =

∑
R′

〈Rvc|H1P|R′v′c′〉�λ
R′v′c′

+ 〈Rvc|Keh|Rvc〉�λ
Rvc. (13)

To consider all possible interactions included in the kinetic en-
ergy term of the previous equation, we compute it as follows:

〈R|H1P|R′〉 =
∑
vc

(Ec − Ev )〈R|vc〉〈vc|R′〉. (14)

We have omitted the vc label in the excitonic states |Rvc〉 ≡
|R〉 for simplicity. On the other hand, |vc〉 = |v〉 ⊗ |c〉, where
|n〉 with n = c, v, is an eigenstate of H1P. In deriving Eq. (14),
we have assumed that the |vc〉 states are complete and that the
H1P can be split into two subspaces as H1P ≈ Hc ⊗ 1v − 1c ⊗
Hv , which is reasonable for 2D semiconductors with a wide
band gap [39].

For the electron-hole interaction kernel, we neglect the ex-
change contributions. In this approximation and the basis |R〉,
the kernel, up to first order, becomes diagonal. By following
Ref. [39], we also assume the kernel can be substituted by
a model potential, particularly a potential of the 2D Keldysh

type [45]:

V (r) = e

4πε0r0

π

2

[
H0

(
r

r0

)
− Y0

(
r

r0

)]
, (15)

where r0 is the screening length, and H0 and Y0 are the Struve
function and the Bessel function of the second kind, respec-
tively. As a reminder, this type of interaction behaves as a
screened 1/r Coulomb potential at long range. At the same
time, it has a weak logarithmic divergence at short distances,
where the screening distance, r0, determines the crossover.
Thus the matrix elements of the Bethe-Salpeter kernel, in the
excitonic transition basis, can be written as

〈R|Keh|R〉 = V (R). (16)

Since we are dealing with a bilayer system, two screening
lengths are defined, namely, rIP

0 and rIL
0 . Here rIP

0 corresponds
to the screening length of the Keldysh potential for inter-
actions in a single layer, while rIL

0 stands for the screening
length for interactions among different layers. These param-
eters were adjusted to reproduce the excitonic energies of a
nontwisted AA′ hBN bilayer correctly. The best fitting values
we have found are rIP

0 = 0.87 nm and rIL
0 = 0.91 nm.

In the excitonic transition basis, the λth excitonic wave
function can be readily written as

�λ(re, rh) =
∑

R

∑
β

�λ
Rϕe(re − β − R)ϕ∗

h (rh − β), (17)

where rh is the position of the hole, re is the position of the
electron, β runs over the position of the nonequivalent holes
(nitrogen atoms), and �R are the excitonic weights obtained
from the eigenvectors of the effective two-particle Hamilto-
nian in Eq. (13).

This work mainly aims to apply the BSE (13) to twisted
AA′ hBN bilayers. For that, we feed the BSE (13) with the
eigenvalues and eigenvectors of the one-particle Hamiltonian
H1P, defined in Eq. (1). Before applying our model to twisted
systems, we have verified that our model correctly reproduces
the results from other authors [30,39–41].

The path chosen to obtain the excitonic properties of AA′
hBN bilayers is stepwise. The first step is building the periodic
version of Eq. (1) for a given pair of m1 and m2 indices. Then,
in the second step, we obtain the matrix representation of the
real-space version of the BSE (13), taking into account as
many holes as nonequivalent positions they are. Remember
that we suppose that holes can only live in nitrogen atoms.
For example, a nontwisted AA′ hBN bilayer will have only
two nonequivalent holes or nitrogen atoms, one per layer.
However, the system’s symmetry decreases as the rotation
angle decreases. In other words, the unit cell becomes larger,
giving rise to more nonequivalent sites for nitrogen atoms.

At this point, how the effective eigenvalue problem scales
upon the considered number of holes must be clarified.
For simplicity, let us consider the case of a nontwisted
hBN bilayer. As we have mentioned before, the number of
nonequivalent holes (nh) for this system is 2. Since the elec-
tron can be at any atomic site within the bilayer, we have nhM
electron-hole pairs, where M is the total number of atoms in
the bilayer. Therefore, the matrix representation of Eq. (13)
has dimension nhM × nhM. However, due to the sum over
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valence and conduction states appearing in the kinetic part of
Eq. (13), we need to sum (M/2)2 items per matrix element.
In this way, the building of the Bethe-Salpeter effective two-
particle Hamiltonian scales as n2

hM4/4. As the prefactor nh

grows, more computational resources are needed. For the ro-
tation angles studied here, the number of nonequivalent holes
is nh = 3, 7, 13, and 21 corresponds to θ = 21.79◦, 13.17◦,
9.43◦, and 7.34◦, respectively.

