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The Hatano-Nelson model is one of the most prototypical non-Hermitian models that exhibit the intrinsic
non-Hermitian topological phases and the concomitant skin effect. These phenomena unique to non-Hermitian
topological systems originate from the Galilean transformation. Here, we extend such an idea to a broader range
of systems based on an imaginary boost deformation and identify the corresponding energy-twisted boundary
conditions. This imaginary boost deformation complexifies spectral parameters of integrable models and can
be implemented by the coordinate Bethe ansatz. We apply the imaginary boost deformation to several typical
integrable models, including free fermions, the Calogero-Sutherland model, and the XXZ model. We find the
complex-spectral winding in free fermion models under the periodic boundary conditions and the non-Hermitian
skin effect under the open boundary conditions. The interaction effect is also shown in the two-particle spectrum

of the XXZ model.
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I. INTRODUCTION

Recently, non-Hermitian physics has attracted extensive
interest as it describes open systems interacting with the en-
vironment [1-3]. As the energy spectrum becomes complex
in non-Hermitian systems, interesting physics that cannot
be seen in traditional Hermitian systems emerges. As a
prime example, non-Hermitian systems can support two types
of complex-energy gaps, line gap and point gap [4-6].
Specifically, point-gapped non-Hermitian systems can host
topological phases that have no analogs in Hermitian systems.
Such intrinsic non-Hermitian topological phases also lead
to a new type of bulk-boundary correspondence called non-
Hermitian skin effect [7-14], in which an extensive number
of eigenstates are localized at the boundaries.

The Hatano-Nelson model [15,16] is one of the most
fundamental non-Hermitian models as it provides interest-
ing physics in a fairly simple fashion. Originally, it was
introduced to describe the movements of the vortex lines in
superconductors, while similar non-Hermitian models were
recently realized in single photons [17] and ultracold atoms
[18], as well as a variety of open classical systems [19-23].
In the Hatano-Nelson model, non-Hermiticity is implemented
as an imaginary-valued gauge field that makes the hopping
amplitudes nonreciprocal. This model is solvable using a
similarity transformation that reduces the wave functions to
the Hermitian counterparts, which captures the skin effect
and Anderson transition induced by non-Hermiticity. Even
in the presence of many-body interactions, the skin effect
still survives [24-33]. Interestingly, Hatano and Nelson also
argue that the imaginary gauge field can be understood as
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a boost of Galilean transformation. However, such a rela-
tionship between non-Hermiticity and the Galilean boost has
been discussed only for simple free fermionic models, and the
general implications of this approach have been unclear.

For an integrable system, there is a set of integrable defor-
mations that keeps the infinitely many commuting conserved
charges (quantities), such as boost deformation [34,35].
With boost deformation, the boost parameter associated with
conserved charges is generated by the boost operator. Interest-
ingly, the boost deformation modifies the spectrum but keeps
the energy spectrum real. Previously, such a boost transfor-
mation, as well as the concomitant energy-twisted boundary
conditions, was applied to thermal quantum transport [36].

In this work, by generalizing the boost parameter to
an imaginary parameter, we obtain a complex energy
spectrum with such a boost deformation and study non-
Hermitian physics. Put differently, we seek an analog to the
Hatano-Nelson approach and extend the idea of Galilean
transformation to a broader context that is applicable to more
generic models. While the original discussion by Hatano and
Nelson focused on noninteracting models, our approach can
be applied to many-body interacting models. We consider
transformation of a Hermitian Hamiltonian that rescales co-
ordinates and leads to a non-Hermitian Hamiltonian. Such a
rescale transformation can also be understood as putting the
system in a boosted reference frame in space-time coordi-
nates. For lattice systems, especially integrable systems, the
boost transformation can be implemented as an imaginary
boost deformation of conserved charges. In the language of
the algebraic Bethe ansatz (i.e., algebraic formulation of the
Bethe ansatz based on transfer matrices), such a boost de-
formation complexifies spectral parameters as it generates an
imaginary component for each conserved charge. To seek a
boundary condition description of such a bulk deformation,
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we consider the U(1) gauge field as it can also be formulated
as a phase-twisted boundary condition. Similarly, for the bulk
imaginary boost deformation, the boundary transformation
can be formulated as what we call the energy-twisted bound-
ary condition [36].

With such a transformation, an originally Hermitian
Hamiltonian becomes a non-Hermitian Hamiltonian with
a complex spectrum. We show that the imaginary boost
deformation induces the topological properties unique to non-
Hermitian systems and the concomitant skin effect. With the
tools of the Bethe ansatz for integrable models, we study
not only free fermions but also interacting models where
the interplay between many-body interactions and the boost
deformation is worth investigating.

The rest of this work is formulated as follows. In Sec. II,
we formulate the energy-twisted boundary conditions of a
chiral Dirac fermion and calculate its deformed spectrum.
We also introduce the rescale transformation that leads to
a non-Hermitian Hamiltonian. In Sec. III, we discuss the
algebraic Bethe ansatz formalism and implement the imagi-
nary boost deformation. In Sec. IV, we study the boost de-
formation of free fermions and obtain their complex spectra.
We confirm the complex-spectral winding under the periodic
boundary conditions and the consequent skin effect under
the open boundary conditions. We also present the results
of two-particle energy spectra and their winding numbers.
In Sec. V, we study the imaginary boost deformation of the
Calogero-Sutherland model as a prototypical example of in-
teracting integrable models. In Sec. VI, we investigate the
imaginary boost-deformed XXZ model. Finally, we conclude
in Sec. VII and discuss further directions.

