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Two global symmetries are holoequivalent if their algebras of local symmetric operators are isomorphic. A
holoequivalent class of global symmetries is described by a topological order (TO) in one higher dimension
(called symmetry TO), which leads to a symmetry/topological-order (Symm/TO) correspondence. We establish
that (1) for systems with a symmetry described by symmetry TO M, their gapped and gapless states are classified
by condensable algebras A, formed by elementary excitations in M with trivial self-/mutual statistics. These
so-called A states can describe symmetry breaking orders, symmetry protected topological orders, symmetry
enriched topological orders, gapless critical points, etc. in a unified way. (2) The local low-energy properties of an
A state can be calculated from its reduced symmetry TO M/A, using holographic modular bootstrap (holoMB)
which takes M/A as an input. Here M/A is obtained from M by condensing excitations in A. Notably, an A
state must be gapless if M/A is nontrivial. This provides a unified understanding of the emergence and symmetry
protection of gaplessness that applies to symmetries that are anomalous, higher-form, and/or noninvertible. (3)
The relations between condensable algebras constrain the structure of the global phase diagram. We find that, for
1 + 1D Z2 × Z′

2 symmetry with mixed anomaly, there is a stable continuous transition (deconfined quantum
critical point) between the Z2-breaking-Z′

2-symmetric phase and the Z2-symmetric-Z′
2-breaking phase. The

critical point is the same as a Z4 symmetry breaking critical point. (4) 1 + 1D bosonic systems with S3 symmetry
have four gapped phases with unbroken symmetries S3, Z3, Z2, and Z1. We find a duality between two transitions
S3 ↔ Z1 and Z3 ↔ Z2: they are either both first order or both (stably) continuous, and in the latter case, they
are described by the same conformal field theory (CFT). (5) The gapped and gapless states for 1 + 1D bosonic
systems with anomalous S3 symmetries are obtained as well. For example, anomalous S(1)

3 and S(2)
3 symmetries

can have symmetry protected chiral gapless states with only symmetric irrelevant and marginal operators.

DOI: 10.1103/PhysRevB.108.075105

I. INTRODUCTION

For a long time, Landau’s symmetry breaking theory [1,2]
was regarded as the standard theory for continuous phase
transitions. In particular, it was believed that all continuous
phase transitions are spontaneous symmetry breaking transi-
tions, where the symmetry groups for the two phases across a
transition have a special relation

Gsmall ⊂ Glarge,

i.e., the symmetry group for the phase with less symmetry is
a strict subgroup of the symmetry group for the phase with
more symmetry.

A. Symmetry/topological-order (Symm/TO) correspondence

However, in the last 30 years, increasingly many examples
of continuous phase transitions have been discovered in quan-
tum systems whose description is beyond Landau’s theory.
Continuous quantum phase transitions were found between
two states with the same symmetry [3–8] (but different topo-
logical orders [9,10]). Continuous quantum phase transitions
are also possible between two states with incompatible sym-
metries [11], i.e., the symmetry groups of the two phases
across the transition do not have the group-subgroup relation.

These “deconfined quantum critical points” (DQCPs) have
been found to be related to mutual anomalies between inter-
nal and lattice symmetries [12,13]. Even symmetry-breaking
transitions with well-defined order parameters are sometimes
not described by Landau’s symmetry breaking theory [8].
In light of these examples, it appears that many continuous
quantum phase transitions are not described by Landau theory,
regardless of whether they have symmetry breaking and order
parameters or not. There are many situations and mechanisms
that can lead to continuous quantum phase transitions that go
beyond Landau symmetry breaking theory. It is interesting to
ask whether there is a unified theory to understand these vari-
ous beyond-Landau continuous quantum phase transitions.

To systematically understand gapless critical points at
continuous transitions it is fruitful to identify all the emergent
symmetries in the gapless states. Emergent symmetry can be
very rich and may include 0-symmetry, higher1 symmetry
[14–17], anomalous symmetry [18–21], anomalous higher
symmetry [16,17,22–32], beyond-anomalous symmetry
[33], noninvertible symmetry [34–40], algebraic higher
symmetry [41,42], and/or noninvertible gravitational anomaly

1We use “higher symmetry” to cover both higher-form symmetry
and higher-group symmetry.
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[20,43–48]. Recently, a symmetry/topological-order
(Symm/TO) correspondence was proposed [42,49] that
can provide a unified description of all those symmetries.

One way to have a unified description of all these symme-
tries is to restrict to the symmetric sub Hilbert space Vsymmetric,
which does not have a tensor product decomposition

Vsymmetric �=
⊗

i

Vi. (1)

Here, V ′
i s are local Hilbert spaces on each lattice site. The

failure of tensor product decomposition indicates [48] a non-
invertible gravitational anomaly [20,43–46]. This leads to the
point of view that

symmetry (restricted to Vsymmetric )

= noninvertible gravitational anomaly. (2)

For a finite symmetry, its corresponding noninvertible grav-
itational anomaly is the same as topological order (TO)2 in
one higher dimension, which is referred to as symmetry TO3

[20,43,46]. This leads to a holographic view of symmetry:
Symm/TO correspondence [42,49]

symmetry (restricted to Vsymmetric ) = symmetry TO. (3)

This holographic perspective on symmetry in 1 + 1D was also
discussed in Refs. [38,50,51].

A second way to have a unified description of all emergent
symmetries generalizes the idea that, to describe an ordinary
symmetry, we can use the conservation law (i.e., the fusion
ring) of symmetry charges. To obtain a unified description, we
use instead the fusion rings (conservation laws) of both sym-
metry charges and symmetry defects at an equal footing [49].
The resulting symmetry is called categorical symmetry h©.4

It is also necessary to include “braiding” properties of sym-
metry charges/defects [49] which allow us to describe the
symmetry actions to have a full description of symmetry.5

2Here, the topological order in one higher dimension is anomaly-
free (i.e., with UV completion). In this paper, the term topological
order always refers to anomaly-free topological order. Topological
order with anomaly will be explicitly referred to as anomalous topo-
logical order.

3A symmetry TO always describes a symmetry in one lower dimen-
sion.

4Here, we use the term categorical symmetry h© in the original
holographic sense of Refs. [42,49]. However, the term “categorical
symmetry” has since been used by many to describe noninvert-
ible symmetry. To avoid possible confusions, we use categorical
symmetry h© in Sans Serif Font with superscript ©h to stress that we
use the term in the holographic sense. See also Appendix A for more
detailed explanations and discussions on related concepts.

5A symmetry is described by the algebra of local symmetric oper-
ators. The “braiding” properties are features of such an algebra. See
Ref. [33] for details. Such features become the braiding properties in
the symmetry TOin Symm/TO correspondence, which leads to the
name “braiding” properties. Symmetry charges always has the trivial
“braiding” property. Thus, in the ordinary symmetry described by
fusion ring of symmetry charge, we do not need to introduce extra
data to describe such a trivial “braiding” property.

Thus categorical symmetry h© has both fusion ring layer and
“braiding” layer. Just like ordinary symmetry is described by
group, categorical symmetry h© is described by nondegenerate
braided fusion higher (nBF) category (which is referred to as
nBF category in short) [42,49]. Here “nondegenerate” indi-
cates that we have included all the symmetry charges and the
symmetry defects [33], and “higher” refers to the fact that the
symmetry charges and defects can be pointlike, stringlike, etc.

The above holographic view of symmetry and anomaly
is motivated variously from anomaly-inflow [52], from
the boundary-bulk topological holographic relation
[38,42,43,46,47,53–55], from an observation that symmetry
protected topological (SPT) order [19,56,57] is closely related
to anomaly in one lower dimension [20,22,58], and from an
observation that SPT order and anomaly are closely related
to braiding [32,59]. This holographic point of view has
parallels with the AdS/CFT correspondence [60,61], where a
continuous G symmetry of a CFT is associated to a G-gauge
theory in an AdS space in one higher dimension. There are
however some important differences between the two. In
Symm/TO correspondence, a finite G symmetry of a CFT is
associated to a G-gauge theory in one higher dimension with
arbitrary metric.6 Moreover, in Symm/TO correspondence,
the bulk theory is not equivalent to the boundary theory. The
bulk topological order (i.e., the symmetry TO) just constrains
the boundary dynamics.

We should note that, so far, the Symm/TO correspondence
only applies to finite symmetry. For continuous symmetry,
we either need to generalize the Symm/TO correspondence,
or need to develop a new nonholographic point of view as
in Ref. [33]. To that end, there is a third nonholographic
way to reach a unified description of all emergent symmetries
in a gapless state. Here one starts from the point of view
that a symmetry is fully described by an algebra of local
symmetric operators (LSOs). An ordinary (global) symmetry
is characterized by symmetry transformations, which are the
commutants of LSOs.7 These symmetry transformations act
on the whole space (or on all the closed subspaces of codi-
mension p for p symmetry), and correspond to the global
symmetry transformations. In this approach, we restrict to
the symmetric sub Hilbert space Vsymmetric, as in the first
approach. In this case, we find that the global symmetry
transformations act trivially as identity operator. Seemingly,
we do not see any global symmetry after the Hilbert space re-
striction. On the other hand, even after restricting to Vsymmetric,
symmetry clearly still constrains the low energy dynamics
and is physically meaningful. To see the symmetry in this
case, Refs. [33,49] considered the so called “commutant patch
operators,” referred to as “transparent patch operators” in
Ref. [33]. Patch commutant operators are operators formed by
local symmetric operators (LSOs), acting on one-dimensional,
two-dimensional, etc. open subspaces (i.e., patches), and com-
mute with all the LSOs as long as the LSOs are far away from

6The metric is arbitrary since G-gauge theory is topological for
finite G.

7The commutants of local symmetric operators are operators that
commute with all the local symmetric operators.
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the boundaries of the patches and have no nontrivial linking.
Since the commutants of LSOs define global symmetry, we
say the commutant patch operators of local symmetric oper-
ators define the “patch symmetry” of the system. References
[33,49] found that there are two kinds of commutant patch
operators: the first kind are global symmetry transformations
restricted on the patches, which are called patch symmetry
operators. The boundaries of patch symmetry operators cor-
responds to symmetry defects. The second kind have empty
bulk and create neutral charge objects on their boundaries,
which are called patch charge operators. The boundaries of
patch charge operators corresponds to symmetry charges. We
see that, in contrast to global symmetry, patch symmetry treats
symmetry charges and symmetry defects at an equal footing.
The algebra of commutant patch operators encode the fusion
ring and “braiding” properties of symmetry charges/defects,
which is conjectured to give rise to a nBF category [33]. Thus
the patch symmetry is identical to categorical symmetry h© and
they are both described by nBF category.

We define two symmetries to be holoequivalent [42] if the
algebras of their local symmetric operators are isomorphic.
We define two patch symmetries to be the same if the alge-
bras of their commutant patch operators are isomorphic. This
allows us to summarize the above discussions:

(generalized) global symmetries (restricted to Vsymmetric )

= categorical symmetries
h© = patch symmetries

= holoequivalent classes of global symmetries

= nBF categories

= symmetry TOs (for finite symmetry). (4)

Here, global symmetry (restricted to Vsymmetric) is viewed from
the point of view of the algebra of local symmetric operators,
and “=” means one-to-one correspondence. We remark that
(4) is more precise than (2) and (3).

We see that (generalized) global symmetry is different
from categorical symmetry h© or patch symmetry (which
are two names for the same thing). In fact, categorical
symmetry h© (or patch symmetry) only looks at a global sym-
metry from a local point of view, ignoring the global features
[49]. Thus categorical symmetry h© (or patch symmetry) cor-
responds to a holoequivalent class of global symmetries. As
a result, symmetry TO and nBF category only describe the
holoequivalent class of (generalized) global symmetries.

The four terms, categorical symmetry h©, patch symmetry,
symmetry TO, and nBF category, describe almost the same
thing, but stress on different aspects: categorical symmetry h©
emphasizes on symmetry + dual symmetry (i.e., treating sym-
metry charges and defects at equal footing); patch symmetry
emphasizes on its difference with global symmetry; symmetry
TO emphasizes on the holographic picture; nBF category is
most accurate. We can use any of them. However, since “cat-
egorical symmetry” has been used by many to mean nonin-
vertible global symmetry, in the rest of this paper, we will use
symmetry TO. We like to remark that symmetry TO can only
describe finite symmetries. For continuous symmetries, we
need to use nBF categories with infinite objects/morphisms
to describe them. Therefore nBF category is a more accurate

term. We use the term symmetry TO since it is more easily
associated with symmetry and holographic picture.

Let us also point out that the symmetry TO can be used to
describe an exact UV symmetry of a lattice model. However,
it can also be used to describe an emergent symmetry that
appears only at low energies (IR). Consider a system with a
separation of energy scale, i.e., some excitations have much
higher energies compared to all other excitations which may
be gapped or gapless. Well below the energy gap of the high
energy excitations, the low energy properties of the system are
controlled by an emergent symmetry described by symmetry
TO M.

If the low energy excitations are gapped, then they can
be described by a fusion n-category C if the space is n-
dimensional. In this case, the emergent symmetry is described
by an symmetry TO M = Z(C), the “Drinfeld” center of the
low energy excitations C [42,43,46,47]. It was pointed out
in Ref. [62] that the emergent higher symmetry contained in
M = Z(C) is exact, while the emergent 0-symmetry contained
in M = Z(C) is approximate.

If the low energy excitations are gapless, then the max-
imal emergent symmetry TO [63] may largely characterize
the gapless state. We know that the possible gapless states
are very rich, and it is hard to believe gapless states can
be characterized by their emergent symmetries, if we only
consider emergent symmetries described by groups. However,
emergent symmetries can be generalized symmetries that are
beyond group or beyond higher group. We need to use symme-
try TOs to describe those emergent generalized symmetries. In
this case, it may be possible that emergent maximal symmetry
TO can largely characterize gapless states.

B. Characterizing gapless liquid states
using Symm/TO correspondence

In a series of papers [64–66], Kong and Zheng have de-
veloped a unified mathematical theory for topological orders
and gapless quantum liquids8 in n-dimensional space-time,
based on symmetric monoidal higher category, QLn, which
is called category of quantum liquids. QLn for different n
are related by delooping �∗QLn = QLn+1 (hypothesis 5.16
in Ref. [64,64]). A quantum liquid L (an object in QLn)
contains two parts: a topological skeleton Lsk and a local
quantum symmetry Llqs, where the topological skeleton Lsk is
an anomalous topological order. In 1 + 1D, Kong and Zheng
have also developed a theory for gapless boundaries of 2 + 1D
topological order based on categories enriched by local quan-
tum symmetry—vertex operator algebra [69–71].

In this paper, we are going to use Symm/TO correspon-
dence and the associated symmetry TO to develop another
version of the general unified theory for topological orders
and gapless quantum liquids, from a more physical point of
view. Our theory is based on the following proposals.

(1) An n + 1D symmetric system, when restricted to its
symmetric sub-Hilbert space, has a noninvertible gravitational

8Here we use the notion of liquid state for quantum systems in the
sense defined in Refs. [67,68]. We will not discuss nonliquid states,
such as fractons.
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FIG. 1. A 1 + 1D Z2-symmetric system (which also has a dual
Z̃2 symmetry [49]) is a GauZ2 system, i.e., the system has a cate-
gorical symmetry h© Z2 ∨ Z̃2, which is described by symmetry TO
GauZ2 —the quantum double of Z2 group. Physically, the above
statement means that the Z2 symmetric system (when restricted to its
symmetric sub-Hilbert space) can be exactly low-energy simulated
by a boundary of bulk Z2 topological order (TO), described by Z2

gauge theory. The symmetry TO GauZ2 has four anyons 1, e, m, f =
e ⊗ m. The possible condensation-induced states in GauZ2 system
are given by the condensable algebras of the symmetry TO, A =
1, 1 ⊕ e, 1 ⊕ m. (a) The 1 ⊕ m state, corresponding to the 1 ⊕ m-
condensed boundary, is the Z2-symmetric state. (c) The 1 ⊕ e state
is the state with spontaneous Z2 symmetry breaking. (b) The 1 state is
the gapless critical point at the continuous transition between 1 ⊕ m
state and 1 ⊕ e state.

anomaly [48], and can be exactly low-energy simulated by
a boundary of a topological order in one higher dimension
[42,48,49]. Such a bulk topological order is called a symmetry
TO and is denoted by M. This result allows us to say that the
n + 1D symmetry is described by a symmetry TO M. We will
use M system to refer to such a system (see Fig. 1). Since
the n + 2D symmetry TO M is mathematically described by a
nondegenerate braided fusion n-category (called nBF category
and also denoted as M) [42,43], we may also say that the
n + 1D symmetry is described by a nBF category M.

(2) The states of an M system can be divided into classes
labeled by the condensable algebras A in M, in the sense that
a state in a class labeled by A (called A state) is exactly
low-energy simulated by a boundary of the symmetry TO
M induced by the condensable algebra A [72], termed an
A-condensed boundary (see Fig. 1). This way, condensable
algebras can describe, in a unified way, symmetry break-
ing orders, symmetry protected topological orders, symmetry
enriched topological orders, gapless critical points, etc. See
Sec. II B for a physical description of condensable algebras.

(3) An A state can be exactly low-energy simulated by a
1-condensed boundary of M/A, where M/A

9 is the topolog-
ical order obtained from M by condensing the condensable
algebra A [72].10 M/A is referred to as the reduced symmetry
TO. As a 1-condensed boundary of M/A, the A state in M
system has a reduced symmetry TO described by M/A. So we
will also refer to A state in M system as an M/A state.

We remark that it is possible that M/A = M/A′ = Mreduced

for two different condensible algebras A and A′. In this case,
two different states A state and A′ state are both referred to
as Mreduced state. As we will see in Sec. II B, A state and A′

9May be read as “M slash A.”
10Here we assume the topological order M/A to have a large energy

gap approaching infinity.

state have the same local low energy properties. Thus M/A
state is a notion that is useful for gapless states which ignores
the global properties. For example, a gapped state always has
a trivial reduced symmetry TO M/A, and a nontivial reduced
symmetry TO M/A implies gaplessness (see Sec. II C).

(4) We can use symmetry TO to constrain the possible
continuous phase transitions. For example, if an A12 state is
the critical point for a continuous phase transition between A1

and A1 states, then A12 is a subalgebra of both A1 and A2 (see
Fig. 1).

In the above, we have introduced some important terms
(in bold face) that we will use in the rest of this paper. We
also used the following notion [42]. Exactly low-energy sim-
ulate means that the low energy spectrum in the symmetric
sub-Hilbert space is identical to the low energy spectrum of
the boundary. It also means that there is a one-to-one cor-
respondence of local symmetric operators in M system and
local operators on the boundary of the symmetry TO M, such
that the corresponding operators have identical correlation
functions (in the limit that the energy gap of the symmetry
TO approaches infinity).

Very often, we can easily compute the reduced symmetry
TO M/A, which allows us to determine if an M/A state is gap-
less or not. If M/A is trivial, then the corresponding M/A state
can be gapped. On the other hand, M/A state must be gapless
if M/A is a nontrivial. (see Sec. II C for a proof.) Moreover, we
can constrain its low energy properties using the M/A. This is
a more general version of the familiar notion of symmetry pro-
tected gaplessness, i.e., condensation patterns in the symmetry
TO can determine whether a state is gapless or not.