Once the matrix representation of Eq. (13) has been built,
the third and final step is its numerical diagonalization. This
last computation provides us with the excitonic energies and
wave functions of the system in consideration. One of the
main advantages of the real-space representation is that the
excitonic wave functions can be straightforwardly plotted.
The following section presents a detailed analysis of the ex-
citonic energies and wave functions. Note that our method
allows us to study systems with around 2000 atoms in a few
seconds, which is impossible when employing higher-level
theories [46].

IV. EXCITONIC WAVE FUNCTIONS OF TWISTED hBN

This section presents the application of the above-
mentioned model defined for commensurate twisted AA′ hBN
bilayers. Since excitonic effects play an important role in
the optical spectrum of 2D semiconductors [9–11], including
hBN, the characterization of the excitonic states is an essen-
tial ingredient for technological applications. Accordingly, we
study the symmetry properties of excitonic wave functions ob-
tained from the effective two-particle Hamiltonian in Eq. (13)
for different rotation angles, θ . Before that, it is convenient to
understand how the excitonic wave function can be obtained
from the matrix representation, in the |R〉 basis, of Eq. (13).
Any eigenvector of this matrix, with eigenvalue number λ,
can be written as nh blocks of size M, which means �λ

R =
(�λ

h1
,�λ

h2
, . . . ,�λ

hnh
). Each of these blocks, here represented

by the numbers �λ
hα

≡ {�λ
rhα ,re1

, . . . ,�λ
rhα ,reM

}, stands for all
the electron-hole pairs which can be formed with a fixed
hole hα located at rhα

(with α = 1, . . . , hnh ) and an electron
located at reβ

, with β running over all the positions in the
system, in other words, β = 1, . . . , M. As a result, the total
excitonic wave function, Eq. (17), is obtained by adding up
these nh parts. Remarkably, on the |R〉 basis, the excitonic
wave function can easily be plotted in real space, enabling the
characterization of its symmetry properties.

For illustrative purposes, in Fig. 4 a schematic representa-
tion of the second (λ = 2) eigenvector of a twisted AA′ hBN
bilayer with (m1, m2) = (2, 1) is displayed. On the left-hand
side of the figure, we show a particular case of �λ

R for nh = 3
and λ = 2. As can be seen, that eigenvector is formed by
three blocks, each having M items. It is important to remark
that even though all the blocks have the same size, they do
not equally contribute to the total excitonic wave function.
To show this, we plot a pie chart on the right side of Fig. 4,
wherein the different colors represent the contributions due
to different holes. Each nonequivalent hole contributes dif-
ferently to the excitonic wave function. This latter can be
understood by noting that the atomic environment dramati-
cally affects the potential that acts over the exciton. Therefore

FIG. 4. Schematic representation of the second (λ = 2) eigen-
vector of the effective two-particle Hamiltonian of the BSE obtained
for a twisted AA′ hBN bilayer with (m1, m2) = (2, 1). Its mathemat-
ical form is shown on the left of the figure. The full circle represents
the total excitonic wave function, while each color represents the
contribution of specific holes to it. The three nonequivalent holes for
this case are displayed in Fig. 5, where the atomic environment of
the holes is completely different from each other, leading to different
contributions to the entire excitonic wave function.

its contribution to the excitonic wave function will be unique.
Note how the complexity of �λ

R grows as the number of the
nonequivalent position for the holes increases. In particular,
for a twisted AA′ bilayer with (m1, m2) = (5, 4), we have
that nh = 21, as seen in Fig. 5. Even for this seemingly small
number of atoms and a supercell of size 3 × 3, the computa-
tional resources needed for the diagonalization of the matrix
representation of Eq. (13) is considerable. For us, studying
angles smaller than θ = 6◦ is out of reach because the number
of Hamiltonian matrix elements will be ≈109 or larger, de-
manding a massive amount of RAM and CPU time exceeding
several months.