II. DIRAC FERMION

The boost deformation for integrable lattice systems is
defined in terms of the flow equation [34,35],

dH(k) .
—— = iBIH )], H®)), ey
K

where « € R is the boost parameter, and B[H (k)] = ZX xhy, is
the boost operator with H = ) h,. Such a deformation keeps
the Hamiltonian Hermitian and integrable. In this work, we
generalize the boost deformation from real to imaginary as
dH (k)
dk

The boost operator is well defined for an infinitely long sys-
tem. We will later comment on the boost deformation for finite
systems.

As a warmup, we consider a (1+1)D chiral Dirac fermion
on an infinitely long system,

= [B[H («)], H(k)]. @)

H = /dx viHY, H=—ivd,, 3)

where ¥ (x) is a fermion field operator and v is the Fermi
velocity. In this system,

Hk) = / dxy T HGOY, @

B[H (k)] = f dx " xH )y, ®)

are the deformed Hamiltonian and the boost operator,
respectively. The solution under the initial condition in
Eq. 3)is
@ = [avy Ty, (®)
1 —ivk
For a finite system of length L, the system is consid-
ered to be subject to the periodic boundary conditions
Y(x+L)=1Y¥(x), and the single-particle wave functions
are given as fi(x) =e* /L with k=2wn/L (n € 2).
The corresponding single-particle eigenenergies are &, = vk/
(1 —ivk).
The same spectral deformation can be obtained by impos-
ing a boundary condition twisted by the energy [36],

Y(x+ L) = &My (o)e ™, (N

which is referred to as the energy-twisted boundary condition,
while the Hamiltonian remains unchanged. For the imaginary
boost deformation, the energy-twisted boundary conditions
read,

S+ L) = & filx) = e fi(x). (®)
Then, the momentum is solved by
. . 2mn 1
(k — ikey)L = 2mrn, i.e., = — - )
L 1—ivk

with n € Z. The energy-twisted boundary condition is equiv-
alent to the imaginary boost deformation as the momentum
quantization is the same. The bulk deformation gives non-
Hermitian Hamiltonians, which correspond to the nonunitary
boundary twist operator e““ .

The thermal (imaginary-time) partition function of the
(1+1)D chiral Dirac fermion on a torus reads,

Z =Tre PH = Ty glo—</? (10)

with g := ¢*"* and modular parameter  := ifv/L. Under the

energy-twisted boundary conditions, the modular parameter is
modified to

ifv 1
- — .
L 1—ivk
The mode expansion of the fermion operator is given by
)=, bre™. To make a connection to the energy-

twisted boundary conditions, we consider a new reference
frame that rescales the original frame such that

(1)

X=—" (12)
1 —ivk

Then, in the new x’ reference frame, the mode expansion
becomes

w(x/) — Zbkeikx/(lfivl(). (13)
k

If we require the periodic boundary conditions in the
x' reference frame, i.e., ¥ (x') = ¥ (x' + L), we get Eq. (9).
Therefore, in the new reference frame, the Hamiltonian is non-
Hermitian because of the complex momentum. In this sense,
the energy-twisted boundary conditions can be understood
as a generalization of the imaginary gauge transformation
introduced by Hatano and Nelson [15,16]. There, the Galilean
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boost x' = x — vt = x + igt/m for a free particle ¢ = p*/2m
leads to the non-Hermitian Hamiltonian & = (p + ig)*/2m.
Notably, the Hatano-Nelson model is a prototypical model
that exhibits the complex-spectral winding [4—6] and the con-
comitant skin effect [7-14], both of which are topological
phenomena inherent in non-Hermitian systems. Similarly, we
find that the imaginary boost deformation leads to a wide
variety of complex-spectral winding and skin effect, as shown
in the following for several models. In contrast to the orig-
inal Hatano-Nelson model, the boost deformation gives rise
to energy-dependent gauge fields and longer-range hoppings,
which make properties of integrable models richer.

III. BOOST DEFORMATION OF INTEGRABLE MODELS

Before investigating several models, we here review the
boost deformation of integrable models and demonstrate that
our imaginary boost deformation is generally equivalent to
complexifying spectral parameters of integrable models. For
a one-dimensional (1D) integrable model on a lattice, there
exist Lax operators L, (1) where a labels the auxiliary vector
space, n labels the local Hilbert space, and A is the spectral
parameter associated with the auxiliary vector space. The
monodromy matrix is defined as

Tu(A) = Lavn(M)Lan-1(A) - - - Lar (1) (14)

with the RTT relation
Rio(M — M)Ti(AM)Ta(X2) = Th(A)Ti(A)R12(A — A2),
(15)

where Rj»(A; — Ap) is the R matrix of the integrable model.
The transfer matrix is defined as

T\ = Tr,T,(A). (16)
With the transfer matrix, the conserved operators are gener-
ated as

- —log T (A). (17)

i

d’
_ n+1
I,(2) = (—i) 7

Here, I; is the Hamiltonian H = I; (A = 0), and eigenvalues of
Iy are momenta. Following Refs. [37-39], we define the boost
operator

B=Y ., (1)

where h, is the local Hamiltonian satisfying H = ) _h,. Such
a boost operator generates the Lorentz boost in the sense that
it boosts the rapidity of the transfer matrix by

dT ()

dx

Then, with this boost operator, we generate higher-order con-
served charges by

=[B, T(M)]. (19)

[B,I,] = i1n+1 . (20)