It is well known that perturbative anomalies for continu-
ous symmetries [18] and perturbative gravitational anomalies
[73,74] imply gaplessness [53,75–84]. This can be under-
stood as perturbative-anomaly protected gaplessness. Even
global anomalies for discrete symmetries may imply gap-
lessness [57,85–90], which can be understood as anomalous-
symmetry protected gaplessness. Symmetry fractionalization
may also imply gaplessness [91–93], which can be under-
stood as symmetry-fractionalization protected gaplessness.
Our Symm/TO correspondence provides a unified point of
view to understand these different kinds of protected gapless-
ness.

We want to emphasize that a nontrivial reduced symme-
try TO M/A is viewed as the reason for gaplessness in this
framework. Thus a nontrivial M/A represents the emergence
of gaplessness. This suggests that the low energy properties of
the gapless state are characterized by the reduced symmetry
TO M/A. In other words, we can use reduced symmetry TOs
to systematically study, and potentially classify, gapless states
and the corresponding quantum field theories in one lower
dimensions. In particular, we can use holographic modular
bootstrap [48,94,95] to compute the low energy properties of
a 1 + 1D gapless state from its reduced symmetry TO M/A,
as we will describe in Sec. II.

C. Organization of the paper

The remainder of this paper is organized as follows. In
Sec. II, we flesh out our Symm/TO framework for labeling
phases and their phase transitions using condensable algebras.
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We discuss how to identify the patterns of condensation,
i.e., the allowed condensable algebras, using a set of number
theoretic constraints. Along with the knowledge of boundary
partition functions compatible with the bulk topological
order, this provides us a pathway to understanding the phase
diagram for a system with a given symmetry. In Secs. III–VI,
we discuss various examples of anomalous and anomaly-free
Abelian and nonAbelian symmetries in 1 + 1D systems. We
identify gapped and gapless states allowed by each of these
symmetries, and provide a discussion of the gapless theories
possible at the phase transitions between these states.

The main results of this paper are summarized in the
framed boxes. Gapped and gapless states for 1 + 1D systems
with S3 symmetry (with or without anomaly) and the cor-
responding condensation patterns in their symmetry TO are
summarized in Tables II—IV. The gapless states are potential
critical points for continuous transitions between the gapped
states.

II. HOLOGRAPHIC THEORY FOR GAPLESS STATES
AND FOR CONTINUOUS PHASE TRANSITIONS

In this section, we will formulate a general holographic
theory for gapless states and for continuous phase transitions,
based on Symm/TO correspondence [42,49]. Later, we will
apply Symm/TO correspondence to study some examples. In
fact, Symm/TO correspondence also applies to gapped states.

A. Symmetry TO reduction (analogue of symmetry breaking)

For ordinary global symmetry, spontaneous symmetry
breaking is a very important notion, which allows us to de-
scribe gapped and gapless phases. If we use symmetry TO to
describe global symmetry, spontaneous symmetry breaking is
replaced by spontaneous symmetry TO reduction, or simply
symmetry TO reduction. Patterns of symmetry TO reduction,
physically induced by condensation of excitations, allow us
to describe gapped and gapless phases, as well as the criti-
cal points at continuous phase transitions. Considered thus,
symmetry TO reduction provides more information than spon-
taneous symmetry breaking. In this section, we will describe
symmetry TO reduction in details.

Symm/TO correspondence has the following meaning
[42,49], which is the key conjecture used in this paper. A
system (i.e., a gapped or gapless lattice Hamiltonian) with
a (generalized) global symmetry can be exactly low-energy
simulated by a boundary (i.e., a boundary Hamiltonian) of a
noninvertible topological order M in one higher dimension.
The bulk topological order is referred to as symmetry TO M.
This is why we can use symmetry TO M to describe a sym-
metry. We will call such a symmetric system as an M system.
We remark that the above Symm/TO correspondence works
for anomalous and/or higher and/or noninvertible symmetries.
It even works for global symmetries beyond the previous
known descriptions. Thus it can be viewed as a most general
description of global symmetry.

We have the following mathematical result (see
Refs. [69–72] for a summary): all (gapped or gapless)
boundary states of a topological order M are obtained from
condensing condensable algebras A of M. Since different

boundary states of M correspond to different ground states
in different M systems, we can group all gapped or gapless
ground states in M systems into classes labeled by the
condensable algebras A, i.e., states in a class labeled by A
correspond to A-condensed boundaries of M. Those states
are referred to as A states. In other words, an A state in an M
system has a condensation pattern A. After introducing those
notions, we can make the following statement. In M systems,
all their gapped and gapless A states are exactly low-energy
simulated by the A condensation-induced boundary states of
the symmetry TO M.

B. Reduced symmetry TO (analogue of unbroken symmetry)

Now let us concentrate on a topological order M and one
of its boundary state induced by condensing a condensable
algebra A. Such a boundary state corresponds to an A state
in an M system. The condensable algebra A is formed by
excitations in M that has trivial self and mutual statistics be-
tween them. As a result, excitations in the condensable algebra
A can condense together, which will change the topological
order M to another topological order [72]. We will denote
the resulting topological order as M/A, which will be called a
reduced symmetry TO.

Physically a condensable algebra A corresponds to a set
of excitations in M that can be condensed together, i.e., with
trivial self/mutual statistics. Mathematically, a condensable
algebra A is described by a composite excitation 1 ⊕ a ⊕
b ⊕ · · · ,11 which can be viewed as a “vector space,” plus
some data describing “multiplication of vectors” in the vector
space (see Ref. [72] for a summary, and see Ref. [50] for a
detailed discussion of a simple example). For simplicity, in
this paper, we will use the “vector space” 1 ⊕ a ⊕ b ⊕ · · · to
denote the condensable algebra A, and say 1, a, b, etc. belong
to the condensable algebra A: 1, a, b ∈ A. We will always
use 1 to denote the trivial excitations, i.e., all the excitations
that can be created by local symmetric operators. Note that
1 can represent a null excitation—the ground state itself—an
excitation created by the identity operator.12

Roughly speaking, the excitations in M/A all comes from
the excitations in M: the excitations in M will become triv-
ial excitations in M/A, if they are in A (i.e., if they are
condensed). The excitations in M will be confined in M/A
(i.e., will disappear), if they have nontrivial mutual statistics
with excitations in A (for more details, see Appendix C).

The condensable algebra A is called Lagrangian if M/A
is trivial. In this case, the excitations in M will be either
condensed or confined. A Lagrangian condensable algebra is

11A composite excitation 1 ⊕ a ⊕ b ⊕ · · · is an excitation where
the excitations 1, a, b, etc. in the composite happen to have the same
energy. For example, the bound state of two spin-1/2 excitations
is a composite excitation formed by degenerate spin-0 and spin-1
excitations: spin-1/2 ⊗ spin-1/2 = spin-0 ⊕ spin-1.

12We believe that even in higher dimensions, the various conden-
sation patterns associated to symmetry TO are still classified by
condensable algebras A in the symmetry TO. However, in higher di-
mensions, the notion of condensable algebras needs to be generalized
beyond what is described in this paper.
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FIG. 2. An A state in an M system corresponds to an A-
condensed boundary of symmetry TO M. Such a boundary can
be obtained by attaching A condensation induced topological order
M/A with 1-condensed boundary. The A condensation changes M

to M/A, causing a symmetry TO reduction (an analog of spontaneous
symmetry breaking). M/A is the reduced symmetry TO (an analog of
unbroken symmetry) of the A state.

maximal in some sense, since the induced topological order
M/A is minimal (i.e., trivial). On the other hand, if the con-
densable algebra is minimal, A = 1 (i.e., nothing condenses
except trivial particle 1 which always condenses), the induced
topological order M1 = M is maximal.

From the A condensation-induced topological order M/A,
we can have an understanding of an A-condensed boundary of
M, which has a special realization as a composite boundary
illustrated in Fig. 2. There is a canonical domain wall be-
tween M and M/A which is always gapped [72]. Therefore
the local low energy properties of the A-condensed bound-
ary of M is same as the local low energy properties of the
1-condensed boundary of M/A.13 This result is reasonable
and expected, since the A-condensed boundary of M also
implies that excitations outside A do not condense. For the
composite boundary in Fig. 2, the induced topological order
M/A already has all the condensations for excitations in A,
and the 1-condensed boundary of M/A implies that there is
no additional condensation (for excitations outside A).

C. The emergence and the symmetry protection of gaplessness:
The 1-condensed boundary of M/A

It is easy to see that the 1-condensed boundary of M/A
can be gapped if M/A is trivial. The 1-condensed boundary
of M/A must be gapless if M/A is nontrivial. This result is
proposed in Refs. [69–71] and was referred to as topological
Wick rotation.

Let us show that a 1-condensed boundary of a 2 + 1D
topological orders M must be gapless. This result is obtained
in Refs. [69–71,96] via some other methods. As pointed out
in Refs. [48,97,98], the partition function for a boundary of
a 2 + 1D topological order is a vector, whose components
are labeled by the anyon types of the bulk topological order:

13Two systems have the same local low energy properties if there
is a correspondence of the local symmetric operators in the two sys-
tems, such that the corresponding operators have the same correlation
function.

Z(τ ) = (Z1(τ ), Za(τ ), Zb(τ ), · · · )�. Here we have assumed
that the space-time at the boundary is a torus, and τ describes
the shape of the boundary space-time. Under the modular
transformation, vectorlike partition function transforms co-
variantly [48]:

e− i 2π
c−
24 T MZ(τ ) = Z(τ + 1),

D−1SMZ(τ ) = Z(−1/τ ),
(5)

where SM, T M are the modular data characterizing the bulk
topological order M [9,10] (see Appendix C) and c− the chiral
central center of M. The physics behind the above results were
explained in Refs. [48,97,98].

If the 1-condensed boundary of the bulk topological order
was gapped, the vector-like partition function would be τ

independent and would have a form

Z1(τ ) = 1, Za �=1(τ ) = 0, (6)

since only 1 condenses. Such a partition function cannot
be modular covariant, if the bulk topological order is non-
invertible. This is because SM, T M matrices is more than
1-dimensional for noninvertible topological order, and the
1-column of the SM matrix has a form (d1, da, db, · · · )�,
where da is the quantum dimension of type-a bulk anyon
and D = √∑

a d2
a . Since d1 = 1, da � 1, and D > 1, Eq. (5)

cannot be satisfied by the vector-like partition function (6).
For nontrivial invertible 2 + 1D topological order, although
the bulk has only the trivial type-1 excitations, the chiral
central charge is nonzero, and the 1-condensed boundary is
always gapless. Thus the 1-condensed boundaries of nontriv-
ial 2 + 1D topological orders are always gapless.

A similar argument is expected to also work in higher
dimensions. The 1-condensed boundaries of nontrivial non-
invertible topological orders are always gapless. However, in
higher dimensions, the 1-condensed boundaries of nontrivial
invertible topological orders can be gapped, such as the w2w3

invertible topological order in 4 + 1D [99–108].

D. Canonical boundary

To describe the gapless 1-condensed boundaries more pre-
cisely, we need to introduce a notion of local-low-energy
equivalence. Consider a low energy theory L. We can obtain
another low energy theory L′ by stacking a gapped state to L.
If the gapped state has a nontrivial topological order, the two
low energy theories L and L′ can have different global proper-
ties, such as different ground state degeneracies, and different
averages of noncontractible loop operators, etc. However, the
two low energy theories have the same local correlations
for all corresponding local operators (beyond the correlation
length of the gapped state). In this case, we say that the two
low energy theories L and L′ are local-low-energy equiva-
lent. Now we can say that the A-condensed boundary of M
is local-low-energy equivalent to the 1-condensed boundary
of M/A.

The above discussion leads to the following result. For an
A state in an M system, there exist a 1-condensed boundary
state of the A condensation-induced topological order M/A,
such that the two states are local-low-energy equivalent. Let
us note here that there can be many A states with different

075105-6



HOLOGRAPHIC THEORY FOR CONTINUOUS PHASE … PHYSICAL REVIEW B 108, 075105 (2023)

local low energy properties. Similarly, topological order M/A
can have many different 1-condensed boundary states with
different local low energy properties. What we try to say is
that there is an one-to-one correspondence between the A
states and the 1-condensed boundary states of M/A, such
that the corresponding states have identical local low energy
properties. This can be rephrased as A states in the M system
are local low energy equivalent to 1 states in an M/A system.

Some of these states are more stable if they have fewer low
energy excitations. Here, we assume that the gapless excita-
tions all have linear dispersion relations. When the velocity
of the gapless excitations are all the same, the number low
energy excitations can be determined by specific heat. The
states with minimal number of low energy excitations are
most stable. The most stable 1-condensed boundaries of M are
called the canonical boundaries of M. The local low energy
properties of the most stable A state is same as the local low
energy properties of the canonical boundary state of M/A. We
remark that one can also use the number of symmetric relevant
operators to define a different notion of “most-stable.”

As we have mentioned above that the A states are not
unique. We usually look for the most stable states among the
A states. Note that this aspect is not so different from the no-
tion of “spontaneous Z2 symmetry breaking state” which does
not really refer to a unique state, since we can always stack
a gapless Z2 symmetric state to it while still preserving the
fact that the Z2 symmetry is spontaneously broken. However,
the term “spontaneous Z2 symmetry breaking state” usually
refers to the most stable state among these various possible
spontaneous Z2 symmetry breaking states. We use the term A
state in an analogous fashion.

E. Holographic modular bootstrap approach

If a 2 + 1D topological order M/A is nontrivial, there is
an algebraic number theoretical way, also called holographic
modular bootstrap (holoMB) approach [48,94,95,109], to de-
termine its gapless boundaries. HoloMB is a generalization of
the conventional modular bootstrap [110],

Z (τ ) = Z (τ + 1) = Z (−1/τ ), (7)

in the sense that holoMB requires additional input data,
symmetry TO, that describes (generalized) symmetry. The
generalization is given by Eq. (5), and we want to determine
the vector-valued partition function from these conditions.

Equation (5) describes a set of algebraic equations. In
general, one cannot determine unknown functions Z(τ ) from
algebraic equations. However, here a partition function for
a given anyon type is the partition function in a certain
symmetry charge sector for Hamiltonian with a certain
symmetry-twist boundary condition (i.e., in a certain symme-
try defect sector):

Zsymm. charge/defect(τ )|size L

def= Trsymm. charge e−Im(τ )Lv−1Ĥsymm. defect+ i Re(τ )LP̂, (8)

where L is the size of a one-dimensional ring and v is the
velocity of our 1 + 1D system. Such a partition function has

the form

Za(τ ) = qha−c/24q̄h̄a−c̄/24Polynonneg-int
ha,h̄a

(q, q̄),

q = e2π i τ ∼ e−βE , (9)

where ha, h̄a, c, and c̄ are rational numbers, and Polynonneg-int
h,h̄

is a polynomial of q and q̄ with nonnegative integral co-
efficients. In fact, the nonnegative integral coefficients are
degeneracies of energy-momentum levels. It appears that
the modular covariance conditions (5) can largely determine
partition functions that satisfy the “nonnegative-integer” con-
straint. We note that holomorphic modular bootstrap was
developed to solve similar problems [111,112]. Here, we
will use a different approach. A 1 + 1D gapless boundary
conformal field theory (CFT) contains right and left movers,
described by conformal characters χR

i (τ ) and χ̄L
j (τ̄ ). Under

the modular transformation, the conformal characters trans-
form as

T̃ i j
R χR

j (τ ) = χR
i (τ + 1), S̃i j

R χR
j (τ ) = χR

i (−1/τ ),

T̃ i j
L χ̄L

j (τ̄ ) = χ̄L
i (τ̄ + 1), S̃i j

L χ̄L
j (τ̄ ) = χ̄L

i (−1/τ̄ ). (10)

The multicomponent partition function for the gapless bound-
ary of M/A is given by

Z
M/A
a (τ ) = Aa,i, jχR

i (τ )χ̄L
j (τ̄ ), Aa,i, j ∈ N. (11)

The modular covariance of Z
M/A
a (τ ) takes a form

e− i 2π
c−
24 T ab

M/A
Z
M/A
b (τ ) = Z

M/A
a (τ + 1),

(12)
D−1Sab

M/A
Z
M/A
b (τ ) = Z

M/A
a (−1/τ ),

where SM/A and TM/A are the S and T matrices character-
izing the bulk topological order M/A. They constitute the
additional input, describing the symmetry TO required in the
holoMB approach. Equation (12) can be satisfied if nonnega-
tive integers Aa,i, j satisfy

e− i 2π
c−
24 T ab

M/A
T̃ ∗i j

R T̃ ∗kl
L Ab, j,l = Aa,i,k,

(13)
D−1Sab

M/A
S̃∗i j

R S̃∗kl
L Ab, j,l = Aa,i,k,

or more compactly

e− i 2π
c−
24 TM/A ⊗ T̃ ∗

R ⊗ T̃ ∗
L A = A,

(14)
D−1SM/A ⊗ S̃∗

R ⊗ S̃∗
LA = A,

where we have used the fact that the S and T matrices are
symmetric unitary matrices. Comparing Eq. (5) (for gapped
boundary where Za are τ independent nonnegative integers)
and Eq. (14), we see that the mathematical method to solve
for gapped and gapless boundaries are the same. We just need
to start with different S and T matrices. In Appendix C, we
will describe in more details an algebraic number theoretical
method to find nonnegative integer solutions of Eqs. (5) and
(14). Appendix C also obtains many additional conditions on
Za and Aa,i, j [see Eq. (C17)].

From the multicomponent partition Z
M/A
a (τ ), we can ob-

tain the scaling dimensions of operators that carry various
representations of the symmetry. Thus the symmetry TO in
Symm/TO correspondence allows us to compute properties of
gapless state via an algebraic number theoretical method.
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To summarize, using Symm/TO correspondence, the
properties of gapped and gapless states in systems with (gen-
eralized) symmetry can be studied by (1) identifying the
corresponding symmetry TO M that describes the symmetry,
(2) computing the condensable algebras A of M, which clas-
sify different reductions of the symmetry TO M (the reduced
symmetry TO is denoted as M/A, which is analogous to the
notion of unbroken symmetry, see Sec. II B), and (3) describ-
ing the boundaries induced by condensing A using holoMB,
which correspond to different gapped or gapless states (called
A states) for a given reduced symmetry TO M/A.

F. From structure of condensable algebra
to structure of phase diagram

We have grouped the gapped and gapless states of M
systems into classes labeled by condensable algebras of M.
The states in each class labeled by A are called A states. If
there is a continuous transition between an A1 state and an A2

state, the critical point at the transition will be described by an
A12 state. The condensable algebra A12 must be a sub algebra
of both condensable algebra A1 and A2:

A12 ⊂ A1, A12 ⊂ A2. (15)

This is because as we approach the phase transition boundary,
some anyons have increasingly weak affinity to condense. The
condensation is absent at the transition and the condensable
algebra becomes smaller. For more details, see Appendix B.

To obtain more constraints on the phase diagram from con-
densable algebras, we introduce a concept of competing pair:
a pair of anyons (a, b) form a competing pair if they never
appear in the same condensable algebra together, but they can
appear in condensable algebras separately. In other words, the
anyons in a competing pair can condense, but cannot condense
together (usually due to the nontrivial mutual statistics be-
tween them). Condensing one anyon in a competing pair will
uncondense the other. We propose that continuous phase tran-
sition is driven by condensing one anyon and uncondensing
the other anyon in a competing pair. This implies that if A1

state and A2 state are connected by a continuous transition,
then the union of A1 and A2 should contain a competing pair.
If the union of A1 and A2 should contain only one competing
pair, then the transition is more likely to be stably continuous.
For more details, see Appendix B and Sec. V E.