A. Excitonic wave function for θ = 7.34◦

For convenience, we have chosen to put on view only one
case, specifically, (m1, m2) = (5, 4), which corresponds to a
rotation angle of θ = 7.34◦. We have selected this system
because it is the smaller angle we can handle. Besides that,
the main features of it are very similar to the ones that appear
at other angles. Before showing the excitonic wave functions,
it is interesting to look at the intralayer or interlayer character
of the excitonic states of this particular case. With this aim, we
plotted the projected two-particle DOS, over different layers,
of the excitonic energies of a (5,4)-twisted hBN bilayer in
Fig. 6. It is noteworthy that this density of states was calcu-
lated using the excitonic energies weighted by the different
contributions of the excitonic wave functions in real space
considering a distance cutoff of 7 Å. We plotted the DOS
projected over the first (second) layer in solid red (solid blue)
lines in the lower panel of such a figure.

In contrast, the difference between both is exhibited in
solid green lines in the upper panel. By inspecting the lower
panel of Fig. 6, one can elucidate a given excitonic energy
of the interlayer or intralayer nature. Excitonic states with a
strong intralayer character are almost at a single layer. Thus
the projected DOS must be more significant in one of the two
layers. Contrarily, interlayer excitonic states are distributed
among the two layers of the system. This latter leads to a
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(a)

(b)

FIG. 5. Panel (a). Nonequivalent position for nitrogen atoms
(labeled by red solid stars) of a twisted AA′ hBN bilayer with
(m1, m2) = (2, 1). Here and in panel (b), atoms belonging to layer
1 (layer 2) are denoted by solid black (solid blue) circles. Panel (b).
Nonequivalent positions for nitrogen atoms of a twisted AA′ hBN
bilayer with (m1, m2) = (5, 4). The nonequivalent positions, 21 for
this particular case, are labeled by solid red stars.

projected two-particle DOS having similar contributions on
both layers. For a (5,4) twisted AA′ hBN bilayer, the excitonic
states with the lowest energies (from 6 eV to approximately
6.25 eV) have a strong intralayer character, whereas for en-
ergies greater than 6.25 eV, they exhibit a robust interlayer
nature, see Fig. 6. It has to be noted that due to the sym-
metry reduction imposed by the rotation of the layers, all
the excitons, even the ones appearing at the lowest excitonic
energies, become nondegenerate. This latter contrasts with the
untwisted case where most low-energy and bright excitons
doubly degenerate. This behavior is typical, at least, for the
θ angles we have studied.

We present two excitonic wave functions obtained for a
(5,4)-twisted AA′ hBN bilayer. For demonstrative purposes,
we have chosen an intralayer and an interlayer excitonic state
to be analyzed. The �λ

hβ
part of the excitonic wave functions

for (β, λ) = (6, 24) and (1,56) is shown in the corresponding
(a) and (b) panels of Fig. 7. Note that the excitonic wave
function of panel (a) is strongly localized at a single layer,
the one where the hole is fixed (hence its intralayer nature),
and that it resembles the symmetry of a single component of

FIG. 6. Projected excitonic or two-particle DOS of a twisted AA′

hBN bilayer with (m1, m2) = (5, 4) is shown. In the lower panel,
solid red (blue) lines indicates the DOS projected over the first (sec-
ond) layer. In the upper panel, the difference between the projected
DOS over the first layer and the second one is presented by the solid
green line. Intralayer states are characterized by having a very large
projection at a single layer. On the other hand, interlayer states have
similar projections over the two layers.

the first exciton appearing in a normal hBN bilayer, which is
also of an intralayer nature (see, for example, Ref. [39]). As a
result, the symmetry of this exciton is reduced for its degen-
erate version. The exciton presented in panel (a) of Fig. 7 has
the same symmetries as the antisymmetric component of the
ground-state exciton of a nontwisted AA′ hBN bilayer.

On the other hand, the higher energy exciton, shown in
panel (b) of Fig. 7, has a greater spatial extension than the one
appearing in panel (a) on the same figure. As easily verified,
this exciton has an interlayer character since most of its wave
function is located at the layer with no holes. In addition,
observe that this exciton’s structure is more complex than that
of panel (a). A more detailed study of the symmetry properties
of these excitons is of great interest but is out of this work’s
scope and will be done elsewhere.