Generalizing the Hermitian deformation, we consider the non-
Hermitian boost deformation as

dI¥
d()[awan—ﬁgux @1

with n > 0 and the boost parameter k. We notice here
that the boost operators generate non-Hermitian higher-order
charges such as the Hamiltonian. In this sense, the spectral
parameter of the transfer matrix is complexified by the de-
formation A — A(k). As such, we call such a deformation
generated by Eq. (21) the imaginary boost deformation, and
the Hamiltonian becomes non-Hermitian after this deforma-
tion. In comparison with Eq. (9), this can be identified as a
bulk description of a boundary twist similar to the case of
the phase-twisted boundary condition that represents the bulk

U(1) gauge field.
As shown in Ref. [35], if the state is deformed as
d|yy)
— 41 = Bly*), 22
T =Blvi) (22)

the eigenvalues of the conserved operators I [/*) = gk |¥*)
are unchanged, i.e.,
d K
n — 0 (n>0). (23)
dk
In this case, the momentum P and energy E*, which are,
respectively, the eigenvalues of /§ and I}, are related by

P = P=0 4 ik E*=0, (24)

For each quasiparticle, we have P* = Z pj and pf =

PF=" + ikes=0. With this formalism, the momentum quanti-
zatlon of qua51partlcles is solved using the coordinate Bethe
ansatz as

1(17 (vj)—ikej )L

[] s —wo. (25)
k()

where v; is the rapidity of the quasiparticle j and S(v; — vx)
is the scattering phase between quasiparticles.

As an example, we consider the XXX Heisenberg
model [40,41]

L
H=>Y [0}, +0lo},, + (of0i, — 1)]. (26)
i=1

The Lax operator of this model is

1 0 0 0
0 b(r A 0
LO) = ) e 7
0 cx) br) O
0 0 0 1
with b(A) = 2 and c(h) = - The momentum of

A3 )L+, :
each particle is given by e 7 = b(A). For the imaginary
boost deformation, the spectral parameter is changed
to A% — A(xk), and the momentum is changed to

P =p+ iKS;ZO. Therefore, we write the boosted
momentum as
1
el = AR =5 2 il iep) (28)
A(K) + 5
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s

With the identification e~7
l/b(ko) — 2, we get

" =b(1% and £570 = b(A%) +

2 i (2iA0 — e ™ + (2020 + 1)
K)=—
2 (2iA0 — 1)e ™% — (2iM0 + 1)

i 2i)\% cosh (2/(82) + sinh (2/(82)

S .9
2 2iA0 sinh (2/(82) + cosh (2/(82) 9)

which indicates that the spectral parameter is complexified
under the imaginary boost deformation.

IV. FREE FERMION

A. Free fermion in free space
1. Periodic boundary conditions

We consider the free fermion in free space with the
quadratic dispersion

e = k2. (30)

Under the periodic boundary conditions f(0) = f(L), the
momentum satisfies k) = 2wn/L with n € Z. Under the
energy-twisted boundary conditions, momentum k and energy
&y, satisfy

k—iK8k=k0 (31)

with the boost parameter x. When the non-Hermitian term is
a constant, the model reduces to the Hatano-Nelson model
[15,16]. In our boosted model, however, the non-Hermitian
term ixe; is no longer a constant and depends on energy.
Combining Egs. (30) and (31), we have

er = k* = (ko + iker)?, (32)

leading to

1
6 = —55 (1 = ik £ T —dikoc).  (33)
K

Notably, the two branches of energy appear in the presence of
the boost deformation, leading to the rich behavior of complex
spectra even for free fermion. In the zero-boost limit x — 0,
we have

1
ef ~—— — +oo, & — k. (34)

K2

For ky = 0, we have
& =——., & =0. (35)

We consider both real and imaginary boost parameters, as
shown in Fig. 1. The energy spectrum is complex even for a
real boost ik € R. The real spectrum changes into the complex
spectrum at ikoxk = 1/4, around which the complex spectrum
exhibits the square-root singularity similarly to exceptional
points [42]. We find that the complex spectrum under the real
boost winds in the complex-energy plane. Then, we calculate
the complex-spectral winding number W defined as

w / v dky d log det[H, — €] (36)
= — — logde —¢
A 2midk B

0=—00

Im[e]
o
j

10
5 \ W = -1
k=05

-5 W=+1" &
-10 &k
-20-10 0 10 20 30
Rele] Rele]

FIG. 1. Complex energy spectrum of free fermion &, = k> for
(left) real boost ¥ = 0.5/ and (right) imaginary boost x = —0.5.
The orange and blue dots are for ky = 0. The arrows on the curves
indicate the flow directions of momentum from ky = —o0 to kg = o0.
The complex-spectral winding number is denoted by W.

with a reference energy ¢ € C. This complex-spectral winding
number W gives a topological invariant unique to non-
Hermitian systems [4—6]. Note that this topological invariant
is always trivial for the real spectrum and can be nontrivial
only for the complex spectrum. Our complex spectrum is
divided into three regions, two of which we find are character-
ized by the nontrivial winding number W = £1 (see Fig. 1).
The nontrivial winding number implies a current [15,16,43]
and also the skin effect under the open boundary conditions
[7-14]. It should be noted that even the real boost makes the
spectrum complex although the boosted Hamiltonian always
preserves Hermiticity. This originates from the nonlinear na-
ture of the eigenvalue equation (32) and may be considered as
a manifestation of spontaneous breaking of Hermiticity.

For an imaginary boost, the complex spectrum exhibits
different behavior (Fig. 1). As the imaginary boost is turned
on, the original spectrum ¢, becomes complex, and a point
gap is open [see the orange curve in Fig. 1 (right)]. On the
other hand, the other branch & of energy emerges from
negative infinity and gets closer to the original branch ¢, as
the boost parameter increases. In contrast to the real boost, the
two branches never touch each other. We also calculate the
complex-spectral winding number W in Eq. (36), as shown
in Fig. 1. The imaginary boost also leads to the nontrivial
winding number, which implies the skin effect under the
open boundary conditions; we indeed find the corresponding
skin effect under the open boundary conditions, as discussed
below.