III. 1 + 1D Z2 × Z′
2 SYMMETRY

Let’s illustrate the general discussion of the previous sec-
tion with the example of a 1 + 1D system with Z2 × Z2

symmetry. Landau’s symmetry-breaking framework tells us
that the system can spontaneously break the symmetry down
to various subgroups of the symmetry group, producing vari-
ous gapped states.

This symmetry breaking picture can be also be viewed
through the lens of symmetry TO. In the same way that Z2

gauge theory, denoted by GauZ2 , is the symmetry TO of Z2

symmetry, for systems with Z2 × Z′
2 symmetry,14 the sym-

metry TO is GauZ2×Z′
2
, which refers to the 2 + 1D topological

14The prime on the second Z2 is used just to explicitly differentiate
between the two Z2 groups for purpose of identification.

order described by Z2 × Z′
2 gauge theory with charge and flux

excitations. There are two e anyons (charges), e1 and e2, and
two m anyons (fluxes), m1 and m2, that generate all of the
16 anyons of GauZ2×Z′

2
. The symmetry TO GauZ2×Z′

2
makes

the mod 2 conservation of the flux excitations m1 and m2

explicit—this may also be described by the dual symmetry
Z̃2 × Z̃′

2 [49]. To emphasize the dual symmetry, one may
denote this symmetry TO as (Z2 × Z′

2) ∨ (Z̃2 × Z̃′
2). We will

drop the discussion of dual symmetry in the following for
brevity.

Let’s consider the possible gapped phases of a 1 + 1D
system with Z2 × Z′

2 symmetry from the conventional point
of view first. We will then translate that into the symmetry TO
language.

The gapped phases in 1 + 1D associated to symmetry
group G are classified by the unbroken subgroup H , and possi-
ble SPT phases of H [83,113,114]. For G = Z2 × Z′

2, the four
nontrivial symmetry-breaking gapped phases are associated
to its four proper subgroups Z1,Z2,Z′

2,Z
d
2 , where Zd

2 is the
“diagonal” Z2 subgroup. If we present the group Z2 × Z′

2 as
{(0, 0), (0, 1), (1, 0), (1, 1)}, then these subgroups are

Z1 � {(0, 0)},
Z2 � {(0, 0), (1, 0)},
Z′

2 � {(0, 0), (0, 1)},
Zd

2 � {(0, 0), (1, 1)}.
There are no nontrivial Z2 SPT phases in 1 + 1D. However,
there is a nontrivial Z2 × Z′

2 SPT phase, the so-called cluster
state. So there are a total of six gapped phases. Continu-
ous phase transitions between the symmetry breaking states
is straightforward within Landau theory. The transitions be-
tween the trivial Z2 × Z′

2 paramagnet phase and the three
Z2 symmetric phase are Ising transitions. The remaining
symmetry in the three Z2 symmetric phases can further spon-
taneously break via a second Ising transition to reach the
Z1 symmetric phase. In Landau theory, a direct continuous
transition between different Z2-SSB phases is not a possibility
since there is no group-subgroup relation between such pairs.
The nontrivial SPT, cluster state, also has Ising transitions to
the Z2, Z′

2, Zd
2 symmetric phases while a direct continuous

transition to the Z1 symmetric phase is not generically possi-
ble without fine tuning. Transition from the cluster state to the
trivial paramagnet proceeds via an XY-type critical point as
was shown by Kramers Wannier transformation in Ref. [115].

Let us now phrase the above discussion in terms of sym-
metry TO. The symmetry TO of the symmetry group Z2 × Z′

2
is GauZ2×Z′

2
, with the following Lagrangian condensable alge-

bras:

1 ⊕ e1 ⊕ e2 ⊕ e1e2, 1 ⊕ e1 ⊕ m2 ⊕ e1m2,

1 ⊕ m1 ⊕ e2 ⊕ e2m1, 1 ⊕ m1 ⊕ m2 ⊕ m1m2, (16)

1 ⊕ m1m2 ⊕ e1e2 ⊕ f1 f2, 1 ⊕ e2m1 ⊕ e1m2 ⊕ f1 f2,

where f1 = e1 ⊗ m1 = e1m1 and f2 = e2 ⊗ m2 = e2m2.
These correspond to gapped boundaries of GauZ2×Z′

2
and,

by our Symm/TO correspondence, to the six gapped phases
discussed above. The gapped boundary 1 ⊕ m1 ⊕ m2 ⊕ m1m2

075105-8



HOLOGRAPHIC THEORY FOR CONTINUOUS PHASE … PHYSICAL REVIEW B 108, 075105 (2023)

FIG. 3. A Z2 × Z′
2 symmetric system has a symmetry described

by 2 + 1D Z2 × Z′
2 topological order GauZ2×Z′

2
. Here, the six La-

grangian condensable algebras of GauZ2×Z′
2

are represented by the
vertices of the hexagon. The gapped phases they correspond to are
described in terms of their symmetry-breaking/SPT order. A connect-
ing edge between any pair represents a non-Lagrangian condensable
algebra, which is strictly included in both of them, and therefore
corresponds to a phase transition between them. There is also a trivial
condensable algebra 1, which is not shown in this picture; it corre-
sponds to a multicritical point between any two gapped phases. The
inclusion relations between condensable algebras have implication
on the structure of phase diagram. For example, the edge labeled
by 1 ⊕ m2 connecting vertices labeled by 1 ⊕ m1 ⊕ m2 ⊕ m1m2 and
1 ⊕ e1 ⊕ m2 ⊕ e1m2 suggests that the former (gapless) 1 ⊕ m2 state
describes a critical point for the stable continuous transition between
the latter two gapped states. For this transition to be nonfine-tuned,
the gapless 1 ⊕ m2 state must have only one symmetric relevant
operator, which is indeed the case here (see main text for details).

condenses the two m anyons, m1 and m2. This phase preserves
the Z2 × Z′

2 symmetry since the Z2 and Z′
2 charges e1, e2

remain uncondensed (see the top vertex of Fig. 3). This is the
trivial paramagnet phase. The 1 ⊕ e1 ⊕ m2 ⊕ e1m2-condensed
boundary corresponds to a Z′

2 symmetric phase since the Z′
2

charge e2 is uncondensed while the Z2 charge e1 is condensed.
The 1 ⊕ m1m2 ⊕ e1e2 ⊕ f1 f2 preserves Zd

2 , the diagonal Z2

symmetry. To see this, note that e1e2 is charged under both
Z2 and Z′

2 while it is symmetric under the action of Zd
2 . As

a result, condensing e1e2 must break both Z2 and Z′
2 but

not Zd
2 . The fact that m1m2 is condensed amounts to the

same conclusion: we recall that, for a single Z2 symmetry,
condensation of m corresponds to proliferating the disorder
operator and hence preserving the Z2 symmetry. Therefore
condensation of m1m2 corresponds to preserving the Zd

2
symmetry. The 1 ⊕ e1 ⊕ e2 ⊕ e1e2-condensed boundary
corresponds to a Z2 × Z′

2-SSB phase since both e1 and
e2 are condensed. The 1 ⊕ e2m1 ⊕ e1m2 ⊕ f1 f2-condensed
boundary corresponds to a 1 + 1D SPT phase, since none of
the Z2 × Z′

2 charges condense and thus Z2 × Z′
2 symmetry is

not broken. This corresponds to the SPT state. In fact, we note
that this condensable algebra actually involves a proliferation
of decorated domain walls [116] since the disorder operator

of Z2, corresponding to m1, is bound to the charge of Z′
2,

corresponding to e2, and vice versa. In Appendix D, we
show that the 1 ⊕ e2m1 ⊕ e1m2 ⊕ f1 f2-condensed boundary
is associated with an automorphism in the symmetry TO,
which also indicates that 1 ⊕ e2m1 ⊕ e1m2 ⊕ f1 f2-condensed
boundary gives rise to an SPT state.

Let us now discuss the possible phase transitions between
these gapped phases. Going from the 1 ⊕ m1 ⊕ m2 ⊕ m1m2

phase to the 1 ⊕ e1 ⊕ m2 ⊕ e1m2 phase, the system encoun-
ters a continuous phase transition which, in the holographic
picture, corresponds to uncondensing m1 and condensing e1.
In conventional language, this is a phase transition between
a Z2 × Z′

2 symmetric phase to a Z′
2-symmetric phase. At this

phase transition, only 1 ⊕ m2 remain condensed. Both e1, m1

are uncondensed as well as inequivalent with respect to the
condensed particles, which makes the corresponding bound-
ary theory impossible to be gapped, due to their nontrivial
mutual statistics. This serves as an argument that indeed the
system becomes gapless at this phase transition, i.e., this phase
transition is continuous (cf. the top right edge of Fig. 3).

In an analogous manner, one can describe the phase tran-
sition from the Z2 × Z′

2-symmetric phase to a Z2-symmetric
phase as uncondensing m2 and condensing e2. At the phase
transition, only 1 ⊕ m1 are condensed (cf. the top left edge
of Fig. 3). On the other hand, the phase transition from the
Z2 × Z′

2 symmetric phase to the Zd
2 symmetric phase corre-

sponds to uncondensing m1 and m2 and condensing e1e2. At
the phase transition, 1 ⊕ m1m2 are condensed.

At all the phase transitions discussed so far, the condensed
anyons form a non-Lagrangian condensable algebra. This
is intimately connected with the gaplessness of the critical
points, as described in the previous section. Given a symmetry
TO, one can in principle obtain all the gapped boundaries that
it can support by searching for Lagrangian condensable alge-
bras. The phase transitions between such gapped phases are
described by various non-Lagrangian condensable algebras.
The example of the Z2 × Z′

2 symmetry discussed here gives us
a simple example of such an analysis. The minimal condens-
able algebra is just 1, i.e., condensation of the trivial anyon.
Besides this, there are nine other non-Lagrangian condensable
algebras which correspond to the various phase transitions
between gapped phases associated to the Lagrangian condens-
able algebras in Eq. (16),

1 ⊕ e1, 1 ⊕ e2, 1 ⊕ m1, 1 ⊕ m2,

1 ⊕ e1e2, 1 ⊕ m1m2, 1 ⊕ e1m2, 1 ⊕ m1e2, 1 ⊕ f1 f2.

(17)

We already discussed the phase transitions corresponding
to the non-Lagrangian condensable algebras 1 ⊕ m1, 1 ⊕ m2

and 1 ⊕ m1m2 above. The condensable algebra 1 ⊕ e1 corre-
sponds to the transition from the 1 ⊕ e1 ⊕ m2 ⊕ e1m2 phase
to the 1 ⊕ e1 ⊕ e2 ⊕ e1e2 phase (see the right edge of Fig. 3).
Similarly, 1 ⊕ e2 corresponds to the transition from the 1 ⊕
m1 ⊕ e2 ⊕ e2m1 phase to the 1 ⊕ e1 ⊕ e2 ⊕ e1e2 phase (see
the left edge of Fig. 3). On the other hand, 1 ⊕ e1e2 cor-
responds to the transition from the 1 ⊕ e1e2 ⊕ m1m2 ⊕ f1 f2

phase to the 1 ⊕ e1 ⊕ e2 ⊕ e1e2 phase (see the bottom right
edge of Fig. 3). This is a Zd

2 breaking phase transition in the
conventional language.
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FIG. 4. The arrows denote possible continuous phase transitions.
They are labeled by the associated non-Lagrangian condensable
algebras that describe the phase transition. The three lower arrows
depict possible symmetry breaking cascades from the two Z2 × Z′

2-
symmetric states, the trivial paramagnet and the cluster state SPT. By
replacing Z′

2-symmetric state in the middle of the cascade by Z2- and
Zd

2 -symmetric state, we can obtain two other such symmetry break-
ing cascades. The top arrow labeled by the minimal condensable
algebra 1 represents a family of possible continuous quantum phase
transition between the trivial symmetric phase and the nontrivial SPT
phase [117]. Note that this condensable algebra can also describe
fine-tuned continuous phase transitions between any two of the six
gapped phases of this system.

Since the minimal condensable algebra 1 is the intersection
of every pair of Lagrangian condensable algebras, it corre-
sponds to a direct, fine-tuned, phase transition between any
two gapped phases. In other words, it describes a multicrit-
ical point, e.g., see the top portion of Fig. 4. The gapless 1
state is given by the canonical boundary of (GauZ2×Z′

2
)/1 =

GauZ2×Z′
2
, which are (c, c̄) = (1, 1)u(1) CFT’s. The other

nine non-Lagrangian condensable algebras give rise to gapless
states that correspond to canonical boundary of GauZ2 , since
for all of these condensable algebras A, we have

(
GauZ2×Z′

2

)
/A = GauZ2 . (18)

These nine gapless states are therefore all described by
(c, c̄) = ( 1

2 , 1
2 ) Ising CFT’s (cf. the discussion in Ref. [48]).

However, these gapless states are distinct, despite being de-
scribed by the same CFT, since the assignment of symmetry
quantum numbers to the excitations in the CFT is different for
each of them.

We see that 1 + 1D Z2 × Z′
2 symmetric systems can only

have two types of “stable” gapless states: (c, c̄) = (1, 1) u(1)
CFTs and (c, c̄) = ( 1

2 , 1
2 ) Ising CFTs. From the structure of

the condensable algebras, we see that (cf. Fig. 3) the triv-
ial Z2 × Z′

2-SPT state (the 1 ⊕ m1 ⊕ m2 ⊕ m1m2 state) and
the nontrivial Z2 × Z′

2-SPT state (the 1 ⊕ e2m1 ⊕ e1m2 ⊕
f1 f2 state) can only be connected by the gapless 1 state,
i.e., by (c, c̄) = (1, 1) u(1) CFTs, since the overlap of the two
condensable algebras 1 ⊕ m1 ⊕ m2 ⊕ m1m2 and 1 ⊕ e2m1 ⊕
e1m2 ⊕ f1 f2 is given by 1. This is consistent with the con-
clusions of Ref. [115]. On the other hand, the nontrivial

Z2 × Z′
2-SPT state, the 1 ⊕ e2m1 ⊕ e1m2 ⊕ f1 f2 state, can be

connected by gapless states of (c, c̄) = ( 1
2 , 1

2 ) Ising CFT to
each of the symmetry breaking states: 1 ⊕ m1m2 ⊕ e1e2 ⊕
f1 f2, 1 ⊕ m1 ⊕ e2 ⊕ m1e2, and 1 ⊕ e1 ⊕ m2 ⊕ e1m2. The con-
densable algebras for the corresponding gapless states are
1 ⊕ f1 f2, 1 ⊕ m1e2, and 1 ⊕ e1m2, respectively. See also
Refs. [118,119] for a different holographic theory for the
phase transitions between SPT phases.

To summarize, in Fig. 3, the six Lagrangian condensable
algebras (and corresponding gapped phases) are shown along
with the nine nontrivial non-Lagrangian condensable alge-
bras. The vertices correspond to the various gapped phases,
while the edges describe gapless states of the 1 + 1D theory.
An edge that connects to a pair of vertices is understood to be
describing the gapless critical theory that mediates a phase
transition between the two gapped phases. The trivial con-
densable algebra 1 can always mediate a multicritical phase
transition between any pair of gapped phases, as noted above.
Hence it is not shown in the figure.

In the next section, we contrast this discussion with a
Z2 × Z′

2 symmetry that has a mixed anomaly. The symmetry
TO of such a symmetry is distinct from that of the anomaly-
free Z2 × Z′

2 symmetry. As was discussed in Ref. [33], the
symmetry TO of Z2 × Z′

2 symmetry with mixed anomaly is
GauZ4 . As a result the entire discussion of gapped boundaries
and condensable algebras will be completely different from
the anomaly-free case.

IV. 1 + 1D Z2 × Z′
2 SYMMETRY WITH MIXED ANOMALY

In our third example, we consider anomalous Z2 × Z′
2

symmetry in 1 + 1D. Such an anomaly is characterized by a
cocycle ω in H3(Z2 × Z′

2; R/Z) = Z2 × Z2 × Z2. The mid-
dle Z2 describes the mixed anomaly between the Z2 and Z′

2
groups. The first and the last Z2 describe the self anomaly
of the Z2 and the Z′

2 groups, respectively. Thus we can
use (m1, m12, m2) to label different cocycles ω. We denote
an anomalous Z2 × Z′

2 symmetry as (Z2 × Z′
2)ω = (Z2 ×

Z′
2)(m1m12m2 ).

1 + 1D systems with (Z2 × Z′
2)(010) symmetry have a

gapped state with only the Z2-symmetry, a gapped state with
only the Z′

2 symmetry, and a third gapped state that breaks
both the Z2 and the Z′

2 symmetry. However, there is no
gapped state with both the Z2 and the Z′

2 symmetry due to
the anomaly [57]. A state that has the full Z2 × Z′

2 symmetry
unbroken must be gapless. Such a gapless state happens to
be the critical point for the continuous transition between
the two gapped states with unbroken Z2 and unbroken Z′

2
symmetry respectively. Noting that Z2 and Z′

2 are not related
by a group-subgroup relation, we see that this is an example of
a continuous phase transition that is beyond the conventional
Landau theory of phase transitions.

The critical point with the Z2 × Z′
2 symmetry also

has other symmetries. The full symmetry of the criti-
cal point is described by the symmetry TO Gau(010)

Z2×Z2
,

which refers to a Z2 × Z′
2 twisted quantum double or

a Z2 × Z′
2 Dijkgraaf-Witten (DW) gauge theory [120].

The Z2 symmetry corresponds to the Z2-gauge charge
conservation in the DW theory, while the Z′

2 symmetry corre-
sponds to the Z′

2-gauge charge conservation in the DW theory.
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The Gau(010)
Z2×Z2

DW theory also have Z2 and Z′
2 gauge flux,

whose conservation give rise to additional symmetries at the
critical point.

In order to discuss the phase diagram and phase transitions
of a system with such an anomalous Z2 × Z′

2 symmetry, we
will use the fact derived in Refs. [33,121] that the 2 + 1D
topological order Gau(010)

Z2×Z2
is the same as the 2 + 1D topo-

logical order GauZ4 (i.e., the Z4 gauge theory with charge
excitations). In order words, in 2 + 1D, the anomalous Z2 ×
Z′

2 symmetry and the Z4 symmetry are equivalent, since they
are described by the same symmetry TO. The anyons of
Gau(010)

Z2×Z′
2

topological order can be mapped to those of GauZ4

topological order. This mapping is given as follows:

e1 → e2, e2 → m2, m1 → m, m2 → e, (19)

where e and m are the generators of the gauge charge and the
gauge flux excitations of GauZ4 . We argued for this mapping
of anyons by studying the patch operators and their associated
braided fusion category in Ref. [33]. We found that pres-
ence of the mixed anomaly changes the anyon statistics from
that described by GauZ2×Z′

2
to that described by Gau(010)

Z2×Z′
2
=

GauZ4 . Supported by this result, we will use the language
of GauZ4 to describe the phase transitions of a system with
(Z2 × Z′

2)(010) symmetry.
Let us first recall what are the different gapped phases that

a system with Z4 symmetry may have from the Ginzburg-
Landau mean field theory. Let us introduce two order
parameter fields: a complex bosonic field � and a real field
φ. Under the generating transformation of Z4, they transform
as

UZ4� = e i π/2�, UZ4φ = −φ. (20)

Consider the following Ginzburg-Landau functional:

F =
∫

dx |∂�|2 + u|�|2 + 1

2
(�4 + c.c.) + 2|�|4

+ |∂φ|2 + wφ2 + 2φ4 + 1

2
φ(�2 + c.c.). (21)

Since the only subgroups of Z4 are the trivial group and Z2,
we can have three different gapped phases in total: one with
the full Z4 symmetry (� = φ = 0 when u,w > 0), one with
unbroken Z2 symmetry (� = 0, φ �= 0 when u > 0, w < 0),
and one with Z1 symmetry (� �= 0, φ �= 0 when u < 0) (see
Fig. 5).