B. Absorption spectrum for θ = 7.34◦

In order to know which of these excitonic states is bright or
dark, one has to look at the absorption spectrum of the system,
given by the imaginary part of the macroscopic dielectric
function [47], which in the many-body perturbation case and
within the dipole approximation becomes [48]

ε(ω) = 8π2e2

V

∑
λ

∣∣∣∣∣
∑

R

�λ
R dR

∣∣∣∣∣
2

δ(ω − Eλ), (18)

with the dipole element matrix given by

dR = ih̄

m
n · 〈Rcv|p|R′cv〉

Eλ
,

where e is the electron charge and m its mass, V is the volume
of the unit cell, Eλ are the excitonic energies, �λ

R are the
excitonic weights of the λth eigenvector, n is the direction of
the electric field, and p is the momentum operator.
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(a) (b)

FIG. 7. Excitonic wave functions of a (5,4)-twisted AA′ hBN bilayer for two excitonic energies, with eigenvalue numbers λ = 23 and
λ = 55 for the left (a) and right (b) panels, respectively. Each of these panels shows the excitonic wave function �λ

hβ
. Here we have chosen

β = 5 [for (a) panel] and 0 [for (b) panel], projected on layer 1, on layer 2, and on both layers. Also, a lateral view is included to better
appreciate the intralayer or interlayer character of the excitonic state. Solid circles indicate the site of the wave function in real space. Colors
and dot sizes represent the square of the wave-function amplitude, namely, |�λ

hβ
|2 at each atomic position. Finally, the specific position of the

hole is indicated by a solid red star.

The quantity ε(ω) shows a peak whenever an optical tran-
sition is allowed; therefore the excitons at that energy shall
be bright. Figure 8 displays the absorption spectra for the
three rotation angles studied, θ = 0◦, 21.78◦, and 7.34◦. Our
model agrees with the binding energies prior obtained from
first-principles calculations for the nontwisted hBN bilayer
[40,41]. For this case, θ = 0◦, the spectrum shows few very
well-defined peaks at specific energies, the more intense at
about 6.25 eV, or, equivalently, at an excitonic binding energy

FIG. 8. Absorption spectra for three different rotation angles,
θ , were obtained from the numerical evaluation of Eq. (18) using
a broadening of 5 meV. As can be seen, our model qualitatively
reproduces the binding energies of the ab initio calculations. See, for
example, Refs. [40,41]. Note how the rotated cases exhibit a bright
exciton inside the band gap of the nontwisted bilayer.

of −1.62 eV. In particular, this peak is very narrow com-
pared to those that emerged in twisted bilayers. This exciton’s
characteristics might be attributed to the fact that the unit
cell is the smallest, being the more symmetric so that the
nontwisted hBN bilayer has more degenerated eigenstates.
Therefore, a precise frequency (or energy) should be used to
observe such exciton. It is important to mention that in previ-
ous works that used time-dependent DFT, see, for example,
Refs. [32,33], a shift of the excitonic energies is observed
for a nontwisted hBN bilayer when compared to GW-BSE
calculations. In [32], the authors claimed that the redshift of
the excitonic energies they have obtained could come from the
small vacuum region they used in their calculations or from
the fact that they did not use a 2D Coulomb truncation method.
Additionally, the authors concluded, among other things, that
time-dependent DFT underestimates the excitonic binding en-
ergy compared to many-body perturbation theory techniques.
In Ref. [33], a blueshift of the excitonic energies is observed
by using time-dependent DFT together with screened range-
separated hybrid functionals. This shift of the excitonic peaks,
as the authors claimed, is similar in nature to the one observed
in [31]. However important this could be, it is out of the reach
of the present work and is not discussed here.

On the other hand, the absorption spectra for bilayers
with θ �= 0◦ exhibit more and broader peaks, where the more
intense ones are at lower energies than their untwisted coun-
terparts. Notice that for smaller angles, wider excitonic energy
windows are observed. Also, as the angle decreases, the unit
cell is larger and the eigenstates are less degenerated, giving
rise to an energy dispersion of them. Therefore excitonic
peaks are observed that become wider as the angle diminishes.
For these cases, the excitons can be excited by a range of
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FIG. 9. Log scale of the matrix elements of the tight-binding-like
Hamiltonian as a function of distance, obtained by the fitting of the
Slater-Koster functions to DFT calculations for a (3,2) twisted hBN
bilayer. Note that the matrix elements are quite small for distances
greater than 7 Å.

energies given by the width of the excitonic peak. Third, the
effect is even greater for the angle θ = 7.34◦, for which the
dominant peaks appear even at lower energies when compared
to the θ = 0◦ and θ = 21.78◦ cases. This latter could be a
consequence of the dispersionless states that appear in the
band structure of the twisted hBN bilayer. Due to the low
kinetic energy of these states, interaction effects are stronger,
enhancing the excitonic properties of the system. Since the
moiré potential can be strong near the hole, the exciton could
be trapped, giving rise to well-localized excitons. The lo-
calization of the excitons can be studied readily within this
formalism. However, its discussion is out of the scope of this
work and will be discussed elsewhere.