2. Open boundary conditions

Next, we consider the free fermion with the imaginary
boost under the open boundary conditions. Similarly to the
previous case, the single-particle eigenequation reads

(—idy — ike)’ f(x) = ef(x) (37)

with the boost parameter « € R. Instead of the periodic bound-
ary conditions f(L) = f(0), we impose the open boundary
conditions

f(0) = f(L)=0. (38)

These boundary conditions indeed correspond to the open
boundary conditions for the corresponding lattice model.

The Hatano-Nelson model with open boundaries is solv-
able via a similarity transformation [15,16]. Even though the
imaginary gauge field effectively depends on energy ¢ in
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our boosted system, we show that we can still introduce the
imaginary gauge transformation and then solve our boosted
model. In fact, let us introduce

fe(x) = & f(x), (39)

which now depends on energy ¢ [see Appendix for a deriva-
tion from Eq. (22)]. Then, Eq. (37) reduces to

(=id)* fo(x) = efe() (40)
with the open boundary conditions
f:0) = fu(L) =0. @1
For arbitrary ¢, this eigenvalue problem is readily solved as
e =4k fi(x) o sin(kx) (42)

with momenta k = nw /L (n € N). Hence, the original eigen-
value problem in Eq. (37) is solved as

e =k, f(x) o e sin(kx). 43)

Thus, the spectrum is entirely real, and no point gap is open,
which contrasts with the complex spectrum under the pe-
riodic boundary conditions. All the eigenstates except for
the zero modes with ¢ = 0 are localized at the left (right)
edge in the presence of the imaginary boost x > 0 (k <
0)—non-Hermitian skin effect. This is compatible with the
complex-spectral winding number under the periodic bound-
ary conditions (see Fig. 1). The localization length of the skin
modes is

R
T ke kK2

Notably, the complex spectrum under the periodic boundary
conditions includes an additional contribution from infinity
[see the blue curve in Fig. 1 (right)], which also exhibits the
complex-spectral winding. The above skin modes do not cor-
respond to this additional complex-spectral winding number
but that arising from the original spectrum [see the orange
curve in Fig. 1 (right)].

§ (44)

B. Free fermion on lattice
1. Periodic boundary conditions

Next, we consider a translation-invariant free fermion on a
lattice and the corresponding boost operator,

H(c) =Y t(c)cle,,., (45)
Xz
z
BIH()] = <x + §>tz(/<)c;cx+z. (46)
The boost deformation generally keeps quadratic

fermionic Hamiltonians quadratic. The imaginary boost
deformation, i.e.,

dH (k)

= = BIHL H(©)). @7)
reduces to
dt,
tdff) = =2 D o). 48)

k=0.2 k=0.32

ImE
o N
D
o N
—
>

K=0.34 \ «=0.6
2 \ 2 \

4 -2 0 2 4 4 -2 0 2 4
ReE ReE

-~

ImE
o
ImE
o

FIG. 2. Complex energy spectrum of a free fermion on a lattice
under the imaginary boost deformation for (top left) k = 0.2, (top
right) « = 0.32, (bottom left) k = 0.34, and (bottom right) x = 0.6,
respectively. The dark gray points are energies of k =0 and the
connected lines with the same color are those of k € [0, ), while the
light gray points are of k = 7 and connected lines are of k € [, 27).

This equation is solved with an initial condition #,(k = 0) =
—e'%5,1 — e7'5,, 1. We introduce the generating function

el k) =Y 1), (49)

where the energy dispersion of the original lattice fermion
model is e(k = 0, k) = —2 cos(k + «). Then, the equation re-
duces to the inviscid Burgers equation

i— 4+ f— =0, (50)
K

which has a formal solution

ek, k) =c¢elk =0,k + ixe(k, k)]
= —2cos[k +a + ixe(k, k)]. (G20

Strictly speaking, the boost deformation is applicable only to
infinite systems, where the boost operator is defined unam-
biguously. Here, we try to relax this condition and consider a
lattice fermion model under the periodic boundary conditions
by assigning k =2nn/L (n=0,1,2,--- ,L —1). We as-
sume that the boost deformation is still described by Eq. (51).
This energy dispersion can be effectively considered as that of
the Hatano-Nelson model with the energy-dependent imagi-
nary gauge field «¢.

We numerically obtain the complex energy spectrum of a
lattice fermion with the imaginary boost, as shown in Fig. 2.
For a small boost, the complex spectrum forms an 8 shape.
This 8-shaped complex spectrum can be obtained perturba-
tively for small energy ¢ and boost «. In fact, expanding the
boost equation (51) for |¢| < |«|~' and & = 0, we have

e = —2cosk — 2ik sin 2k + O(x?), (52)

which reproduces the 8-shaped complex spectrum numer-
ically obtained in Fig. 2. The complex-spectral winding
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number W = W (¢) is also obtained as

sgn(k) (& is inside the left loop);
W(e) = { —sgn(k) (e is inside the right loop); (53)
0 (otherwise).

Notably, this result is valid even for the arbitrary boost « as
long as the energy ¢ is small (i.e., || < |k|™!).