This shape of the phase boundaries can be understood as
follows. When we turn w from positive to negative in the
presence of a positive u, we find a minima with nonzero
φ but still � = 0. This is a phase which has an unbroken
Z2 symmetry. The minimum is now at φ∗ ∼ ±√−w. This
nonzero mean-field value of φ turns on the φ(�2 + c.c.) term
then effectively introduces a modification to the quadratic
terms for � which is of the form

√−w(�2 + c.c.). Thus we
see that for u < O(

√−w), we transition into a phase with
nonzero � as well as φ. This is the Z1 symmetric phase.
The corresponding phase transition is indicated in green in
the bottom right quadrant of Fig. 5. If we are close enough to
the phase transition regions, w is small so it is a very good
approximation to drop the corresponding higher order terms
and only concentrate on the quadratic terms and the φ�2 term
for the mean field phase boundary analysis.

FIG. 5. Mean-field phase diagram for systems with Z4 sym-
metry. It has three gapped phases with unbroken Z4, Z2, and Z1

symmetries. The two phase transitions Z4 → Z2 (marked by 1 ⊕ m2)
and Z2 → Z1 (marked by 1 ⊕ e2) are critical points described by the
same Ising CFT. The direct phase transition Z4 → Z1 (marked by
1) corresponds to a critical point that does not break the anomalous
symmetry (Z2 × Z′

2)(010) and has the full symmetry TO GauZ4 . It is
a critical line that includes the Z4 parafermion CFT.

Although the two phase transitions Z4 → Z2 and Z2 →
Z1 correspond to different symmetry breaking pattern, their
critical points happen to be described by the same Ising
CFT with central charge (c, c̄) = ( 1

2 , 1
2 ). The third symmetry

breaking pattern Z4 → Z1 will have a different critical theory.
In fact the transition is described by a critical line with central
charge (c, c̄) = (1, 1), that includes the Z4 parafermion CFT
[122,123].

Now, from the symmetry TO point of view, the gapped
phases of this system are the allowed gapped boundaries of
GauZ4 . Such gapped boundaries are described by the La-
grangian condensable algebras of the symmetry TO GauZ4 :

1 ⊕ e ⊕ e2 ⊕ e3, 1 ⊕ m ⊕ m2 ⊕ m3,

1 ⊕ e2 ⊕ m2 ⊕ e2m2. (22)

The Lagrangian condensable algebras match the gapped sym-
metric and symmetry-breaking phases very well. The first
of these condensable algebras, 1 ⊕ e ⊕ e2 ⊕ e3 represents
the Z1 phase that spontaneously breaks the Z4 symmetry
completely. The second, 1 ⊕ m ⊕ m2 ⊕ m3 represents the
Z4-gapped phase that is fully Z4 symmetric. The last one,
1 ⊕ e2 ⊕ m2 ⊕ e2m2 represents the Z2 gapped phase that
breaks Z4 down to Z2.

Let us consider these gapped phases in the dual picture
with the (Z2 × Z′

2)(010) symmetry. The three gapped phases
obtained by breaking Z2, Z′

2, or Z2 × Z′
2 are denoted as (ZX2 ×

Z′
2)(010) phase, (Z2 × ZX′

2)(010) phase, (ZX2 × ZX′
2)(010) phase.

They have a one-to-one correspondence with the three gapped
phases discussed above. How do we identify them? First of
all, the condensable algebra 1 ⊕ e ⊕ e2 ⊕ e3 may be written
in terms of Z2 × Z′

2 charges and fluxes—see Eq. (19)—as
1 ⊕ m2 ⊕ e1 ⊕ e1m2 which indicates a phase that has a broken
Z2 but unbroken Z′

2. Thus the Z1 phase (in the Z4 symme-
try language) corresponds to the (ZX2 × Z′

2)(010) phase. (see
Figs. 5 and 6). Similarly, the condensable algebra 1 ⊕ m ⊕
m2 ⊕ m3 maps on to 1 ⊕ m1 ⊕ e2 ⊕ m1e2, which corresponds
to the (Z2 × ZX′

2)(010) phase. This phase is mapped to the Z4
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FIG. 6. Z4-symmetric systems has a symmetry described by
2 + 1D Z4 topological order GauZ4 (i.e., a Z4 gauge theory). The
GauZ4 topological order has seven condensable algebras and three
of them are Lagrangian (the back ones above). They give rise to
gapped boundaries. Four of seven are not Lagrangian, and give rise to
gapless boundaries. The gapless boundaries may be critical points for
the transitions between gapped or gapless boundaries, as indicated
above. The arrows indicate the directions of more condensation.

phase. Lastly, the condensable algebra 1 ⊕ e2 ⊕ m2 ⊕ e2m2

maps on to 1 ⊕ e1 ⊕ e2 ⊕ e1e2, which corresponds to the
(ZX2 × ZX′

2)(010) phase and maps to the Z2 phase.
Next let us discuss the gapless states that describe the phase

transitions of this system. The gapless states are given by
condensation patterns described by non-Lagrangian condens-
able algebras. There are four non-Lagrangian condensable
algebras in the GauZ4 topological order,

1, 1 ⊕ e2, 1 ⊕ m2, 1 ⊕ e2m2. (23)

They map to four non-Lagrangian condensable algebras in the
equivalent Gau(010)

Z2×Z′
2

topological order

1, 1 ⊕ e1, 1 ⊕ e2, 1 ⊕ e1e2. (24)

Thus there are four condensation patterns in the symmetry TO
of this system that can give rise to gapless states. We refer to
these gapless states as 1, 1 ⊕ e2, 1 ⊕ m2, and 1 ⊕ e2m2 states.

The 1 + 1D gapless 1 states are given by the canonical
boundaries of the 1 condensation-induced topological order,
which is nothing but the original symmetry TO GauZ4 . Sim-
ilarly, 1 + 1D gapless 1 ⊕ e2 and 1 ⊕ m2 states are given
by the canonical boundaries of (GauZ4 )/1⊕e2 = GauZ2 and
(GauZ4 )/1⊕m2 = GauZ2 . Last, the 1 + 1D gapless 1 ⊕ e2m2

state is given by the canonical boundary of (GauZ4 )/1⊕e2m2 =
MDS, where MDS is the double-semion topological order. To
see why (GauZ4 )/1⊕e2m2 = MDS, we can ask the question:
which anyons of GauZ4 have trivial mutual statistics with
e2m2. Out of the 16 anyons of GauZ4 , there are eight that
satisfy this condition:

1, e2, m2, e2m2, em, e3m3, em3, e3m.

Now since e2m2 is condensed in (GauZ4 )/1⊕e2m2 , we should
consider the anyons that are related by fusion with e2m2 as
equivalent,

m2 = e2 · e2m2, e2m2 = 1 · e2m2,

e3m3 = em · e2m2, e3m = em3 · e2m2.

Then we find that the remaining inequivalent anyons are
1, e2, em, and em3. Computing the self and mutual statistics
of these anyons indicates that they correspond to MDS.

What is the canonical boundary of GauZ4 ? We note that 1 is
the only condensable algebra in the overlap of two Lagrangian
condensable algebras 1 ⊕ e ⊕ e2 ⊕ e3 (the Z1 phase) and 1 ⊕
m ⊕ m2 ⊕ m3 (the Z4 phase). This allows us to conclude that
the canonical boundary of GauZ4 should describe Z4 → Z1

symmetry breaking transition. Such a transition is described a
(c, c̄) = (1, 1) critical line with only one relevant symmetric
operator. Thus the Z4 → Z1 symmetry breaking transition is
a stable transition, and the canonical boundaries of GauZ4

are described by (c, c̄) = (1, 1)u(1) CFT. Similarly, we can
show that canonical boundaries of GauZ2 are described by
(c, c̄) = ( 1

2 , 1
2 ) Ising CFT with only one relevant symmetric

operator—the critical point of Z2 → Z1 symmetry breaking
transition. The canonical boundary of double-semion topolog-
ical order MDS is given by the chiral boson theory Eq. (55)
with K matrix given by Eq. (56). So the gapless 1 ⊕ e2m2

state, just like the gapless 1 state, is also described by (c, c̄) =
(1, 1) u(1) CFT.

After determining the nature of gapless states 1, 1 ⊕ e2,
1 ⊕ m2, and 1 ⊕ e2m2, we consider the harder question: how
do these gapless states get connected by RG flow, and what is
the structure of the full phase diagram?

The condensable algebra 1 ⊕ e2 differs from Lagrangian
condensable algebras by condensing one excitations. In fact,
condensing e changes 1 ⊕ e2 to 1 ⊕ e ⊕ e2 ⊕ e3, and condens-
ing m2 changes 1 ⊕ e2 to 1 ⊕ e2 ⊕ m2 ⊕ e2m2. Here (e, m2),
having a nontrivial mutual statistics, form a competing pair.
We either have an e condensation that gives rise to the
condensable algebra 1 ⊕ e ⊕ e2 ⊕ e3, or we have an m2 con-
densation that gives rise to the condensable algebra 1 ⊕ e2 ⊕
m2 ⊕ e2m2. However e and m2 cannot both condense. If we
fine tune, we can ensure neither of them condense; that gives
rise to the condensable algebra 1 ⊕ e2. The gapless 1 ⊕ e2

state is described by (c, c̄) = ( 1
2 , 1

2 ) Ising CFT with only one
relevant symmetric operator. The condensable algebra 1 ⊕ e2

only allows one competing pair (e, m2). Thus the RG flow in
the relevant direction will cause the condensation of the com-
peting pair. This gives rise to the phase diagram Fig. 7(a) near
the gapless 1 ⊕ e2 state. Similarly, the phase diagram near the
gapless 1 ⊕ m2 state is given by Fig. 7(b). The condensable
algebra 1 differs from the Lagrangian condensable algebras
1 ⊕ e ⊕ e2 ⊕ e3 and 1 ⊕ e2 ⊕ m2 ⊕ e2m2 by condensing one
excitation. The competing pair involved is (e, m). Since the
gapless 1 state has only one relevant operator, if that corre-
sponds to this competing pair, the phase diagram near the
gapless 1 state is given by Fig. 7(c). Putting the three local
phase diagram together, we obtain a possible global phase
diagram Fig. 8.

However, the gapless 1 state also allows competing pairs
(e, m2) and (m, e2), in addition to (e, m). If instead, it is
the competing pair (e, m2) that corresponds to the relevant
direction, the phase diagram will be Fig. 9(a), which implies
a stable Z2 → Z1 symmetry breaking transition described
by the critical line of (c, c̄) = (1, 1) u(1) CFT that includes
the Ising critical point. On the other hand, if the competing
pair (m, e2) corresponds to the relevant direction, the phase
diagram will be Fig. 9(b), which implies a stable Z4 → Z2

symmetry breaking transition described by the critical line of
(c, c̄) = (1, 1) u(1) CFT that involves the Ising critical point.
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FIG. 7. Possible local phase diagram for systems with Z4

symmetry, which contains three gapped phases with unbroken sym-
metries: Z4, Z2, and Z1. The curves with arrows represent the RG
flow, and the dots are the RG fixed points that correspond to the crit-
ical points of phase transitions. The plane is a space of Hamiltonians
with symmetry TO GauZ4 (see Appendix B for detailed discussions).
The horizontal line in (a) is a space of Hamiltonians whose ground
states have the condensation A = 1 ⊕ e2, which is the basin of
attraction of the RG fixed point 1. The horizontal line in (b) is a
space of Hamiltonians whose ground states have the condensation
A = 1 ⊕ m2, the basin of attraction of the RG fixed point 2. The
horizontal line in (c) is a space of of Hamiltonians whose ground
states have the condensation A = 1, the basin of attraction of the
RG fixed point 3. The critical point 3 is actually part of a critical
line of (c, c̄) = (1, 1) u(1) CFT (the canonical boundary of GauZ4

topological order). The critical point 1 and 2 are the (c, c̄) = ( 1
2 , 1

2 )
Ising CFT (the canonical boundary of GauZ2 topological order). We
also list the corresponding condensable algebras, for each gapped
phase and gapless critical point.

FIG. 8. A possible global phase diagram for systems with Z4

symmetry or (Z2 × Z′
2)(010) symmetry, which has a similar topology

with the mean-field phase diagram Fig. 5. We are not sure about the
phase structure near the center of the phase diagram.

FIG. 9. Other possible local phase diagrams near the gapless
1 state, if the relevant direction corresponds to the condensation
of (a) competing pair (e, m2) or (b) competing pair (m, e2). This
requires the relevant direction of certain (c, c̄) = (1, 1) u(1) CFT’s
to flow to the (c, c̄) = ( 1

2 , 1
2 ) Ising CFT.

The direct phase transition Z4 → Z1 has been observed which
is not a critical line and does not involve Ising critical point.
This implies that the competing pair (e, m) corresponds to the
relevant direction, and phase diagram Fig. 7(c) is realized.
However, since (c, c̄) = (1, 1) u(1) CFT is a critical line with
a marginal direction, it is not clear if either of the phase
diagrams in Fig. 9 can be realized in some parts of the critical
line.

To obtain a concrete global phase diagram for Z4 sym-
metric systems, we consider a Z4 symmetric statistical
model on square lattice, which has degree of freedoms (θi,

φi), θi = 0, 1, 2, 3, φi = 0, 1, 2, 3, on site i. The energy is
given by

E = −
∑

i

J1
(
δθi,θi+x + δθi,θi+y

)
−

∑
i

J2
(
δmod(φi−φi+x,2) + δmod(φi−φi+y,2)

)
−

∑
i

Jδθi,φi + Jc sin

(
π (θi − φi )

2

)
. (25)

The Jc term breaks the θi → mod(−θi, 4), φi → mod(−φi, 4)
symmetry, so the full internal symmetry of the model is Z4.
The J2 term helps to realize the Z2 phase.

We use the space-time tensor network renormalization ap-
proach [124] to study the above statistical model. In fact,
we use a particular version of the tensor network approach
which is described in detail in Ref. [56]. We obtain the phase
diagram Fig. 10. The lower left of Fig. 10 is the Z4 phase. The
upper left is the Z2 phase, and the right is the Z1 phase. The
numerical phase diagram qualitatively agrees with Fig. 8.

We have described the gapless states and continuous tran-
sitions from the Z4 symmetry point of view. We can repeat the
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FIG. 10. A phase diagram for the model (25) with 0.993 <

J1β < 1.083 (horizontal axis), 0.533 < J2β < 0.773 (vertical axis),
and Jβ = Jcβ = 1.0. (a) A plot of 1/GSD, where GSD is ob-
tained from the partition function: GSD ≡ Z2(L, L)/Z (L, 2L) where
Z (L1, L2) is the partition function for system of size L1 × L2. For
gapped quantum systems, GSD happen to be the ground state degen-
eracy. (b) A plot of central charge c. The central charge c is also
obtained from the partition function Z (L, L∞), which has a form
e−L∞[εL− 2πc

24L +o(L−1 )] when L∞ � L, where c is the central charge. This
way, the central charge c is defined even for noncritical states. The
red channel of the colored image is for system of size 64 × 64, the
green channel for 128 × 128, and the blue channel for 256 × 256.

above discussion using the (Z2 × Z′
2)(010) symmetry point of

view and obtain analogous results.
It is interesting to compare the Z2 × Z′

2 symmetry and
(Z2 × Z′

2)(010) symmetry. The ZX2 × Z′
2 → Z2 × ZX′

2 DQCP-

FIG. 11. Mean-field phase diagram of (31) in (u, v) space, for
α = β = γ = 1. (a) The horizontal axis is u ∈ [−1, 1] and the ver-
tical axis is v ∈ [−1, 1]. The red channel corresponds to the value
of the S3 order parameter

√
|�1|2 + |�2|2. The green channel cor-

responds to the value of the Z2 order parameter
√|φ|. The black

region corresponds to a S3 symmetric phase, the red region to a Z2

symmetric phase, the green region to a Z3 symmetric phase, and the
yellow region to a Z1 phase. [(b)–(d)] Plots of

√
|�1|2 + |�2|2 (y1)

and |φ| (y2), for u ∈ [−1, 1], and (b) v = −0.8, (c) −0.1, and (d)
0.5.

type transition can be a continuous transition described by a
gapless 1 state. Such a gapless state is given by the canon-
ical boundary of the symmetry TO GauZ2×Z′

2
, which is the

(c, c̄) = (1, 1) Ising× Ising CFT. Such a gapless state has
two Z2 × Z′

2 symmetric relevant operators. So the ZX2 × Z′
2 →

Z2 × ZX′
2 symmetry breaking transition can be a direct contin-

uous transition, but it must be a multicritical point. In contrast,
the (ZX2 × Z′

2)(010) → (Z2 × ZX′
2)(010) symmetry breaking tran-

sition is described by the canonical boundary of the symmetry
TO Gau(010)

Z2×Z′
2
, which is a (c, c̄) = (1, 1)u(1) CFT that has only

one (Z2 × Z′
2)(010) symmetric relevant operator.

V. 1 + 1D ANOMALY-FREE S3 SYMMETRY
A. Ginzburg-Landau approach for phases and phase transitions

The description of S3 symmetry-breaking phases in
Ginzburg-Landau theory is based on order parameters that
transform nontrivially under the relevant broken symmetries.
The group S3 has two inequivalent nontrivial subgroups, Z2

and Z3. In terms of permutations, S3 is represented as

S3 = {1, (1, 2), (2, 3), (1, 3), (1, 2, 3), (1, 3, 2)} (26)

with subgroups

Z2 � {1, (1, 2)}, {1, (1, 3)}, {1, (2, 3)}, (27)

Z3 � {1, (1, 2, 3), (1, 3, 2)}. (28)

The two elements (1, 2) and (1, 2, 3) generate the group S3.
There are two nontrivial representations of this group, a one-
dimensional representation and a two-dimensional one. The
first one, which we call a1, may be realized by a real-valued
Ising-like field, φa1 that transforms under the generators as

(1, 2) ◦ φa1 = −φa1 , (1, 2, 3) ◦ φa1 = φa1 . (29)

The condensation of φa1 , which gives it a nonzero vacuum
expectation value, breaks S3 symmetry down to S3/Z2 = Z3

symmetry. The second nontrivial representation, which we
call a2, may be realized by a complex two-component bosonic
field �a2

α , α = 1, 2. It transforms under the S3 generators as

(1, 2) ◦ �a2 =
(

0 1
1 0

)
�a2 ,

(1, 2, 3) ◦ �a2 =
(

e i 2π/3 0

0 e− i 2π/3

)
�a2 . (30)

This representation is fully faithful in its S3 action. The con-
densation of �a2 satisfying �

a2
1 = �

a2
2 breaks S3 symmetry

down to Z2. The condensation of �a2 that does not satisfy
�

a2
1 = �

a2
2 breaks S3 symmetry completely down to Z1 sym-

metry (i.e., the trivial group). To study the different phases
allowed by the symmetry breaking structure, we can work
with the following Ginzburg-Landau functional (we have
dropped the superscripts a1, a2 for readability):

F [φ,�α] = uφ2 + φ4 + v(|�1|2 + |�2|2)

+ α
(
�3

1 + �3
2

) + β
(
�3

1 − �3
2

)
φ

+ γφ2(|�1|2 + |�2|2) + |�1 − �∗
2|2

+ (|�1|2 + |�2|2)2 + c.c. (31)
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FIG. 12. Mean-field phase diagram of (31) in (u, v) space, for
α = β = 1 and γ = −0.5. (a) The horizontal axis is u ∈ [0, 0.2] and
the vertical axis is v ∈ [−0.2, 0.2]. The red channel corresponds
to the value of the S3 order parameter

√
|�1|2 + |�2|2. The green

channel corresponds to the value of the Z2 order parameter
√|φ|. The

black region corresponds to a S3 symmetric phase, the red region to a
Z2 symmetric phase, the green region to a Z3 symmetric phase’ and
the yellow region to a Z1 phase. [(b)–(d)] Plots of

√
|�1|2 + |�2|2

(y1) and |φ| (y2), for u ∈ [0, 0.2], and (b) v = −0.16, (c) 0.02, and
(d) 0.1.