Ultimately, let us discuss the applicability and limitations
of our model. The main limitations of our model are the
approximations that were made, which include the optic limit
approximation (Q = 0), the neglect of quasiparticle and ex-
change effects, the use of single-particle wave functions that
do not have the symmetry of the systems, the use of a model
potential instead of using a self-consistent one, and the sup-
position that holes are only located at nitrogen atoms. Even
though this approximation works well for nontwisted hBN
bilayers, their validity on twisted systems must be clarified.
However, we expect our model to be good for semiconductors
with a wide band gap whose holes and electrons tend to be in
different sublattices, suppressing the exchange effects. On the
other hand, quasiparticle corrections can be included via the
single-particle Hamiltonian by fitting it to the GW calculation
of the untwisted system as a first approximation. Also, a
fully symmetrized set of the wave function can be chosen
as the basis on which the one-particle Hamiltonian is to be
represented. Notably, our approach can be used in several
2D systems without significant modifications, which makes
it useful for systematically studying their optical properties,
at least under the above approximations.

FIG. 10. Intralayer hoppings for BN interactions (solid blue cir-
cles), NN interactions (solid violet circles), and BB interactions
(solid red circles). The three types of interlayer hopping parameters
(BN, BB, and NN interactions) are displayed as solid green circles,
see Fig. 12.

V. CONCLUSIONS

To summarize, we have introduced a tight-binding model
to solve the Bethe-Salpeter equation (BSE) using an effec-
tive potential for electron-hole interaction. This approach was
used for studying the excitonic properties of 2D twisted bilay-
ers, in particular, and as an example, we have studied the case
of twisted AA′ hBN bilayers. Our method solves the BSE in
real space using a basis of excitonic transitions. To build such
a basis, we used a parameterized one-particle pz tight-binding
Hamiltonian, adjusted to correctly reproduce the band gap
at the K point obtained from GW calculations. The main
advantage of this approach is that the number of electron-hole
pairs needed to solve the BSE can be highly diminished by

FIG. 11. Fitting of the intralayer hopping parameters to a model
involving only s orbitals. Note that this type of model is in very good
agreement with the DFT results.
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FIG. 12. Interlayer hopping parameters for BN (solid green cir-
cles), NN (solid red circles), and BB (solid blue circles) interactions.
As can be seen, a model with only s orbitals (solid violet circles)
is not enough to fully account for the distance dependence of these
hopping parameters, see Figs. 13–15.

considering the system symmetries. This approach is possible
because the number of holes forming the electron-hole pairs
can be set to be the number of nonequivalent nitrogen atoms,
where we have supposed the hole states are mainly localized.
To further simplify the problem, we have approximated the
Bethe-Salpeter kernel by a model potential of the 2D Keldysh
type, which is a good approximation for 2D semiconductors
with a big band gap.

Thus we obtain the excitonic properties of twisted hBN
bilayers with a rotation angle down to θ = 7.34◦, which is
far beyond the limits of the ab initio version of the BSE
in reciprocal space. The results obtained from it are ex-
pected to be in the range of the experimental error, allowing
their qualitative description even in the several approxima-
tions of our model. Furthermore, the approximations we have

FIG. 13. Fitting of the interlayer BN hopping parameters (solid
blue circles) to a pz model (red solid circles).

FIG. 14. Fitting of the interlayer BB hopping parameters (solid
blue circles) to a pz model (red solid circles).

introduced can be lifted to improve the model due to its
modular structure, albeit at a much higher computational cost.
As we have shown, the excitonic properties of the hBN bilayer
can be tuned by controlling the angle between layers, opening
the possibility of novel applications in the far-ultraviolet opto-
electronic devices. We hope our work motivates more studies
in this direction, since it allows the study of large moiré
patterns with relatively moderate computational resources.

Additionally, we have made our implementation of the
model in PYTHON code available under the free software li-
cense (see the Tight-binding version of the Bethe-Salpeter
equation for 2D semiconductors repository on GitHub) for
anyone who wants to use it. Besides that, we claim our
model can be straightforwardly applied to other 2D semi-
conductors similar to hBN as long as suitable parameterized
single-particle tight-binding Hamiltonians and a smooth 2D
model potential are available, thus opening the possibility of
systematically studying their excitonic properties.