As we increase the boost parameter «, the other pieces of
the complex spectra approach the 8-shaped spectrum from
infinity. This situation is similar to the complex spectrum
for free fermions in free space, as discussed in Sec. IV A.
For « 2 0.33, we see that the 8-shaped spectrum touches
the spectrum coming from infinity and forms a cross-shaped
spectrum [see Fig. 2 (bottom)]. This spectral phase transition
is unlikely to occur in usual non-Hermitian lattice models and
originates from the nonlinear nature of the boost equation.
According to our numerical calculations, this spectral phase
transition occurs on the real axis in the complex-energy plane.
Thus, the spectral transition points for Ree > 0 (Ree < 0)
corresponds to k = 7 (k = 0). For k = 7 and ¢ € R, the boost
equation (51) reduces to

e = 2coshke. 54

For the existence of a solution to this equation, ¢ is required
to satisfy ¢ > 2. In this case, we have
arccosh(e/2)

(55)
&

which has two (no) solutions if « is less (larger) than its

maximum value. The spectral transition point corresponds to

the maximum value of ¥ = k(g) = arccosh(¢/2)/¢, i.e.,

ke = 0.331372- .-, (56)

which is compatible with the numerical results in Fig. 2.

2. Open boundary conditions

We also apply the imaginary boost deformation to a lattice
fermion under the open boundary conditions. In this case,
lattice translation invariance no longer exists and we need to
solve the evolution of the hopping amplitude in the matrix
form as

dtxy(fc)_x—y
de ~— 2

L
D taai Yty (1), (57)
a=1

Assuming the analyticity of the evolution, we expand the
hopping amplitude by « as

K" d My (i)

n! dk"
n=0

Ly(k) = (58)

k=0

Here, the higher derivatives of the hopping amplitude are
evaluated successively via

d”“l‘x (K) X —Yy L . n dnij[xa(/()djtay(’()
M. > ZZ(J) 2. (59)

ditl din=J dic/

a=1 j=0

We calculate the hopping amplitude up to the order of 300 for
the system size L = 40.

o
~

o
w

o
PN

Inverse Participation Ratio
o
N

I
o

0.0 0.1 0.2 0.3 0.4
K
k=0.3
1+ |
)
'E' 0 ——c=ssssse Sosss=s
-1t Left Right]
3 2 a1 0 1 2 3
Re[€]

FIG. 3. (Top) Inverse participation ratio (IPR) of all eigenstates
as a function of the imaginary boost deformation parameter « for
L = 40. (Bottom) Complex energy spectrum of a lattice fermion
under the open boundary conditions for k = 0.3. The gray solid line
is the spectrum under the periodic boundary conditions for reference.
The color of the open-boundary eigenenergies indicates a weighted
probability density in Eq. (60) quantifying at which side the eigen-
states are localized.

We obtain the inverse participation ratio (IPR) Y | f|* of
all the eigenstates [Fig. 3 (top)], which scales as O(1/L) and
O(1) for the extended and localized states, respectively. While
the energy spectrum is almost unchanged during the boost
deformation, the IPR shows the localization of all the states
on the edges except for zero-energy states. The edges at which
localized states are bound are consistent with the winding
number W in Eq. (53). We also show the energy spectrum
under the open boundary conditions in Fig. 3 (bottom). The
color of the spectrum indicates a weighted probability density

D R D DA (60)

x<(L+1)/2 x>(L+1)/2

which is close to —1 (4+1) when an eigenstate is mostly on
the left (right) half of the system. Clearly, eigenstates with
e > 0 (¢ < 0) are localized at the right (left) edge, which is
consistent with Eq. (53). Eigenstates under the open bound-
ary conditions having the winding number W = =1 typically
behave as f, o €“?*, similarly to Eq. (43).

The similarity transformation of the lattice fermion is not
as simple as the continuum case (see Appendix A 2). In the
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Im[E]
Argument

Argument

3 -2 -10 1 2 3
Re[E]

FIG. 4. Two-particle complex spectrum and winding number of
the free fermion model on a lattice of L = 20 with the imaginary
boost deformation. The boost parameters are x = 0.1 (top) and
k = 0.6 (bottom). The colored dots on the left plots label the ref-
erence energy chosen for the calculations of the winding numbers on
the right plot with the same color.

continuum case, a local Hamiltonian remains local, at least for
the linear and quadratic fermionic models studied in Secs. II
and IV A. In the lattice case, the boost deformation generates
longer-range hoppings, which lead to the highly nonlocal
Hamiltonian.

C. Two particles

We also study the spectrum in the subspace of two particles
for the lattice free fermion under the imaginary boost defor-
mation. The single-particle boosted spectrum is given by

e(k) = —2cos (%Tn + % + iK&‘(k)), 61)

where we introduce the magnetic flux ¢ to compute the
complex-spectral winding number [33]. Taking two different
single-particle energies ¢; and &, from this single-particle
boosted dispersion, we calculate the two-particle spectrum
E = &1 + &, as shown in Fig. 4. In numerical calculations,
it is difficult to capture the complex spectrum coming from
infinity. Here, we only pick the energy branch around the
origin and focus on the complex spectrum around there. For
k < 0.33, the two-particle energy spectrum forms multiple
loops. For k > 0.33, on the other hand, the loops expand and
open up to lines and do not close. This spectral transition
coincides with the transition point «. ~ 0.33 in Eq. (56) for
the single-particle energy spectrum. For x = 0.1 [see Fig. 4
(top)], most loops are smooth but there is one loop C* close to
the real axis that is narrow and crosses itself. The loops enclos-
ing C* are from the energy of two particles with each particle
on the same side of the 8-shaped single-particle loop shown in
Fig. 2. The loops not enclosing C* are the sum of two energies
from different sides of the 8-shaped single-particle loops. For
k = 0.6 [see Fig. 4 (bottom)], the two straight lines crossing
the origin are from two particles on the same branch of the
cross-shaped single-particle spectrum. On the other hand, the

vertical short lines are from two particles on different branches
of the cross-shaped single-particle spectrum in Fig. 2.