It is straightforward to check that V [φ,�α] is symmetric
under the action of the two generators of S3 and hence fully
symmetric under S3 transformations. The mean-field solution
is obtained by minimizing this functional with the assumption
that the fields are independent of the spatial coordinates. The
mean-field phase diagrams are plotted using

Z2 order parameter: |φ|,
S3 order parameter:

√
|�1|2 + |�2|2. (32)

From the mean-field phase diagrams, Figs. 11 and 12 we
see that all four symmetry breaking phases, S3, Z3, Z1, and
Z1, are realized. Let us consider the possible phase transitions
between the various phases. Landau theory tells us that we
should expect continuous phase transitions between pairs of
groups that have a group-subgroup relation. The proper sub-
groups of S3 are three Z2 subgroups, a Z3 subgroup, and the
trivial subgroup Z1. There are five distinct group-subgroup
pairs that one can find among these groups:

Z1 ⊂ S3, Z1 ⊂ Z2, Z1 ⊂ Z3, Z2 ⊂ S3, Z3 ⊂ S3.

There are two questions one can immediately ask the follow-
ing.

(1) Are these transitions all distinct?
(2) Are these transitions all stably continuous?
From Landau’s theory of phase transitions, one expects

that a symmetry-breaking phase transition should depend only
on the pair of symmetry groups across this transition. More-
over, we also expect from this point of view that any pair

of groups related by a group-subgroup relation should have
a corresponding continuous transition between gapped states
that have those symmetries. By the same token, a pair of
gapped phases that are symmetric under groups not related
by a group-subgroup relation are generically expected to have
a first-order discontinuous transition; sometimes a continuous
transition that is multicritical (i.e., fine-tuned continuous) may
also be allowed.

Thus we expect the two transitions S3 ↔ Z3 and Z2 ↔ Z1

to be stably continuous and identical, since both transitions
break a Z2 symmetry and is controlled by the change of a Z2

order parameter. However, although the two Ginzburg-Landau
theories describing the two transitions are controlled by the
same Z2 order parameter, the Ginzburg-Landau theory for the
transition S3 ↔ Z3 has a Z3 symmetry, while the Ginzburg-
Landau theory for the transition Z2 ↔ Z1 does not have any
additional symmetry. Since the Z3 symmetry has trivial ac-
tions on the Z2 order parameter, the two Ginzburg-Landau
theories are actually identical. Therefore Ginzburg-Landau
theory predicts that the two transitions S3 ↔ Z3 and Z2 ↔
Z1 are indeed described by the same CFT. This result is
confirmed by numerical calculations and the symmetry TO
approach, presented in the next few sections.

We might also expect the two transitions S3 ↔ Z3

and Z2 ↔ Z1 to be stably continuous and identical, since
both transitions break a Z3 symmetry and is controlled
by the change of a Z3 order parameter. However, the
Ginzburg-Landau theory for the transition S3 ↔ Z2 has a Z2

symmetry, while the Ginzburg-Landau theory for the tran-
sition Z3 ↔ Z1 does not have this symmetry. Also the Z2

symmetry acts nontrivially on the Z3 order parameter. Thus
the Ginzburg-Landau theories for the two transitions are not
really the same. Also, due to the cubic term, the two transi-
tions must be first order at mean-field level. Later, we will see
that the fluctuations turn the two first order transitions into sta-
ble continuous transitions. The CFT’s for the two transitions
are different. However, the two CFT’s are both constructed
from the (6,5) minimal model.

Due to the group-subgroup relation between S3 and Z1, we
might expect the transition S3 ↔ Z1 to be stably continuous,
which is described by a CFT with one relevant direction. But
using the symmetry TO approach, we only find three gap-
less states with one relevant direction and with small central
charge less than (c, c̄) = (1, 1), for S3 symmetric systems.
The first gapless state describes the transitions S3 ↔ Z3 and
Z2 ↔ Z1. The second gapless state describes the transition
Z3 ↔ Z1 and the third one describes the transition S3 ↔ Z2.
So which gapless state describes the transition S3 ↔ Z1? May
be the stable continuous transition S3 ↔ Z1 is described by
a CFT with central charge larger than (c, c̄) = (1, 1), or may
be the stable continuous transition S3 ↔ Z1 does not exist. In
the next section, we perform some numerical calculations to
study this issue.

Lastly, we expect the stable transition Z3 ↔ Z2 to be first
order. We know that the transitions Z3 ↔ Z1 and Z1 ↔ Z2

can be stably continuous. Can we fine tune a parameter to
make the two transitions to coincide and obtain a direct con-
tinuous transition Z3 ↔ Z2? If Z2 and Z3 were independent
(i.e., if the total symmetry were Z2 × Z3), then the answer
is yes. However, for total symmetry S3, Z2, and Z3 are not
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independent since S3 = Z3 � Z2, so we are not sure. In next
section, we find that the transition Z3 ↔ Z2 can indeed be
continuous and multicritical. In fact, the same multicritical
point describes both the transitions S3 ↔ Z1 and Z3 ↔ Z2.

B. Numerical result from tensor network calculations

The three-state Potts model is a well studied statistical
model with S3 symmetry. However, this model only realizes
two phases, the S3-symmetric and the Z2-symmetric phases.
Here we construct an S3-symmetric statistical model on a
square lattice that can realize all four phases: S3, Z3, Z2,
and Z1.

The first model has degrees of freedom (θi, si ), θi = 0, 1, 2,
si = 0, 1, on site i. The energy is given by

E = −
∑

i

J1
(
δθi,θi+x + δθi,θi+y

) + J2
(
δsi,si+x + δsi,si+y

)
+ 1

3
Jc

∑
i=even

[sgn(θi − θi+x) + sgn(θi+x − θi+x+y)

+ sgn(θi+x+y − θi+y) + sgn(θi+y − θi)]

× (si + si+x + si+x+y + si+y − 2), (33)

where sgn(θ ) ≡ mod(θ + 1, 3) − 1. The J1 and J2 terms give
rise to q = 3 Potts model and Ising model. If we view θi as
a planer vector that can points to three directions separated
by 120◦ degree, then the term sgn(θi − θi+x) + sgn(θi+x −
θi+x+y) + sgn(θi+x+y − θi+y) + sgn(θi+y − θi ) has a meaning
chirality: it measures whether the vectors turn clockwise or
anticlockwise as we go round a square. The coupling of the
chirality with the Ising order parameter si breaks the S3 × Z2

symmetry to S3 symmetry.
The second S3 symmetric statistical model has degree of

freedoms (θi, φi, si ), θi = 0, 1, 2, φi = 0, 1, 2, si = 0, 1, on

FIG. 13. A phase diagram for the first model (33) with 1.2 <

J1β < 1.4 (horizontal axis), 0.6 < J2β < 1.0 (vertical axis), and
Jcβ = 1.5. (a) A plot of 1/GSD, where GSD ≡ Z2(L, L)/Z (L, 2L)
and Z (L1, L2) is the partition function for system of size L1 ×
L2. (b) A plot of central charge c. Z (L, L∞) has a form
e−L∞[εL− 2πc

24L +o(L−1 )] when L∞ � L, where c is the central charge. The
red channel of the colored image is for system of size 64 × 64, the
green channel for 128 × 128, and the blue channel for 256 × 256.

FIG. 14. A phase diagram for the second model (34) with 0.57 <

J1β < 1.29 (horizontal axis), 0.4775 < J2β < 1.2275 (vertical axis),
and Jβ = 1 − J2β, Jcβ = 1. (a) A plot of 1/GSD. (b) A plot of cen-
tral charge c. The red channel of the colored image is for system of
size 64 × 64, the green channel for 128 × 128, and the blue channel
for 256 × 256.

site i. The energy is given by

E = −
∑

i

J1
(
δθi,θi+x + δθi,θi+y + δφi,φi+x + δφi,φi+y

)
−

∑
i

J2(δsi,si+x + δsi,si+y ) + Jδθi,φi

+ Jc

∑
i

sgn(θi − φi)

(
si − 1

2

)
. (34)

The Jc term is also a coupling of the chirality with the Ising
order parameter si.

Again, we use a particular version of the tensor network
approach in Ref. [56] to study the above two statistical mod-
els. We obtain the phase diagrams Figs. 13–15. All three phase
diagrams contain all the four phases: S3 phase in lower left, Z3

phase in upper left, Z2 phase in lower right, and Z1 phase in
upper right,

In phase diagram Fig. 13, we see five stable direct transi-
tions S3 ↔ Z2, S3 ↔ Z3, Z3 ↔ Z2, Z3 ↔ Z1, and Z2 ↔ Z1.

FIG. 15. A phase diagram for the first model (33) with
1.02125 < J1β < 1.04125 (horizontal axis), 0.851875 < J2β <

0.891875 (vertical axis), and Jcβ = 0.5. (a) A plot of 1/GSD. (b) A
plot of central charge c. The red channel of the colored image is for
system of size 64 × 64, the green channel for 256 × 256, and the
blue channel for 1024 × 1024.
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TABLE I. The pointlike excitations and their fusion rules in 2+1D GauS3 topological order (i.e., S3 gauge theory with charge excitations).
The S3 group are generated by (1,2) and (1,2,3). Here 1 is the trivial excitation. a1 and a2 are pure S3 charge excitations, where a1 corresponds to
the one-dimensional representation and a2 the two-dimensional representation of S3. b and c are pure S3 flux excitations, where b corresponds
to the conjugacy class {(1, 2, 3), (1, 3, 2)}, and c conjugacy class {(1, 2), (2, 3), (1, 3)}. b1, b2, and c1 are charge-flux bound states. d, s are the
quantum dimension and the topological spin of an excitation.

d, s 1,0 1,0 2,0 2,0 2, 1
3 2, − 1

3 3,0 3, 1
2

⊗ 1 a1 a2 b b1 b2 c c1

1 1 a1 a2 b b1 b2 c c1

a1 a1 1 a2 b b1 b2 c1 c
a2 a2 a2 1 ⊕ a1 ⊕ a2 b1 ⊕ b2 b ⊕ b2 b ⊕ b1 c ⊕ c1 c ⊕ c1

b b b b1 ⊕ b2 1 ⊕ a1 ⊕ b b2 ⊕ a2 b1 ⊕ a2 c ⊕ c1 c ⊕ c1

b1 b1 b1 b ⊕ b2 b2 ⊕ a2 1 ⊕ a1 ⊕ b1 b ⊕ a2 c ⊕ c1 c ⊕ c1

b2 b2 b2 b ⊕ b1 b1 ⊕ a2 b ⊕ a2 1 ⊕ a1 ⊕ b2 c ⊕ c1 c ⊕ c1

c c c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2 a1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2

c1 c1 c c ⊕ c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 a1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2 1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2

We also computed the central charge c+c̄
2 , along the transition

lines. The nonzero central charges suggest that all the five
transitions are stable continuous transitions.

In phase diagram Fig. 14, we see five stable direct tran-
sitions S3 ↔ Z2, S3 ↔ Z3, S3 ↔ Z1, Z3 ↔ Z1, Z2 ↔ Z1.
From the computed central charge, we find that the transitions
S3 ↔ Z2, Z3 ↔ Z1, and S3 ↔ Z1 are stably continuous. The
transitions Z2 ↔ Z1 is first order since the central charge
c = c̄ = 0 along the transition line.

In phase diagram Fig. 15, we reduce Jc from Jc = 1.5 in
Fig. 13 to Jc = 0.5. We see an evidence of a multicritical
point connecting the four phases S3, Z3, Z2, and Z1. More
systematic and detailed studies are needed.

Among these stable continuous transitions, the Z2 ↔ Z1

and S3 ↔ Z3 critical points are the well known Ising critical
point, which is described by a conformal field theory (CFT)
constructed from (4,3) minimal model. S3 ↔ Z2 critical point
is the well known critical point of q = 3 Potts model, which
is described by a CFT constructed from (6,5) minimal model.
However, what are the Z3 ↔ Z2, S3 ↔ Z2, and Z3 ↔ Z1 crit-
ical points? What is the (S3,Z2,Z1,Z3) multicritical point?
In next section, we will use symmetry TO to understand
the above global phase diagrams of S3 symmetric systems
and the critical points. In particular, we will show a duality
relation between S3 ↔ Z1 transition and Z3 ↔ Z2 transition.
For example, the existence of a stable continuous transition
S3 ↔ Z1 implies the existence of stable continuous transition
Z3 ↔ Z2. The two stable continuous transitions, if they exist,
are described by the same CFT.

C. A symmetry TO approach for gapped and gapless phases

1 + 1D S3 symmetry is described a symmetry TO (i.e., a
2 + 1D topological order) whose topological excitations are
described by S3 quantum double GauS3 (i.e., S3 gauge theory
with both charge and flux excitations, as described in Table I).
From Appendix C, we find that a condensable algebra A =⊕

a∈M Aaa in M must satisfies

A1 = 1, Aa ∈ N, Aa = Aā,

sa = 0 for a ∈ A,

∑
b∈M Sab

MAb∑
b∈M S1b

M
Ab

= cyclotomic integer for all a ∈ M

Aa � da − δ(da),

AaAb �
∑

c

Nab
M,cAc − δa,b̄δ(da),

Aa =
∑

b

Sab
MAb if A is Lagrangian. (35)

Solving the above conditions for M = GauS3 , we find the
following potential condensable algebras:

1 ⊕ b ⊕ c, 1 ⊕ a2 ⊕ c, 1 ⊕ a1 ⊕ 2b, 1 ⊕ a1 ⊕ 2a2.

1 ⊕ b, 1 ⊕ a2, 1 ⊕ a1, 1. (36)

Since Eq. (35) are only necessary conditions, some of the
above A′s may not be valid. For GauS3 , using the following
physical considerations, we argue that the above A′s are all
valid and describe the actual condensation patterns in physical
systems (see Fig. 16).

We know that 1 + 1D S3 symmetric systems can have four
gapped phases with unbroken symmetry group S3, Z3, Z2, and
Z1, and they correspond to the four Lagrangian condensable
algebras that we find above:

1 ⊕ b ⊕ c → S3 phase, 1 ⊕ a2 ⊕ c → Z2 phase,

1 ⊕ a1 ⊕ 2b → Z3 phase, 1 ⊕ a1 ⊕ 2a2 → Z1 phase.
(37)

To understand the above result, we note that a condensation
of real field φa1 carrying the one-dimensional representation
of S3 breaks S3 symmetry down to Z3 symmetry. Thus the
condensation of the corresponding Lagrangian condensable
algebra 1 ⊕ a1 ⊕ 2b induces a gapped symmetry breaking
phase where the unbroken symmetry is Z3 ⊂ S3. A conden-
sation of complex two-component bosonic field �a2

α , α =
1 and 2, carrying the two-dimensional representation of S3

and satisfying �
a2
1 = �

a2
2 breaks S3 symmetry down to Z2

symmetry. Thus the condensation of Lagrangian condens-
able algebra 1 ⊕ a2 ⊕ c induces a gapped symmetry breaking
phase where the unbroken symmetry is Z2 ⊂ S3. Similarly,
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FIG. 16. 1 + 1D S3 symmetry is described by symmetry TO
GauS3 (S3 gauge theory with charge excitations). The GauS3 topo-
logical order has eight condensable algebras, and four of them
are Lagrangian (the black ones above). They give rise to gapped
phases as the corresponding gapped boundary states. We also indi-
cate the unbroken symmetry groups of these phases. Four of eight
are not Lagrangian, and give rise to gapless states. We also indi-
cate the condensation-induced topological orders whose canonical
boundaries give rise to these gapless states. The gapless states are
critical points for the transitions between gapped or gapless states,
as indicated above. The arrows indicate the embedding maps of
condensable algebra and the directions of more condensation. All
critical points has only one symmetric local relevant operator and are
stable critical points.

the condensation of φa1 and �a2 breaks S3 symmetry down to
Z1 symmetry. So the condensation of Lagrangian condensable
algebra 1 ⊕ a1 ⊕ 2a2 induces a gapped symmetry breaking
phase where the unbroken symmetry is Z1 ⊂ S3.

Since 1 ⊕ b ⊕ c, 1 ⊕ a2 ⊕ c, 1 ⊕ a1 ⊕ 2b, 1 ⊕ a1 ⊕ 2a2

are Lagrangian, i.e., DM/dA = DM/A = 1, the correspond-
ing condensation-induced topological orders, (GauS3 )/1⊕b⊕c,
(GauS3 )/1⊕a2⊕c, (GauS3 )/1⊕a1⊕2b, (GauS3 )/1⊕a1⊕2a2 , are all triv-
ial. On the other hand, 1 ⊕ a2, 1 ⊕ b, 1 ⊕ a1, 1 are not
Lagrangian, and their condensation-induced topological or-
ders are not trivial. We have

(GauS3 )/1⊕a2 = GauZ2 , (GauS3 )/1⊕b = GauZ2 ,

(GauS3 )/1⊕a1 = GauZ3 , (GauS3 )/1 = GauS3 . (38)

The above results can be understood using the usual
Anderson-Higgs condensation in S3 gauge theory. The 1 ⊕ a2

condensation correspond to the condensation of the �a2 field,
which change the topological order GauS3 described by S3

gauge theory to a topological order GauZ2 described by Z2

gauge theory. Similarly, the 1 ⊕ a1 condensation correspond
to the condensation of the φa1 field, which change the topolog-
ical order GauS3 described by S3 gauge theory to a topological
order GauZ3 described by Z3 gauge theory. (GauS3 )/1 = GauS3

is obvious since 1 is trivial. To understand (GauS3 )/1⊕b =
GauZ2 , we note that GauS3 is invariant under exchanging a2

and b. Such an automorphism exchanges 1 ⊕ a2 and 1 ⊕ b.
Thus (GauS3 )/1⊕b = (GauS3 )/1⊕a2 = GauZ2 .