FIG. 15. Fitting of the interlayer NN hopping parameters (solid
blue circles) to a pz model (red solid circles).
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º

FIG. 16. Comparison of the band structures of a (3,2) twisted
hBN bilayer obtained from DFT calculations (solid black lines) and
from the pz-type tight-binding model (dotted red lines). Note the
excellent agreement between them.
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APPENDIX: DETAILS ON THE FITTING
TIGHT-BINDING PARAMETERS

We have used the PYBINDING [49] and PYMATGEN [50]
packages to construct the single-particle Hamiltonian. The
algorithm used to build the twisted AA′ hBN bilayer follows
the implementation introduced in Refs. [43,51]. For single-
particle band structure calculations, we have used Mk = 50 k
points. We have used a histogram algorithm with 600 bins and
a Gaussian envelopment adjusted to reproduce the histogram
data best, to obtain the one-particle DOS. As mentioned in
the main text, all interlayer interactions were set to zero for
distances larger than a radio cutoff of 7 Å. To fully justify
this assumption, a few words are needed. Our tight-binding
model was fitted to DFT calculations for both the regular hBN
bilayer and the twisted ones. This was made by following the
next procedure. First, we have performed DFT calculations for
twisted hBN bilayer with indexes (2,1), (3,2), and (4,3). Then
we have extracted a tight-binding Hamiltonian by project-
ing the plane-wave wave functions into maximally localized
Wannier functions using WANNIER90. We have taken into

account only pz orbitals. Since these orbitals are orthogonal
to the rest, the disentanglement procedure was fairly simple.
After this a model was obtained by treating the resulting
tight-binding-like Hamiltonian, particularly by truncating it to
7-Å interactions, and then by fitting the corresponding Slater-
Koster functions. For instance, for the (3,2) twisted hBN
bilayer system, the resulting maximally localized wannierized
Hamiltonian was found to have the matrix elements that are
shown in Fig. 9. Therein, one can see that the Hamiltonian
elements are very low after a few angstroms. For this reason
we have truncated the analysis to 7 Å.

Since the Wannier centers are localized fairly close to the
atomic positions, a simple script can be used to separate the
different contributions of the various types of interactions;
typical results can be seen in Fig. 10. We have approxi-
mated all the intralayer hopping parameters by using an s-type
model, as can be seen in Fig. 11, this type of model correctly
reproduces the DFT calculations. On the other hand, interlayer
hopping parameters are more complex. From Fig. 12 it can
be clearly seen that a model using only s orbitals does not
correctly describe their distance dependence (see the solid
violet circles in that figure); as a matter of fact, a pz model
is needed to rightly reproduce the DFT results. The corre-
sponding fitting of this kind of hopping parameters is shown
in Figs. 13–15 for BN, BB, and NN interactions, respectively.
Although the agreement between DFT results and the pz-type
tight-binding Hamiltonian is quite good, a certain amount of
variations are observed in the previous figures. To quantify the
goodness of such a fitting, we can compute the errors up to one
standard deviation for each twisted hBN bilayer. The resulting
errors for the three types of interlayer interactions, for a (3,2)
twisted hBN bilayer, are summarized in Table II.

It is time to compare the band structures of a (3,2) twisted
hBN bilayer for both the DFT calculations and the pz-type
tight-binding model. This is done in Fig. 16. Therein, it can
be seen that the pz model is in very good agreement with the
DFT band structure, thus proving that this type of model is
adequate to study rotated systems.

Concerning two-particle calculations, a 5 × 5 supercell
was used to compute the excitonic properties of twisted AA′
hBN bilayer with (m1, m2) = (2, 1) and (3,2), whereas a 3 × 3
supercell was used for twisted systems having (m1, m2) =
(4, 3) and (5,4). The numbers of atoms for (m1, m2) = (2, 1),
(3,2), (4,3), and (5,4) are M = 700, 1900, 1332, and 2196,
respectively. We have used the SPGLIB library [52] via PY-
MATGEN to compute the nonequivalent positions of the twisted
systems studied here. For the 2D Keldysh potential, we have
used a radio cutoff (rc) of twice the size of the unit cell
of the twisted system. To be specific, rc = 1.3 nm, 2.1 nm,
3.0 nm, and 3.8 nm for rotation angles of θ = 21.79◦, 13.17◦,
9.43◦, and 7.34◦. Finally, the excitonic energies and weights
of the two-particle wave functions were obtained by direct
diagonalization of the effective two-particle Hamiltonian of
Eq. (13), which was built using our algorithm.
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