We also calculate the winding number from the two-
particle spectrum, as shown in the right panels of Fig. 4. For
k = 0.1 and Re E > 0, the loop that encloses the red refer-
ence point in Fig. 4 (top) has the winding number W = —1,
and the loops that enclose the blue and orange reference
points have the winding number W = +1. In addition, the
purple reference point is enclosed by three outer loops, and
therefore the winding number is W = —3; the pink reference
point is enclosed by four outer loops and two inner loops
and therefore the winding number is W = —2. The loops
for Re E < 0 are characterized by the opposite-sign winding
numbers. Consistently, the two-particle loops enclosing C*
are from the single-particle spectral loop with the winding
number W = —1. We notice that the presence of the point gap
for the two-particle spectrum is the finite-size effect; in the
infinite-size limit L — oo, an infinite number of loops appear
and the complex-spectral winding number is no longer well
defined. For « = 0.6, the loop structure breaks up, and the
winding numbers are more complicated. When the spectral
loops break at the transition point k., the winding number
consists of the contributions from all the loops that enclose
the reference energy point. Therefore, for reference points on
the right side of the cross-shaped lines, we have W < 0; for
reference points on the upper part of the cross-shaped lines,
the winding number can be positive or negative depending on
the choice of the reference point.

V. CALOGERO-SUTHERLAND MODEL

As a prototypical example of interacting integrable models,
we consider the Calogero-Sutherland (CS) model [44—46] for
M nonrelativistic particles on a circle of length L,

M
_ 2 ,B(ﬂ
; 8Xi * < ) Z Sll’l _(-xl j)’ (62)

where B describes the strength of the interactions. The CS
model is integrable and solvable using the Bethe ansatz
[47-50]. The Bethe ansatz equation reads

L+ Y O, k) =2, (63)
1

with ©(k;, k;) := (B — 1)sign(k; — k;) and, for the ground
state, [; == j — A% If we assume k; < --- < ky, we get

Z@(kj, ki) = Zr{(ﬂ — Dsign(k; — k;)

I=1
=—naB-1DQ2j—M—-1). (64)

From Refs. [51-53], the momentum of excited states of the
CS model is given by

2 M+ 1
k== (n, + ﬁ(J - %)) 65)

where n;’s are non-negative integers with n;<n;;;. We
consider the Bethe ansatz equation [54] with the boost
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FIG. 5. Complex two-particle energy spectrum of the Calogero-
Sutherland (CS) model with g = 0 (top) and B = 0.5 (bottom) for
the (left) real boost k = 0.5 and (right) imaginary boost x = —0.5.

deformation. The energy of the j th particle satisfies
e = (k + ixet)’ (66)

For k = 0, we recover the nondeformed energy spectrum. For
B = 0, the system is bosonic and we recover the same spec-
trum as the noninteracting system in Sec. IV A. For § = 1, the
system is fermionic and we get the different energies for two
particles for the n; = 0 sector. We see that for k = 0,

> M+1 2
0 = 2 = [T”<_n,- 4 ﬁ(T* - J))} .67

which is the particle of bare momentum ﬂ(@
partition.

With the boost deformation, the situation is different.
Solving Eq. (66), we calculate the single-particle energy of

nje”Zas

1
et (k) = — 51— 2ikk; & V1 —dixk;],  (68)

and the two-particle energy as E;(kj, ky) = e1(ky) + €2(k)
with  ¢g;(k;) € s;r(kj) U sj(kj). Figure 5 shows the
two-particle energy spectrum for the real and imaginary
boosts. The real-boosted two-particle spectrum with k = 0.5{
(see the left plots of Fig. 5) forms a V-shaped spectrum
pointing towards the positive x direction. On the basis of the
single-particle spectrum for the noninteracting case, Fig. 1
for § = 0, the wings of the V-shape spectrum are from the
summation of two particles on each single-particle branch.
The states clustered between the wings are from two particles
on different single-particle branches. More states show up in
the presence of the interaction (see the left bottom panel of
Fig. 5 for g = 0.5).

In comparison with the two-particle spectrum for the non-
interacting case in Fig. 4, the two-particle spectrum of the
CS model with the imaginary boost k = —0.5 does not show
loop structures but rather forms three clusters of states. On
the basis of the single-particle spectrum in Fig. 1, the three
clusters from the left to the right are from the summa-
tion of single-particle energies of the left-left, left-right, and

— j) with —n;

right-right branches. In the presence of the interaction, more
states show up and the spectrum gets denser, but no dramatic
change is observed.

VI. XXZ MODEL

We consider the non-Hermitian boost deformation for the
XXZ model

L
cosh y a 3 B
H= Z |: 2 (1 + O-;O'iirl) - O-i+ai+1 —0; O—iiljl’ (69)

i=1

where o’s and Ul.i’s are Pauli operators, and y is the parame-
ter that controls the many-body interactions. The Bethe ansatz
equation is given by [55,56]

: io L . i
sinh (% + &) I N sinh[y + E.(O[k — )]
iy sinh[y — 3 (o — )]

(70)

where o labels the rapidity of particle k, and the ground-state
energy is given by

Y 2sinh?
E:Lcoshy—Z—y. 71)
P cosh y — cos oy
To simplify calculations, we define a new variable
__ sinh (% + )
& T ) (72)
sinh (5 - 7)
and then the Bethe ansatz equation reduces to
N
1 4+ zxz; + 2 cosh yzx
z=CED"]] . (73)
iy 1+ zz +2coshyz