We can also derive Eq. (38) using the boundary theory of
topological order summarized in Appendix C. For example,
(GauS3 )/1⊕a2 = GauZ2 implies that there is a canonical domain
wall between GauS3 and GauZ2 , that is described by a nonnega-
tive integer matrix (Aai ). Aai satisfy Eqs. (C20), (C21), (C23),
and (C25), as well as other properties listed in Appendix C.

We find that such (Aai ) does exist

(
Aai
GauS3 |GauZ2

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1
0 0 1 0 a1

1 0 1 0 a2

0 0 0 0 b
0 0 0 0 b1

0 0 0 0 b2

0 1 0 0 c
0 0 0 1 c1

1 e m f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (39)

In the above Aai
GauS3 |GauZ2

, the nonzero entries in the first row

of (Aai ) indicate the condensation of corresponding anyons in
GauZ2 (i.e., these anyons become 1 at the domain wall). Thus
the first row of (Aai ) gives rise to a condensable algebra in
GauZ2 :

⊕
i A1i

GauS3 |GauZ2
i = 1, which indicates that the domain

wall is a 1-condensed boundary of GauZ2 . This in turn indi-
cates that GauZ2 comes from GauS3 via a condensation.

Similarly, the first column of (Aai ) gives rise to a condens-
able algebra in GauS3 :

⊕
a Aa1

GauS3 |GauZ2
a = 1 ⊕ a2, which tells

us that the domain wall is a 1 ⊕ a2-condensed boundary of
GauS3 , and the 1 ⊕ a2 condensation changes GauS3 to GauZ2 .
This confirms our above result from physical considerations.

GauS3 and GauZ2 has another canonical boundary
described by

(
Aai
GauS3 |GauZ2

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1
0 0 1 0 a1

0 0 0 0 a2

1 0 1 0 b
0 0 0 0 b1

0 0 0 0 b2

0 1 0 0 c
0 0 0 1 c1

1 e m f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (40)

which describes the condensation of 1 ⊕ b. Such a condensa-
tion also changes GauS3 to GauZ2 .

Similarly, the canonical domain wall between GauS3 and
GauZ3 is given by

(
Aai
GauS3 |GauZ3

)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 a1

0 0 0 1 1 0 0 0 0 a2

0 1 1 0 0 0 0 0 0 b
0 0 0 0 0 0 0 1 1 b1

0 0 0 0 0 1 1 0 0 b2

0 0 0 0 0 0 0 0 0 c
0 0 0 0 0 0 0 0 0 c1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(41)

From the first row of (Aai
GauS3 |GauZ3

), we obtain the corre-

sponding condensable algebra in GauZ3 :
⊕

i A1i
GauS3 |GauZ3

i =
1, which suggests that GauZ3 comes from GauS3 by a
condensation. From the first column of (Aai

GauS3 |GauZ3
), we

obtain the corresponding condensable algebra in GauS3 :⊕
a Aa1

GauS3 |GauZ3
a = 1 ⊕ a1, which tells us that the condensa-

tion is given by 1 ⊕ a1. This again confirms our above result.
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Therefore, although we have four non-Lagrangian con-
densable algebras, we only have three different condensation-
induced topological orders, GauZ2 , GauZ3 , GauS3 , which
correspond to three reduced symmetry TOs and give rise to
three types of gapless states. Let us now elaborate on the
description of these gapless states from the point of view of
symmetry TO.

First, a reduced symmetry TO allows many different gap-
less states. Here we want to know which is the most stable
gapless state with minimal number of relevant operators. If
the reduced symmetry TO is trivial, the most stable state with
the trivial reduced symmetry TO is gapped. If the reduced
symmetry TO is nontrivial, the state with minimal low energy
excitations is still gapless. What is this minimal gapless state?
How to calculate the canonical boundary of the topological
order M/A, which corresponds to the minimal gapless state
with reduced symmetry TO M/A?

To calculate the canonical boundary, we will use holoMB
[48,125–127] which is a generalization of modular boot-
strap [37,109,128–133]. Modular bootstrap looks for single-
component modular invariant partition functions. HoloMB
looks for multicomponent boundary partition functions for
a boundary space-time that has a form of torus. The shape
of the boundary space-time torus is described by a complex
number τ . A multicomponent boundary partition function
Zα (τ ) transform covariantly under the modular transforma-
tion, according to the S and T matrices that characterize the
bulk topological order [see Eq. (5)]. The physical reason for
such a bulk-boundary connection is discussed in Refs. [48,98].
Thus, in contrast to the modular bootstrap, holoMB requires
additional input data, the S and T matrices, to describe the
symmetry TO.

If Zα (τ ) is independent of τ , the corresponding boundary
is gapped. If Zα (τ ) depend on τ , the corresponding bound-
ary is gapless. For gapless boundary, the multicomponent
partition function Zα (τ ) is formed by conformal characters
of certain CFT. So we look for a CFT, whose conformal
characters, after a suitable combination, can form multi-
component boundary partition function that transform under
modular transformation according to the bulk S and T matri-
ces. The method of computing a suitable combination is the
same as computing gapped boundary (see Appendix C) of
some properly constructed topological order. For details see
Ref. [48].

Using such a method, we can obtain the properties
of the gapless 1 ⊕ a1 state with reduced symmetry TO
(GauS3 )/1⊕a1 = GauZ3 . First, we find that one of gapless
boundaries of GauZ3 is given by the following multicompo-
nent partition function. Note that the GauZ3 topological order
has nine anyons 1, e, e2, m, em, e2m, m2, em2, e2m2. The mul-
ticomponent boundary partition function for GauZ3 are labeled
by these nine anyons:

Z
GauZ3
1 = ∣∣χm6

0 + χm6
3

∣∣2 + ∣∣χm6
2
5

+ χm6
7
5

∣∣2
,

Z
GauZ3
e = ∣∣χm6

2
3

∣∣2 + ∣∣χm6
1
15

∣∣2
,

Z
GauZ3

e2 = |χm6
2
3

|2 + ∣∣χm6
1

15

∣∣2
,

Z
GauZ3
m = ∣∣χm6

2
3

∣∣2 + ∣∣χm6
1

15

∣∣2
,

Z
GauZ3
me = χm6

0 χ̄m6
2
3

+ χm6
3 χ̄m6

2
3

+ χm6
2
5

χ̄m6
1

15
+ χm6

7
5

χ̄m6
1
15

,

Z
GauZ3

me2 = χm6
2
3

χ̄m6
0 + χm6

2
3

χ̄m6
3 + χm6

1
15

χ̄m6
2
5

+ χm6
1
15

χ̄m6
7
5

,

Z
GauZ3

m2 = ∣∣χm6
2
3

∣∣2 + ∣∣χm6
1

15

∣∣2
,

Z
GauZ3

m2e = χm6
2
3

χ̄m6
0 + χm6

2
3

χ̄m6
3 + χm6

1
15

χ̄m6
2
5

+ χm6
1
15

χ̄m6
7
5

,

Z
GauZ3

m2e2 = χm6
0 χ̄m6

2
3

+ χm6
3 χ̄m6

2
3

+ χm6
2
5

χ̄m6
1

15
+ χm6

7
5

χ̄m6
1
15

, (42)

where χm6
h = χm6

h (τ ) are conformal characters with confor-
mal dimension h, for (6,5) minimal model. The above result
used the expression of S-matrix of (p, q) minimal model in
Ref. [134]. Such CFT has a chiral central charge c = 4/5.

The above boundary is a 1-condensed boundary of the
topological order GauZ3 . This is because a condensation of an
anyon a, will cause the correspond partition function Za(τ ) to
contain the |χm6

0 |2 term [see Eq. (43)]. In the above partition,
the term |χm6

0 |2 appears only in Z1(τ ), and thus the boundary
is a 1-condensed boundary. Also if a condense, there must
be a nontrivial anyon b that has a nontrivial mutual statistics
with a. (This is due to the remote-detectability principle of
anomaly-free topological order.) The condensation of a will
confine the anyon b and cause Zb to vanish [see Eq. (43)].
This does not happen for the above partition function. Thus
there is no condensation of nontrivial anyons.

We have checked other CFT’s with smaller central charges.
We find that although these CFT’s can be gapless bound-
aries of GauZ3 , but they cannot be 1-condensed boundaries
of GauZ3 . This implies that the above boundary is also a
canonical boundary (i.e., a minimal 1-condensed boundary)
of the topological order GauZ3 .

In the above, we obtained the 1 ⊕ a1-condensed bound-
ary of GauS3 via the 1-condensed boundary of GauZ3 . This
works since GauZ3 is the 1 ⊕ a1 condensation-induced topo-
logical order from GauS3 : (GauS3 )/1⊕a1 = GauZ3 . In fact, we
can directly obtain 1 ⊕ a1-condensed boundary of GauS3 .
The topological order GauS3 has many gapless boundaries,
described by various multicomponent partition functions, la-
beled by the anyons in GauS3 . One such multicomponent
partition function is given by

Z
GauS3
1 = ∣∣χm6

0 + χm6
3

∣∣2 + ∣∣χm6
2
5

+ χm6
7
5

∣∣2
,

Z
GauS3
a1 = ∣∣χm6

0 + χm6
3

∣∣2 + ∣∣χm6
2
5

+ χm6
7
5

∣∣2
,

Z
GauS3
a2 = ∣∣χm6

2
3

∣∣2 + ∣∣χm6
1
15

∣∣2
,

Z
GauS3
b = ∣∣χm6

2
3

∣∣2 + ∣∣χm6
1
15

∣∣2
,

Z
GauS3
b1

= χm6
0 χ̄m6

2
3

+ χm6
3 χ̄m6

2
3

+ χm6
2
5

χ̄m6
1
15

+ χm6
7
5

χ̄m6
1

15
,

Z
GauS3
b2

= χm6
2
3

χ̄m6
0 + χm6

2
3

χ̄m6
3 + χm6

1
15

χ̄m6
2
5

+ χm6
1

15
χ̄m6

7
5

,

Z
GauS3
c = 0,

Z
GauS3
c1 = 0. (43)
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We see that the term |χm6
0 |2 appear in and only in Z

GauS3
1 (τ )

and Z
GauS3
a1 (τ ). Thus 1 and a1 condense, or more precisely,

the condensable algebra is 1 ⊕ a1. We also see that Z
GauS3
c =

Z
GauS3
c1 = 0. So c and c1 remain gapped on the boundary.

These properties suggest that 1 ⊕ a1 is a condensable alge-
bra and the above boundary is produced by condensing such
a condensable algebra. Such a gapless boundary of GauS3

is the canonical boundary of (GauS3 )/1⊕a1 = GauZ3 given in
Eq. (42).

Similarly, the gapless 1 ⊕ a2 state, with reduced symmetry
TO (GauS3 )/1⊕a2 = GauZ2 , is given by the canonical bound-
ary of GauZ2 , which is described by a (c, c̄) = ( 1

2 , 1
2 ) Ising

CFT. The corresponding multicomponent boundary partition
function is labeled by four anyons 1, e, m, f of GauZ2 :

Z
GauZ2
1 = ∣∣χ Ising

0

∣∣2 + ∣∣χ Ising
1
2

∣∣2
,

Z
GauZ2
e = ∣∣χ Ising

1
16

∣∣2
,

Z
GauZ2
m = ∣∣χ Ising

1
16

∣∣2
,

Z
GauZ2
f = χ

Ising
0 χ̄

Ising
1
2

+ χ
Ising
1
2

χ̄
Ising
0 , (44)

where χ
Ising
h = χ

Ising
h (τ ) are conformal characters with con-

formal dimension h, for (4,3) minimal model (the Ising CFT).
The gapless 1 ⊕ b state is also described by a (c, c̄) = ( 1

2 , 1
2 )

Ising CFT, since its reduced symmetry TO is also given by
GauZ2 .

Again, the gapless 1 ⊕ a2 state, with reduced symmetry TO
(GauS3 )/1⊕a2 = GauZ2 , can also be given directly by the 1 ⊕
a2-condensed boundary of GauS3 . Indeed, one of the gapless
boundary of GauS3 is given by the following multicomponent
partition function:

Z
GauS3
1 = ∣∣χm4

0

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Z
GauS3
a1 = ∣∣χm4

1
16

∣∣2
,

Z
GauS3
a2 = ∣∣χm4

0

∣∣2 + ∣∣χm4
1

16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Z
GauS3
b = 0, Z

GauS3
b1

= 0,

Z
GauS3
b2

= 0, Z
GauS3
c = ∣∣χm4

1
16

∣∣2
,

Z
GauS3
c1 = χm4

0 χ̄m4
1
2

+ χm4
1
2

χ̄m4
0 . (45)

The above is a 1 ⊕ a2-condensed boundary since only Z
GauS3
1

and Z
GauS3
a2 contain |χm4

0 |2 term.
To obtain the minimal gapless 1 state with the full symme-

try TO GauS3 , we find that, in addition to the gapless boundary
described by Eq. (43), GauS3 has another gapless boundary
described by the following multicomponent partition function,
labeled by the anyons in GauS3 :

Z
GauS3
1 = ∣∣χm6

0

∣∣2 + ∣∣χm6
3

∣∣2 + ∣∣χm6
2
5

∣∣2 + ∣∣χm6
7
5

∣∣2
,

Z
GauS3
a1 = χm6

0 χ̄m6
3 + χm6

3 χ̄m6
0 + χm6

2
5

χ̄m6
7
5

+ χm6
7
5

χ̄m6
2
5

,

Z
GauS3
a2 = ∣∣χm6

2
3

∣∣2 + ∣∣χm6
1
15

∣∣2
,

Z
GauS3
b = |χm6

2
3

|2 + |χm6
1
15

|2,

Z
GauS3
b1

= χm6
0 χ̄m6

2
3

+ χm6
3 χ̄m6

2
3

+ χm6
2
5

χ̄m6
1
15

+ χm6
7
5

χ̄m6
1
15

,

Z
GauS3
b2

= χm6
2
3

χ̄m6
0 + χm6

2
3

χ̄m6
3 + χm6

1
15

χ̄m6
2
5

+ χm6
1
15

χ̄m6
7
5

,

Z
GauS3
c = ∣∣χm6

1
8

∣∣2 + ∣∣χm6
13
8

∣∣2 + ∣∣χm6
1

40

∣∣2 + ∣∣χm6
21
40

∣∣2
,

Z
GauS3
c1 = χm6

1
8

χ̄m6
13
8

+ χm6
13
8

χ̄m6
1
8

+ χm6
1

40
χ̄m6

21
40

+ χm6
21
40

χ̄m6
1

40
, (46)

which is a (c, c̄) = ( 4
5 , 4

5 ) CFT. In contrast to the bound-
ary (43), the above boundary is 1-condensed because only
Z1 contains the term |χm6

0 |2. The boundary is 1-condensed
also because no components of the partition function is zero,
i.e., no other topological excitations in GauS3 remain gapped
on the boundary. These gapped topological excitations on the
boundary become confined in the condensation-induced topo-
logical order (GauS3 )/A. If there are no confined topological
excitations, then A must be trivial A = 1.

We have checked other CFT’s with smaller central charges,
and find that those CFT’s cannot be 1-condensed boundaries
of the topological order GauS3 (see Appendix E). Among
(c, c̄) = ( 4

5 , 4
5 ) CFT’s, the above boundary is the only 1-

condensed boundary. This implies that the above boundary
is also a canonical boundary (i.e., a minimal 1-condensed
boundary) of the topological order GauS3 , and is the only
canonical boundary.

We remark that although the gapless 1 ⊕ a1 state in
Eq. (43) and the gapless 1 state in Eq. (46) are both related
to (6,5) minimal model with the same central charge (c, c̄) =
( 4

5 , 4
5 ), they are described by different CFT’s. For example,

from the partition function Z
GauS3
a1 , we find that the operator

carrying the one-dimensional representation a1 of S3 has a
minimal scaling dimension of 0 for the 1 ⊕ a1 state (since
a1 is condensed) and has a minimal scaling dimension of
2
5 + 7

5 = 9
5 for the 1 state.

The above three types of gapless states Eqs. (42), (44), and
(46), together with four types pf gapped states, are the gapped
and gapless phases for systems with S3 symmetry. They are
summarized in Table II.

D. An automorphism in symmetry TO GauS3

The excitations in the 2 + 1D topological order GauS3

(i.e., the symmetry TO) are listed in Table I, together with
their quantum dimensions, topological spins, and fusion rules.
From the table, we see that the symmetry TO GauS3 has a
automorphism that exchange a2 ↔ b. In fact, the SS3 and T S3

matrices for the GauS3 topological order are invariant under
the exchange a2 ↔ b. From the correspondence between the
condensable algebras and phases of matter (37), we see that
the automorphism exchanges S3 phase with Z2 phase, and
Z3 phase with Z1 phase. In other words, the automorphism
flips the phase diagrams, Figs. 13–15, as well as Fig. 16,
horizontally.

As a result, the transitions S3 ↔ Z1 and Z3 ↔ Z2 are
related, i.e., they are either both first order, both stably con-

075105-20



HOLOGRAPHIC THEORY FOR CONTINUOUS PHASE … PHYSICAL REVIEW B 108, 075105 (2023)

TABLE II. Possible gapped and gapless states for systems with S3 symmetry. The most stable gapped or gapless state with reduced
symmetry TO M/A is given by the canonical boundary of M/A.

Condensable algebra A Reduced symmetry TO M/A Most stable low energy state

1 ⊕ a1 ⊕ 2a2 (GauS3 )/1⊕a1⊕2a2 = trivial Gapped Z1 state (S3 completely broken)
1 ⊕ a1 ⊕ 2b (GauS3 )/1⊕a1⊕2b = trivial Gapped Z3 state (S3 broken to Z3)
1 ⊕ a2 ⊕ c (GauS3 )/1⊕a2⊕c = trivial Gapped Z2 state (S3 broken to Z2)
1 ⊕ b ⊕ c (GauS3 )/1⊕b⊕c = trivial Gapped S3-symmetric state
1 ⊕ a1 (GauS3 )/1⊕a1 = GauZ3 The (c, c̄) = ( 4

5 , 4
5 ) CFT (42)

1 ⊕ a2 (GauS3 )/1⊕a2 = GauZ2 The (c, c̄) = ( 1
2 , 1

2 ) Ising CFT (44)
1 ⊕ b (GauS3 )/1⊕b = GauZ2 The (c, c̄) = ( 1

2 , 1
2 ) Ising CFT (44)

1 (GauS3 )/1 = GauS3 The (c, c̄) = ( 4
5 , 4

5 ) CFT (46)

tinuous, or both unstably continuous. More precisely, if the
transition S3 ↔ Z1 is continuous in a S3 symmetric system,
then there is exist another S3 symmetric system where the
transition Z3 ↔ Z2 is also continuous, and the two continuous
transitions are described by the same CFT.

E. A symmetry TO approach for phase transitions

We have used symmetry TO approach to study possible
gapped and gapless states in S3 symmetric systems. Now let
us discuss a more difficult problem: how are these gapped
and gapless states connected by continuous phase transitions
and what are the critical points at the transitions? The gapless
states Eqs. (42), (44), (46), and others constructed from (5,4)
and (7,6) minimal models and (c, c̄) � (1, 1) CFTs should
describe the (multi)critical points for the transitions between
the four gapped phases, S3 phase, Z3 phase, Z2 phase, and Z1

phase (see Fig. 19). However, which pair of gapped states are
connected by which gapless state, as the critical point of the
continuous transition?

To address this issue, we first consider the gapless 1 ⊕
a1 state, which is described by the canonical boundary
of (GauS3 )/1⊕a1 = GauZ3 topological order (i.e., 2 + 1D Z3

gauge theory). Its multicomponent boundary partition func-
tion is given by Eq. (42). From the |χm6

2
5

+ χm6
7
5

|2 term in Z1 in

Eq. (42), we see that there is only one Z3 symmetric relevant
operator, which has a scaling dimension (h, h̄) = ( 2

5 , 2
5 ). So

the gapless 1 ⊕ a1 state has only one relevant direction. To see
what kind of phase transition the relevant operator induces,
we note that the condensable algebra 1 ⊕ a1 only allows
one competing pair (a2, b). So the single relevant direction
must correspond to the switching between the two conden-
sations of the competing pair (a2, b). This induces a stable
continuous phase transition between the 1 ⊕ a1 ⊕ a2 ⊕ · · · =
1 ⊕ a1 ⊕ 2a2 state (the Z1 state) and 1 ⊕ a1 ⊕ b ⊕ · · · = 1 ⊕
a1 ⊕ 2b (the Z3 state). The local phase diagram for such
transition is given by Fig. 27(a). Thus the Z3 → Z1 symmetry
breaking critical point is described by a (c, c̄) = ( 4

5 , 4
5 ) CFT

constructed from (6,5) minimal model. This example demon-
strates how to use symmetry TO to study continuous phase
transitions and their critical points.

Next, we consider the gapless 1 ⊕ a2 state which is the
canonical boundary of (GauS3 )/1⊕a2 = GauZ2 (i.e., 2 + 1D Z2

gauge theory). Its multicomponent boundary partition func-
tion is given by Eq. (44). From the |χ Ising

1
2

|2 term in Z1, we see

that there is only one Z2 symmetric relevant operator, with a
scaling dimension (h, h̄) = ( 1

2 , 1
2 ). So the gapless 1 ⊕ a2 state

has only one relevant direction. To see which phase transition
is induced by the relevant operator, we note that the condens-
able algebra 1 ⊕ a2 allows only one competing pair (a1, c).
Thus the gapless 1 ⊕ a2 state is the critical point for a sta-
ble continuous phase transition between 1 ⊕ a2 ⊕ a1 ⊕ · · · =
1 ⊕ a1 ⊕ 2a2 state (the Z1 state) and 1 ⊕ a2 ⊕ c ⊕ · · · = 1 ⊕
a2 ⊕ c state (the Z2 state), whose local phase diagram is given
in Fig. 27(a).

The gapless 1 ⊕ b state is similar to the gapless 1 ⊕ a2

state, due to the automorphism of GauS3 that exchange a2

and b. Both are described by (c, c̄) = ( 1
2 , 1

2 ) Ising CFT (44).
The gapless 1 ⊕ b state also allows only one competing pair
(a1, c), and describes a stable continuous phase transition be-
tween 1 ⊕ b ⊕ a1 ⊕ · · · = 1 ⊕ a1 ⊕ 2b state (the Z3 state) and
1 ⊕ b ⊕ c ⊕ · · · = 1 ⊕ b ⊕ c state (the S3 state). The S3 →
Z3 symmetry breaking transition looks different from the
Z2 → Z1 symmetry breaking transition. However, the above
discussion suggests that the two transitions are described by
the same critical theory. This result is supported by the stan-
dard Ginzburg-Landau theory.

Last, let us consider the gapless 1 state and its neighbor-
hood. The state is given by a canonical boundary of GauS3 ,
whose multicomponent boundary partition function is given
by Eq. (46). The gapless 1 state has only one S3 symmetric
relevant operator with dimension (h, h̄) = ( 2

5 , 2
5 ), as one can

see from the |χm6
2
5

|2 term in Z1. However, the condensable

algebra 1 allows two competing pairs: (a2, b) and (a1, c).
Which competing pair corresponds to the relevant direction?

If we assume the competing pair (a1, c) corresponds to the
relevant direction, then on one side of transition, the con-
densable algebra 1 is enlarged to include a1 condensation:
1 → 1 ⊕ a1 ⊕ · · · . Here · · · represents the additional con-
densation, after a1 condense. Such additional condensations
must be compatible with a1 condensation. We have three
possible additional condensations: (1) we may get a gapless
1 ⊕ a1 ⊕ · · · = 1 ⊕ a1 state (i.e., no additional condensation);
(2) we may get a gapped 1 ⊕ a1 ⊕ · · · = 1 ⊕ a1 ⊕ 2a2 state
(i.e., with additional a2 condensation); and (3) we may get
a gapped 1 ⊕ a1 ⊕ · · · = 1 ⊕ a1 ⊕ 2b state (i.e., with addi-
tional b condensation). On the other side of transition where
c condenses, we have two possible additional condensations:
(1′) we may get a gapped 1 ⊕ c ⊕ · · · = 1 ⊕ a2 ⊕ c state
(i.e., with additional a2 condensation); (2′) we may get a
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FIG. 17. The gapless 1 state described by Eq. (46) has one rele-
vant direction. If this relevant direction corresponds to the competing
pair (a1, c), the gapless 1 state may be the critical point of the po-
tential continuous transitions represented by the four curved double
arrows. These potential continuous transitions are the ones that we
cannot rule out at the moment.

gapped 1 ⊕ c ⊕ · · · = 1 ⊕ a2 ⊕ c state (i.e., with additional
a2 condensation). Combining the above possibilities, we ob-
tain the following scenarios (see Fig. 17).

(11′) Stable continuous transition between gapless 1 ⊕ a1

state and 1 ⊕ a2 ⊕ c state, described by the (c, c̄) = ( 4
5 , 4

5 )
CFT (46). Further instability from dangerously irrelevant op-
erators may change the gapless 1 ⊕ a1 state to Z3 state or Z1

state. [Not likely. This scenario assumes that the condensation
of c also induce the condensation of a2. As we switch the
condensation of c to the condensation of a1, the condensation
of a1 is compatible with the condensation of a2 and does not
suppress the condensation of a2. The condensation of a2 will
destabilize the gapless 1 ⊕ a1 state and change it to the gapped
1 ⊕ a1 ⊕ a2 state. This turns the scenario (11′) to scenario
(21′)].

(12′) Stable continuous transition between gapless 1 ⊕ a1

state and 1 ⊕ b ⊕ c state, described by the (c, c̄) = ( 4
5 , 4

5 ) CFT
(46). Further instability from dangerous irrelevant operators
may change the gapless 1 ⊕ a1 state to Z3 state or Z1 state.
[Not likely. This scenario assumes that the condensation of
c also induce the condensation of b. As we switch the con-
densation of c to the condensation of a1, the condensation
of a1 is compatible with the condensation of b and does not
suppress the condensation of b. The condensation of b will
destabilize the gapless 1 ⊕ a1 state and change it to the gapped
1 ⊕ a1 ⊕ b state. This turns the scenario (12′) to scenario
(32′)].

(21′) Stable continuous transition between 1 ⊕ a1 ⊕ 2a2

and 1 ⊕ a2 ⊕ c states, described the (c, c̄) = ( 4
5 , 4

5 ) CFT (46).
(22′) Stable continuous transition between 1 ⊕ a1 ⊕ 2a2

and 1 ⊕ b ⊕ c states, described by the (c, c̄) = ( 4
5 , 4

5 ) CFT
(46).

(31′) Stable continuous transition between 1 ⊕ a1 ⊕ 2b
and 1 ⊕ a2 ⊕ c states, described by the (c, c̄) = ( 4

5 , 4
5 ) CFT

(46).
(32′) Stable continuous transition between 1 ⊕ a1 ⊕ 2b

and 1 ⊕ b ⊕ c states, described by the (c, c̄) = ( 4
5 , 4

5 ) CFT
(46).

Some scenarios, (11′) and (12′), are not likely. We remark
that the above scenarios may not be mutually exclusive. Dif-
ferent scenarios may be realized at different parts of the phase
diagram. We also remark that the scenario (21′), if realized,
will represent a nonIsing critical point for the transition be-

FIG. 18. The gapless 1 state described by Eq. (46) has one
relevant direction. If this relevant direction corresponds to the com-
peting pair (a2, b), the gapless 1 state may be the critical point of
the potential continuous transitions represented by the eight curved
double-arrows. The dashed curves are the potential continuous tran-
sitions that we cannot rule out at the moment. The solid curve is the
continuous transition that is known to be realized by three-state Potts
model.

tween the Z2 state and Z1 state. This scenario represents a
mechanism that two phases may be connected by different
continuous transitions described by different CFTs.

Next, we assume the relevant direction corresponds to
the competing pair (a2, b). On one side of transition, a2

condenses, which may give rise to the following possible
states: (a) the gapless 1 ⊕ a2 ⊕ · · · = 1 ⊕ a2 state; (b) the
gapped 1 ⊕ a2 ⊕ · · · = 1 ⊕ a1 ⊕ 2a2 state; and (c) the gapped
1 ⊕ a2 ⊕ · · · = 1 ⊕ a2 ⊕ c state. On one side of transition,
b condenses, which may give rise to the following possi-
ble states: (a′) the gapless 1 ⊕ b ⊕ · · · = 1 ⊕ b state; (b′) the
gapped 1 ⊕ b ⊕ · · · = 1 ⊕ a1 ⊕ 2b state; (c′) the gapped 1 ⊕
b ⊕ · · · = 1 ⊕ b ⊕ c state. Combining the above possibilities,
we obtain the following scenarios (see Fig. 18).

(aa′) Stable continuous transition between gapless 1 ⊕ a2

state and gapless 1 ⊕ b state, described by the (c, c̄) = ( 4
5 , 4

5 )
CFT (46). Further instability from dangerous irrelevant oper-
ators change the gapless 1 ⊕ a2 state to Z2 or Z1 state, and
change the gapless 1 ⊕ b state to S3 or Z3 state.

(ab′) Stable continuous transition between gapless 1 ⊕ a2

state and gapped 1 ⊕ a1 ⊕ 2b state, described by the (c, c̄) =
( 4

5 , 4
5 ) CFT (46). Further instability from dangerously irrel-

evant operators change the gapless 1 ⊕ a2 state to Z2 or Z1

state. [Not likely. See discussion in scenario (11′).]
(ac′) Stable continuous transition between gapless 1 ⊕ a2

state and gapped S3-1 ⊕ b ⊕ c state, described by the (c, c̄) =
( 4

5 , 4
5 ) CFT (46). Further instability from dangerous irrelevant

operators change the gapless 1 ⊕ a2 state to Z2 or Z1 state.
[Not likely. See discussion in scenario (11′).]

(ba′) Stable continuous transition between gapped 1 ⊕
a1 ⊕ 2a2 state and gapless 1 ⊕ b state, described by the
(c, c̄) = ( 4

5 , 4
5 ) CFT (46). Further instability from dangerously

irrelevant operators change the gapless 1 ⊕ b state to S3 or Z3

state. [Not likely. See discussion in scenario (11′).]
(bb′) Stable continuous transition between gapped Z1-1 ⊕

a1 ⊕ 2a2 state and gapped Z3-1 ⊕ a1 ⊕ 2b state, described by
the (c, c̄) = ( 4

5 , 4
5 ) CFT (46). [Not valid. Such a transition

should be described by a different (c, c̄) = ( 4
5 , 4

5 ) CFT (42).]
(bc′) Stable continuous transition between gapped Z1-1 ⊕

a1 ⊕ 2a2 state and gapped S3-1 ⊕ b ⊕ c state, described by the
(c, c̄) = ( 4

5 , 4
5 ) CFT (46).

075105-22



HOLOGRAPHIC THEORY FOR CONTINUOUS PHASE … PHYSICAL REVIEW B 108, 075105 (2023)

(ca′) Stable continuous transition between gapped Z2-1 ⊕
a2 ⊕ c state and gapless 1 ⊕ b state, described by the (c, c̄) =
( 4

5 , 4
5 ) CFT (46). Further instability from dangerously irrele-

vant operators change the gapless 1 ⊕ b state to S3 state or Z3

state. [Not likely. See discussion in scenario (11′).]
(cb′) Stable continuous transition between gapped Z2-1 ⊕

a2 ⊕ c state and gapped Z3-1 ⊕ a1 ⊕ 2b state, described by
the (c, c̄) = ( 4

5 , 4
5 ) CFT (46).

(cc′) Stable continuous transition between gapped Z2-1 ⊕
a2 ⊕ c state and gapped S3-1 ⊕ b ⊕ c state, described by the
(c, c̄) = ( 4

5 , 4
5 ) CFT (46).

We believe that scenario (cc′) is realized in the three-state
Potts model, which has a S3 ↔ Z2 transition described a
(c, c̄) = ( 4

5 , 4
5 ) CFT. We believe such a CFT to be the one

given in (46), rather than the (c, c̄) = ( 4
5 , 4

5 ) CFT given in
(43).

Note that the stable continuous S3 ↔ Z1 transition should
be described by a 1-condensed boundary of GauS3 with one
and only one S3 symmetric operator. The (c, c̄) = ( 4

5 , 4
5 )

CFT (46) is one such 1-condensed boundary. But such a
CFT is already used to described the stable continuous S3 ↔
Z2 transition. We need to find another 1-condensed bound-
ary of GauS3 to describe the stable continuous S3 ↔ Z1

transition.
Summarizing the above result and assuming the scenario

(cc′), we obtain several possible global phase diagrams. One
of them is Fig. 19(a) and another is Fig. 19(b). Both possibili-
ties are realized by numerical calculations in Figs. 14 and 15.
The above two global phase diagrams suggest three tricritical
points 5, 5′, and 5′′. From the phase diagram, we see that
tricritical points 5 and 5′ are connected to the S3 phase. Thus
they are 1-condensed boundaries of topological order GauS3 .
From the phase diagram, we also see that tricritical point 5′′

connects to both Z3 and Z2 phases, and thus has both Z3 and
Z2 symmetries. Therefore tricritical point 5′′ has the full S3

symmetry and is also a 1-condensed boundary of topological
order GauS3 .

The three tricritical points 5, 5′, and 5′′ are not the canon-
ical boundaries of GauS3 , since they have two symmetric
relevant operators and are more unstable. By examining other
1-condensed boundaries of GauS3 , we find the following mul-
ticomponent partition function:

Z
GauS3
1 = ∣∣χm7

0

∣∣2 + ∣∣χm7
1
7

∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
12
7

∣∣2

+ ∣∣χm7
22
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Z
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22
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5
7
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+ χm7
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χ̄m7
5
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+ χm7
22
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0 ,

Z
GauS3
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3
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21

∣∣2
,

Z
GauS3
b = ∣∣χm7

4
3

∣∣2 + ∣∣χm7
10
21

∣∣2 + ∣∣χm7
1
21

∣∣2
,

Z
GauS3
b1

= χm7
4
3

χ̄m7
0 + χm7

4
3

χ̄m7
5 + χm7

10
21

χ̄m7
1
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+ χm7
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FIG. 19. Two possible global phase diagrams for systems with
S3 symmetry, which contains four gapped phases with unbroken
symmetries, S3, Z3, Z2, and Z1. The curves with arrow represent
the RG flow, and the dots are the RG fixed points that correspond
to the critical points of phase transitions. The right horizontal line is
the space of Hamiltonians whose ground states have a condensation
A = 1 ⊕ a2 (see Appendix B), which is the basin of attraction of the
RG fixed point 4. The left horizontal line is the space of Hamiltonians
whose ground states have a condensation A = 1 ⊕ b, the basin of
attraction of the RG fixed point 3. The upper vertical line is the
space of Hamiltonians whose ground states have a condensation
A = 1, the basin of attraction of the RG fixed point 1. The lower
vertical line is the space of Hamiltonians whose ground states have
a condensation A = 1 ⊕ a1, the basin of attraction of the RG fixed
point 2. The critical pointS 3 and 4 are the (c, c̄) = ( 1

2 , 1
2 ) Ising CFT

(the canonical boundary of GauZ2 topological order). The critical
point 1 is a (c, c̄) = ( 4

5 , 4
5 ) CFT (46) from (6,5) minimal model (the

canonical boundary of GauS3 topological order). The critical point 2
is another (c, c̄) = ( 4

5 , 4
5 ) CFT (42) also from (6,5) minimal model

(the canonical boundary of GauZ3 topological order). The tricritical
points 5, 5′, and 5′′ are described by gapless 1-condensed states with
two S3 symmetric relevant operators. The (c, c̄) = ( 5

6 , 5
6 ) CFT (47)

from (7,6) minimal model is one such gapless 1-condensed state. We
also list the corresponding condensable algebras for these gapped
phases and gapless critical points.

Z
GauS3
b2

= χm7
0 χ̄m7

4
3

+ χm7
1
7

χ̄m7
10
21

+ χm7
5
7

χ̄m7
1
21

+ χm7
12
7

χ̄m7
1

21

+ χm7
22
7

χ̄m7
10
21

+ χm7
5 χ̄m7

4
3

,

Z
GauS3
c = ∣∣χm7

3
8

∣∣2 + ∣∣χm7
1
56

∣∣2 + ∣∣χm7
5
56

∣∣2 + ∣∣χm7
33
56

∣∣2

+ ∣∣χm7
85
56

∣∣2 + ∣∣χm7
23
8

∣∣2
,

Z
GauS3
c1 = χm7

3
8

χ̄m7
23
8

+ χm7
1
56

χ̄m7
85
56

+ χm7
5
56

χ̄m7
33
56

+ χm7
33
56

χ̄m7
5

56

+ χm7
85
56

χ̄m7
1

56
+ χm7

23
8

χ̄m7
3
8

, (47)
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which is constructed from the (7,6) minimal model. The above
CFT has two relevant operators. It is a candidate CFT for one
of the three tricritical points 5, 5′, and 5′′, likely the tricritical
point 5. We need find more 1-condensed boundaries of GauS3

with two and only two S3 symmetric relavent operators to
describe the other two tricritical points.

We note that the critical points 5, 5′, and 5′′, having Z3

symmetry, are also 1-condensed boundaries of topological
order GauZ3 . Indeed, we find the following multicomponent
partition function constructed from the (7,6) minimal model,
realizing a 1-condensed boundary of GauZ3 :

Z
GauZ3
1 = ∣∣χm7

0

∣∣2 + χm7
0 χ̄m7

5 + ∣∣χm7
1
7

∣∣2 + χm7
1
7

χ̄m7
22
7

+ ∣∣χm7
5
7

∣∣2

+ χm7
5
7

χ̄m7
12
7

+ χm7
12
7

χ̄m7
5
7

+ ∣∣χm7
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7

∣∣2 + χm7
22
7
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1
7

+ ∣∣χm7
22
7

∣∣2 + χm7
5 χ̄m7
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5

∣∣2
,

Z
GauZ3
e = ∣∣χm7

4
3

∣∣2 + ∣∣χm7
10
21

∣∣2 + ∣∣χm7
1
21

∣∣2
,

Z
GauZ3

e2 = ∣∣χm7
4
3

∣∣2 + ∣∣χm7
10
21

∣∣2 + ∣∣χm7
1
21

∣∣2
,

Z
GauZ3
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4
3

∣∣2 + ∣∣χm7
10
21

∣∣2 + ∣∣χm7
1
21

∣∣2
,

Z
GauZ3
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4
3

χ̄m7
0 + χm7

4
3

χ̄m7
5 + χm7

10
21

χ̄m7
1
7

+ χm7
10
21

χ̄m7
22
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+ χm7
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,
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. (48)

We also note that three tricritical points 5, 5′, and 5′′ can
be viewed as a 1-condensed boundary of topological order
GauZ2 . We do find the following multicomponent partition
function constructed from the (7,6) minimal model, realizing
a 1-condensed boundary of GauZ2 :

Z
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1 = ∣∣χm7
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21
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,
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56
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56
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33
56
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85
56

∣∣2+∣∣χm7
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,
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GauZ2
f = χm7
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56
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. (49)

The above three multicomponent partition functions are
closely related. In fact,

Z
GauS3
1 + Z

GauS3
a1 + 2Z

GauS3
a2

= Z
GauZ3
1 + Z

GauZ3
e + Z

GauZ3

e2

= Z
GauZ2
1 + Z

GauZ2
e . (50)

This suggests that the three CFT’s, Eqs. (47)–(49), are actually
the same CFT. This allows us to conclude that the CFT (47)
can be a candidate for one of three tricritical points 5, 5′,
and 5′′ in Fig. 19. Certainly, it is also possible that the three
tricritical points 5, 5′, and 5′′ are described by CFT’s with
(c, c̄) � (1, 1).