In particular, the energy of each particle is

2sinh? y 1
=——————— = —(z%+z +2coshy). (74)
cosh y — cos oy

For the imaginary boost deformation, following Eq. (24),
we introduce

Pk = Dk — K& (75)

with the identification z; = ¢'P* from Ref. [55]. The deformed
Bethe ansatz equation reads

ZéefLK(szrz,:]JrZ coshy)

(76)

1)V ﬁ 1+ z:z; +2cosh yzi
1 L+ zz +2coshyz

To emulate a large system size, we also consider the model
with a U(1) phase twist with twist angle ¢, resulting in the
Bethe ansatz equation

ZiefLK(szrz;]JrZ coshy)

N
— 1+ zxz; + 2 cosh y z¢
—e ¢(_1)N| |

1 4 71z +2coshyz

(77)
=1
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FIG. 6. Complex two-particle energy spectrum of the XXZ
model with L = 10 and (top) y = in /3 and (bottom) y = 1.5 under
the imaginary boost deformation of « = 0.01, 0.2, 0.5. The phase
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twist is chosen to be ¢ = {0, T, &, %, ).

We numerically solve the Bethe ansatz equation for N = 2 and
obtain the two-particle complex spectrum for the weak and
strong interacting cases of y = i /3 and y = 1.5, as shown
in Fig. 6. Similarly to the free-fermion case in Sec. IV C, we
focus only on some regions of the complex spectrum where
the Bethe ansatz equation is solved consistently.

For the weakly interacting cases, the spectrum is similar
to the free-fermion case in Fig. 4. In fact, there are multiple
loops, and some of them cross themselves for small «; the
loops break up into some pieces of arcs as « increases. Short
vertical curves are also observed as in the case of free fermion.
The weak interaction results in only half of the cross-shaped
structure appearing in the free fermion case due to interaction.
The V-shaped curves are formed by quasiparticles on the same
branch of single-particle energy, as is shown in Fig. 2. The
vertical lines are formed by two quasiparticles on different
branches.

For strongly interacting cases, the complex spectrum forms
multiple loops and there is a small cluster of states away from
the main loops for small ¥k < 0.1, and the loops are pushed
to the Re E direction and break up into arcs as x increases
(see the bottom panels of Fig. 6). This behavior is similar
to the interacting Hatano-Nelson model [32,33]. The small
cluster of states that is not observed for the weakly interacting
cases should be due to the strong interaction effect. In
comparison with the two-particle spectrum of noninteracting
fermions in Fig. 4, the transition from the closed loops to the
open curves happens earlier for the interacting XXZ model
and the transition is earlier as the interaction is stronger. After
the transition, the small cluster of states gets closer to the
main cluster of states.

VII. CONCLUSION

In this work, we extended the original idea of Hatano and
Nelson [15,16] to a new class of non-Hermitian Hamiltonians
using the imaginary boost deformation for integrable systems.
The imaginary boost deformation can be viewed as a scale
transformation that generates non-Hermitian Hamiltonians

as an analog of the Galilean transformation used in the
Hatano-Nelson model. For integrable systems, the imaginary
boost deformation complexifies the spectral parameter. We
identified that such an imaginary boost deformation can be
formulated as an energy-twisted boundary condition using a
chiral Dirac fermion.

We studied our imaginary boost deformation for several in-
tegrable models with and without many-body interactions. We
implemented the imaginary boost deformation in free-fermion
systems in the continuum and on a lattice. We observed unique
complex spectra with nontrivial winding numbers. The two
branches of complex spectra emerge from infinity as soon as
the deformation is turned on. The similarity transformation
was performed in the open boundary conditions to reveal the
non-Hermitian skin effect. We showed the two-particle spec-
trum of the Calogero-Sutherland model and the XXZ model
and observed the non-Hermitian many-body interaction ef-
fect even for a small boost parameter. The spectrum breaks
into arcs at large boost parameters similar to the noninteract-
ing models. Our results mathematically provide a nontrivial
manner to generate non-Hermitian integrable systems and
physically provide a new perspective on space-time transfor-
mations. Additionally, our approach should be relevant to a
large class of integrable open quantum systems.

The origin of the energy emergent from infinity needs
further study and characterization. Extending the imaginary
boost deformation to quantum many-body systems in higher
dimensions would be interesting to study. It is also worthwhile
to study transport properties due to the imaginary boost de-
formation in a similar manner to the thermal Drude weight
for the real boost deformation [36]. In fact, the imaginary
gauge field in the Hatano-Nelson model is closely related to
the current and the delocalization of wave functions [15,16].
Another direction to pursue is to generalize the imaginary
boost parameter to other sorts of deformations such as bilinear
deformations [34]. The dynamical properties including the
spectral form factor of non-Hermitian deformations are also
investigated in the recent work [57]. Similarly, the dynamical
properties of the imaginary boosted systems are also worth
studying in future works.
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APPENDIX: BOOST DEFORMATION
AND SIMILARITY TRANSFORMATION

In this section, we show how the boost deformation in
Eq. (2) is related to the similarity transformation in Eq. (39)
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via Eq. (22). We also discuss the similarity transformation for
a lattice free fermion.

1. Continuum free fermion

To derive the similarity transformation from Eq. (22), we
need to know the boost operator and hence the deformed
Hamiltonian. Let us derive the boost deformation of the
continuum free fermion in Sec. IV A. As we see from the
definition in Eq. (2), the boost deformation generates higher
derivatives. Hence, we use an ansatz

Hi) =Y A(k)0}

n=0

(AT)

and solve equations order by order in x with the initial condi-
tion H(xk =0) = —83. Substituting Eq. (A1) into Eq. (2), we
obtain a series of equations as

dA
00— _AvA,, (A2)
dk
dA,
—— = —AjA, — 2A0As, (A3)
dk
dA,
P —A1Ay — 2A1A; — 3A3A, (A4)
K

and so on. As the boost deformation generates higher deriva-
tives than quadratic, we assume Ag(k) = A; (k) = 0. With the
initial condition A, (x = 0) = —§,, 2, the solution is

H(k) = (—id)? + 2ik(—idy)® — 562 (=id) + -+, (A5)
which is equivalent to the series expansion of ¢, in Eq. (33)

by replacing ky by —id,.
Then, we solve Eq. (22), which reads

dyr(x; k) _ 1 —2ik(—idy) — /1 — 4ik(—idy)
die 2k

Y(xs k).
(A6)

We use an ansatz v/ (k) = e"/*)*. The equation for f(x) re-
duces to

df i1 —2icf — JT=Ficf)
dic 2k? '

By introducing F := (1 — 4ix f)'/?, the equation becomes
dF/dk = (F — 1)/ and the solution is F = ax + 1 (a € C).
When the initial state is e/ ®=0% — ¢iko¥ the deformed state is

¥ (x; k) = exp (ikox + kkjx), (A8)

(AT)

which is consistent with the similarity transformation in
Eq. (39).

Notice that by leaving the wave function ¢’** unchanged,
the eigenenergy is deformed as ¢, in Eq. (33), while by
deforming the wave function as Eq. (A8), the eigenenergy
&= kg is unchanged as was also shown in Sec. III. The fact
that the initial wave function is still an eigenfunction of the
deformed Hamiltonian seems to be a coincidence unique to
the continuum free fermion model.

2. Lattice free fermion

Let us consider the similarity transformation for the lattice
free fermion under the open boundary conditions studied in

o Ulinautll <L LR AN

o L P

‘ ‘ ‘ J 0.4 ‘ ‘
0 0 20 30 40 O 10 20 30 40
X X

FIG. 7. Derivative of eigenfunctions of the lattice free fermion
of length L = 40 with respect to the boost parameter « evaluated by
numerical (dots) and analytical (solid lines) methods for k = 357 /41
(left) and k = 20m /41 (right).

Sec. IV B 2. The imaginary boost deformation in Eq. (57) is
written in the matrix form as
T 1 5
— =X, T7]
dk 2
where [T (k)lxy = txy(k) is the Hamiltonian matrix and
(X)yy = x8y,. We introduce the similarity transformation
T (k) = U(x)ToU (k) to make a connection between the de-
formed and original Hamiltonian matrices, with 7o = T'(k =
0). The imaginary boost deformation becomes

(A9)

_,dU 1 )
U 5 TO - _[{U XUa Yb}a TO]a (AIO)
dk 2
which is satisfied for
du 1
I = (XU, 1) (A11)
dk 2

We solve this equation order by order in k by using an expan-
sionU (k) =)_,_,k"U,/n!. The solution is

2
Ulie) =1 + g{x, To) + %({x, oY + [X2 T2]) + 0c®).

(A12)

For the initial condition (1p)xy = 8x,y+1 + &xy—1, the eigen-
function without the boost deformation is v (x) o sin kx (x =
an/(L+ 1), n € [1, L]), which satisfies the boundary con-
ditions ,(0) = v¥,,(L+1) =0, and the corresponding
eigenenergy is &, = 2cosk.

Since we have

0 3/2 0
1 3/2 0 5/2
E{X’ Ty} = 0 52 0 , (A13)
the deformed eigenfunction up to linear in « is
(1 + 2k cosk)sink + k cosk sin k
(1 + 4k cos k) sin 2k + « cos 2k sink
Uiy >~ (Al14)

(1 4 6k cos k) sin 3k + k cos 3k sin k

For k ~ 0 or m, the first term in each row is dominant
and the similarity transformation is consistent with v (x) ~
€*®* sin kx for the continuum free fermion in Eq. (39). On the

075108-10



NON-HERMITIAN BOOST DEFORMATION

PHYSICAL REVIEW B 108, 075108 (2023)

1.0

o o
o 00
. :

Imaginary boost
o
N

©
N
.

©
o

o

20 40 60 80 100
Length

FIG. 8. Imaginary boost parameter at which the spectrum of the
lattice free fermion deviates from the real axis.

other hand, for k >~ /2, Eq. (A14) implies that the similarity
transformation cannot be written as Eq. (39).

In Fig. 7, we compare the derivative of the eigenfunction
evaluated numerically for the deformed Hamiltonian in
Eq. (58) with that obtained from the analytical expression

in Eq. (Al4). We see that these two agree quite well.
Notice that, in the analytical expression, the first order term
in Eq. (A13) is shifted by —(L 4 1)Tp/2 since this is an
ambiguity in deriving Eq. (All). For k >~ 0 or 7z, the first
term of Eq. (A14) dominates and the derivative is roughly
proportional to —(L + 1)/2 + x [Fig. 7 (left)], while such a
feature cannot be seen for k ~ w /2 [Fig. 7 (right)].

3. Numerical instability

According to the similarity transformation, the energy
spectrum of the lattice free fermion in Eq. (57) under the open
boundary conditions is unchanged and remains real-valued by
the imaginary boost deformation. However, the numerically
evaluated Hamiltonian matrix can have a complex spectrum
when the imaginary boost parameter becomes larger because
of the instability of the numerical calculations. The criti-
cal parameter from which the spectrum becomes complex is
numerically evaluated in Fig. 8. We see that the numerical
instability becomes more serious as the system size is larger.
Notice that the numerical instability is not relevant to the spec-
tral transition point in Eq. (56) under the periodic boundary
conditions.
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