VI. 1 + 1D ANOMALOUS S3 SYMMETRY

In 1 + 1D, the anomalies for S3 symmetry are classified by
H3(S3; R/Z) = Z3 × Z2 � Z6.[19] We label those anomalies
by m ∈ {0, 1, 2, 3, 4, 5}. The symmetry TO for an anomalous
S3 symmetry, S(m)

3 , is given by a topological order Gau(m)
S3

that
is described in the IR limit by the 2 + 1D Dijkgraaf-Witten
gauge theory [120] with gauge charges. In this section, we
will use these symmetry TOs to study the 1 + 1D gapped and
gapless states with anomalous S3 symmetry.

A. Anomalous S(1)
3 symmetry

The Gau(1)
S3

topological order has anyons given by

anyons : 1 a1 a2 b b1 b2 c c1

da : 1 1 2 2 2 2 3 3

sa : 0 0 0 1
9

4
9

7
9

1
4

3
4

(51)

The potential condensable algebras of Gau(1)
S3

topological order
are given by

1 ⊕ a1 ⊕ 2a2, 1 ⊕ a2, 1 ⊕ a1, 1. (52)

The condensable algebra 1 ⊕ a1 ⊕ 2a2 is Lagrangian, and
gives rise to a gapped state that break the S(1)

3 symmetry
completely. This is the only gapped state allowed by the
anomalous S(1)

3 symmetry.
The potential condensable algebra 1 ⊕ a2 is not La-

grangian. If it is a valid condensable algebra, its condensation
will induce a 2 + 1D topological order, that has a canonical
domain wall with Gau(1)

S3
. Indeed, we find a canonical domain

wall between Gau(1)
S3

and MDS. Here MDS is the double-semion
topological order, which has excitations 1, b, s+, s− with spins
sa = 0, 0, 1

4 , 3
4 . The canonical domain wall is given by

(
Aai
Gau(1)

S3
|MDS

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1
0 1 0 0 a1

1 1 0 0 a2

0 0 0 0 b
0 0 0 0 b1

0 0 0 0 b2

0 0 0 1 c
0 0 1 0 c1

1 b s+ s−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (53)
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From the first row and the first column of Aai
Gau(1)

S3
|MDS

, we can

see that MDS is induced from Gau(1)
S3

via a condensation of 1 ⊕
a2. This indicates that 1 ⊕ a2 is a valid condensable algebra,
and its condensation induced topological order is(

Gau(1)
S3

)
/1⊕a2

= MDS. (54)

The 1 ⊕ a2 state is the canonical boundary of MDS, which
breaks the S3 symmetry down to Z2 symmetry. Despite the
symmetry breaking, such a state still must be gapless. To see
this, we note that 1 ⊕ a2 state actually breaks the anomalous
S(1)

3 symmetry down to anomalous Z(1)
2 symmetry (as implied

by the double-semion topological order MDS). Since the un-
broken Z2 symmetry is anomalous, the 1 ⊕ a2 state must be
gapless since it does not break the anomalous Z2 symmetry.
Such a gapless state is described by the following Lagrangian:

L = (K−1)IJ

4π
∂xφI∂tφJ − VIJ∂xφI∂xφJ ,

uI = e i φI generate all local operators, (55)

with

K = (KIJ ) =
(

2 0
0 −2

)
. (56)

The condensable algebra 1 ⊕ a1 can induce a 2 + 1D topo-
logical order MK04;3 , where MK04;3 is an Abelian topological
order described by the K matrix [135–137]

K04;3 =
(

0 3
3 4

)
. (57)

The nine anyons in MK04;3 have the following spins:
0, 0, 0, 1

9 , 1
9 , 4

9 , 4
9 , 7

9 , and 7
9 . Indeed, we find a canonical

domain wall between Gau(1)
S3

and MK04;3 given by

(
Aai
Gau(1)

S3
|MK04;3

)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 a1

0 1 1 0 0 0 0 0 0 a2

0 0 0 1 1 0 0 0 0 b
0 0 0 0 0 1 1 0 0 b1

0 0 0 0 0 0 0 1 1 b2

0 0 0 0 0 0 0 0 0 c
0 0 0 0 0 0 0 0 0 c1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(58)

From the first row and the first column of Aai
Gau(1)

S3
|MK04;3

, we

can see that MK04;3 is induced from Gau(1)
S3

via a condensation
of 1 ⊕ a1. This indicates that 1 ⊕ a1 is a valid condensable
algebra, and its condensation-induced topological order is(

Gau(1)
S3

)
/1⊕a1

= MK04;3 . (59)

The 1 ⊕ a1 state is the canonical boundary of MK04;3 , which
breaks the anomalous S(1)

3 symmetry down to anomalous Z(1)
3

symmetry (as indicated by its symmetry TO MK04;3 ). The
1 ⊕ a1 state must be gapless since it does not break the anoma-
lous Z3 symmetry. Such a gapless state is described by the
Lagrangian (55) with K given by Eq. (57).

The 1 state is the canonical boundary of Gau(1)
S3

, which has

the full symmetry TO Gau(1)
S3

. Such a state must be gapless

since it has a nontrivial reduced symmetry TO. The gapless
state is described by the following multicomponent partition
function:

Z
Gau(1)

S3
1 = χ

so(9)2×u(1)2×ū(1)2×Ē (8)1
1,0;1,0;1,0 + χ

so(9)2×u(1)2×ū(1)2×Ē (8)1

2,1;2, 1
4 ;2,− 1

4

,

Z
Gau(1)

S3
a1 = χ

so(9)2×u(1)2×ū(1)2×Ē (8)1

1,0;2, 1
4 ;2,− 1

4

+ χ
so(9)2×u(1)2×ū(1)2×Ē (8)1
2,1;1,0;1,0 ,

Z
Gau(1)

S3
a2 = χ

so(9)2×u(1)2×ū(1)2×Ē (8)1
6,1;1,0;1,0 + χ

so(9)2×u(1)2×ū(1)2×Ē (8)1

6,1;2, 1
4 ;2,− 1

4

,

Z
Gau(1)

S3
b = χ

so(9)2×u(1)2×ū(1)2×Ē (8)1

5, 10
9 ;1,0;1,0

+ χ
so(9)2×u(1)2×ū(1)2×Ē (8)1

5, 10
9 ;2, 1

4 ;2,− 1
4

,

Z
Gau(1)

S3
b1

= χ
so(9)2×u(1)2×ū(1)2×Ē (8)1

8, 4
9 ;1,0;1,0

+ χ
so(9)2×u(1)2×ū(1)2×Ē (8)1

8, 4
9 ;2, 1

4 ;2,− 1
4

,

Z
Gau(1)

S3
b2

= χ
so(9)2×u(1)2×ū(1)2×Ē (8)1

7, 7
9 ;1,0;1,0

+ χ
so(9)2×u(1)2×ū(1)2×Ē (8)1

7, 7
9 ;2, 1

4 ;2,− 1
4

,

Z
Gau(1)

S3
c = χ

so(9)2×u(1)2×ū(1)2×Ē (8)1

3, 1
2 ;1,0;2,− 1

4

+ χ
so(9)2×u(1)2×ū(1)2×Ē (8)1

4,1;2, 1
4 ;1,0

,

Z
Gau(1)

S3
c1 = χ

so(9)2×u(1)2×ū(1)2×Ē (8)1

3, 1
2 ;2, 1

4 ;1,0
+ χ

so(9)2×u(1)2×ū(1)2×Ē (8)1

4,1;1,0;2,− 1
4

.

(60)

Here χ
CFT1×CFT2×···
a1,h1;a2,h2;··· is product of conformal characters of

CFTi for the primary fields labeled by ai with scaling dimen-
sion hi. For example,

χ
so(9)2×u(1)2×ū(1)2×Ē (8)1

2,1;2, 1
4 ;2,− 1

4

=χ
so(9)2
2,1 (τ )χu(1)2

2, 1
4

(τ )χ ū(1)2

2,− 1
4

(τ̄)χ Ē (8)1 (τ̄),

(61)

where χ
so(9)2
2,1 (τ ) is the conformal character of so(9)2 CFT,

for the second primary field with scaling dimension h = 1;
χ

u(1)2

2, 1
4

(τ ) is the conformal character of u(1)2 CFT [the chiral

boson theory described by K matrix K = (2)], for the second
primary field with scaling dimension h = 1

4 ; χ
ū(1)2

2,− 1
4

(τ̄ ) is the

conformal character of ū(1)2 CFT [the antichiral boson theory
described by K matrix K = (−2)], for the second primary
field with scaling dimension h = 1

4 ; χ Ē (8)1 is the conformal
character of Ē (8)1 CFT [the complex conjugate of E (8) level-
1 Kac-Moody algebra]. The Ē (8)1 CFT has only one primary
field (the identity), whose index is suppressed.

Equation (60) describes a gapless state that does not break
the anomalous S(1)

3 symmetry (or more precisely, does not
maximally condense and trivialize the symmetry TO Gau(1)

S3
).

The gapless state is described by a so(9)2 × u(1)2 × ū(1)2 ×
Ē (8)1 CFT with central charge (c, c̄) = (9, 9). Such a CFT
is chiral, where right movers and left movers have differ-
ent dynamics. In particular, the right movers are described
by a so(9) level-2 CFT and a U(1) level-2 CFT [i.e., K
matrix K = (2)]. The left movers are described by a U(1)
level-2 CFT [i.e., K matrix K = (−2)] and a E (8) level-1
CFT. Such a combined CFT corresponds to a gapless state
with no S(1)

3 symmetric relevant perturbations; it only has
S(1)

3 symmetric irrelevant and marginal perturbations. We re-
mark that the primary field for the conformal character (61)

in Z
Gau(1)

S3
1 appears to be a symmetric relavent operator since

its scaling dimension h + h̄ = 1 + 1
4 + 1

4 = 3
2 < 2. However,

this operator has h − h̄ = 1 + 1
4 − 1

4 = 1, and hence describes
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TABLE III. Possible gapped and gapless states for systems with anomalous S(1)
3 symmetry.

Condensable algebra A Reduced symmetry TO M/A Stable low energy state

1 ⊕ a1 ⊕ 2a2

(
Gau(1)

S3

)
/1⊕a1⊕a2

= trivial S3 symmetry breaking gapped Z1 state

1 ⊕ a2

(
Gau(1)

S3

)
/1⊕a2

= MDS K = (2 0
0 −2) chiral boson theory (55)

1 ⊕ a1

(
Gau(1)

S3

)
/1⊕a1

= MK04;3 K = (0 3
3 4) chiral boson theory (55)

1
(
Gau(1)

S3

)
/1 = Gau(1)

S3
(c, c̄) = (9, 9) CFT so(9)2 × u(1)2 × ū(1)2 × Ē (8)1 (60)

a chiral operator. We recall that a chiral operator, such as
ψRψ ′

R that couples two free right-moving fermions, cannot
open an energy gap even when they are formally relevant.
In this paper, we regard them as irrelevant. Thus the anoma-
lous S(1)

3 symmetry can give rise to a symmetry protected
chiral gapless phase. The gapped and gapless phases for
systems with anomalous S(1)

3 symmetry is summarized in
Table III.

B. Anomalous S(2)
3 symmetry

The Gau(2)
S3

topological order has anyons given by

anyons : 1 a1 a2 b b1 b2 c c1

da : 1 1 2 2 2 2 3 3

sa : 0 0 0 2
9

5
9

8
9 0 1

2

(62)

The potential condensable algebras of Gau(2)
S3

topological order
are given by

1 ⊕ a1 ⊕ 2a2, 1 ⊕ a2 ⊕ c, 1 ⊕ a2, 1 ⊕ a1, 1. (63)

The condensable algebra 1 ⊕ a1 ⊕ 2a2 is Lagrangian, and
gives rise to a gapped state that break the S(2)

3 symmetry
completely. The condensable algebra 1 ⊕ a2 ⊕ c is also La-
grangian, and gives rise to a gapped state that break the S(2)

3
symmetry down to anomaly-free Z2 symmetry. These are the
only two gapped states allowed by the anomalous S(2)

3 sym-
metry.

The condensable algebra 1 ⊕ a2 is not Lagrangian. We find
a canonical domain wall between Gau(2)

S3
and GauZ2 :

(
Aai
Gau(2)

S3
|GauZ2

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1
0 1 0 0 a1

1 1 0 0 a2

0 0 0 0 b
0 0 0 0 b1

0 0 0 0 b2

0 0 1 0 c
0 0 0 1 c1

1 e m f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (64)

which tells us that GauZ2 is induced from Gau(2)
S3

via a conden-
sation of 1 ⊕ a2. The 1 ⊕ a2 state is the canonical boundary
of MZ2 , which breaks the anomalous S(2)

3 symmetry down
to Z2 ∨ Z̃2 symmetry. Such a state must be gapless and is
described by (c, c̄) = ( 1

2 , 1
2 ) Ising CFT [48].

The condensable algebra 1 ⊕ a1 is not Lagrangian. We find
a canonical domain wall between Gau(2)

S3
and M−K04;3 :

(
Aai
Gau(2)

S3
|M−K04;3

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 a1

0 1 1 0 0 0 0 0 0 a2

0 0 0 0 0 0 0 1 1 b
0 0 0 0 0 1 1 0 0 b1

0 0 0 1 1 0 0 0 0 b2

0 0 0 0 0 0 0 0 0 c
0 0 0 0 0 0 0 0 0 c1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(65)

which suggests that M−K04;3 is induced from Gau(2)
S3

via a
condensation of 1 ⊕ a1. The 1 ⊕ a1 state is the canonical
boundary of M−K04;3 , which breaks the anomalous S(2)

3 sym-
metry down to anomalous Z(1)

3 symmetry. The 1 ⊕ a1 state
must be gapless since it does not break the anomalous Z3

symmetry. Such a gapless state is described by the Lagrangian
(55) with K given by the negative of the K matrix in Eq. (57).

The gapless 1 state is a canonical boundary of Gau(2)
S3

.
What are the properties of such a gapless state? It turns out
that a canonical boundary of Gau(2)

S3
is given by the (c, c̄) =

(8, 8) E (8)1 × so(9)2 CFT. In other words, the right movers
are described by E (8)1 current algebra and the left movers are
described by so(9)2 current algebra. The E (8)1 current algebra
has only one conformal character which is modular invariant.
The so(9)2 current algebra has (c, c̄) = (0, 8) and eight con-
formal characters with the following quantum dimensions (da)
and scaling dimensions (h̄a)

characters : 1 ā1 ā2 b̄ b̄1 b̄2 c̄ c̄1

da : 1 1 2 2 2 2 3 3

h̄a : 0 1 1 7
9

4
9

10
9 0 1

2

(66)

The above quantum dimensions da and scaling
dimensions(−h̄a mod 1) exactly match those of anyons
in Gau(2)

S3
[see Eq. (62)]. Thus the eight conformal characters

of so(9)2 transform according to the S and T matrices of
Gau(2)

S3
. We add the E (8)1 to make (c, c̄) = (8, 8). This

matches the central charge of Gau(2)
S3

that satisfies c = c̄. This
is why the E (8)1 × so(9)2 CFT is a canonical boundary of
Gau(2)

S3
. In particular, the multicomponent partition function

for the canonical boundary is given by

Z
Gau(2)

S3
1 = χ

E (8)1×so(9)2
1,0 ,

Z
Gau(2)

S3
a1 = χ

E (8)1×so(9)2
2,−1 ,

Z
Gau(2)

S3
a2 = χ

E (8)1×so(9)2
6,−1 ,
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TABLE IV. Possible gapped and gapless states for systems with anomalous S(2)
3 symmetry.

Condensable algebra A Reduced symmetry TO M/A Stable low energy state

1 ⊕ a1 ⊕ 2a2

(
Gau(2)

S3

)
/1⊕a1⊕2a2

= trivial S3 symmetry breaking gapped Z1 state

1 ⊕ a2 ⊕ c
(
Gau(2)

S3

)
/1⊕a2⊕c

= trivial gapped Z2 state

1 ⊕ a2

(
Gau(2)

S3

)
/1⊕a2

= GauZ2 (c, c̄) = ( 1
2 , 1

2 ) Ising CFT

1 ⊕ a1

(
Gau(2)

S3

)
/1⊕a1

= M−K04;3 K = −(0 3
3 4) chiral boson theory (55)

1
(
Gau(2)

S3

)
/1 = Gau(2)

S3
(c, c̄) = (8, 8) CFT E (8)1 × so(9)2

Z
Gau(2)

S3
b = χ

E (8)1×so(9)2

7,− 7
9

Z
Gau(2)

S3
b1

= χ
E (8)1×so(9)2

8,− 4
9

,

Z
Gau(2)

S3
b2

= χ
E (8)1×so(9)2

5,− 10
9

,

Z
Gau(2)

S3
c = χ

E (8)1×so(9)2
4,−1 ,

Z
Gau(2)

S3
c1 = χ

E (8)1×so(9)2

3,− 1
2

. (67)

We would like to point out that the E (8)1 × so(9)2 CFT has
no S(2)

3 symmetric relevant operators, since the 1-component

of the multicomponent partition function is given by Z
Gau(2)

S3
1 =

χ
E (8)1×so(9)2
1,0 = χE (8)1 (τ )χ̄ so(9)2

1,0 (τ̄ ). Apart from the identity op-
erator [the primary field with (h, h̄) = (0, 0)], other nonchiral
operators (the descendant fields of the current algebra) in this
sector have scaling dimensions at least (h, h̄) = (1, 1). The
operators are at most marginal. Thus the gapless 1-state with
the full symmetry TO Gau(2)

S3
is a gapless state that has no

unstable deformations, but has marginal deformations. The
gapped and gapless phases for systems with anomalous S(2)

3
symmetry is summarized in Table IV.

C. Anomalous S(3)
3 symmetry

The Gau(3)
S3

topological order has anyons given by

anyons : 1 a1 a2 b b1 b2 c c1

da : 1 1 2 2 2 2 3 3

sa : 0 0 0 0 1
3

2
3

1
4

3
4

(68)

The potential condensable algebras of Gau(3)
S3

topological order
are given by

1 ⊕ a1 ⊕ 2a2, 1 ⊕ a1 ⊕ 2b,

1 ⊕ a2, 1 ⊕ b, 1 ⊕ a1, 1. (69)

The condensable algebra 1 ⊕ a1 ⊕ 2a2 is Lagrangian, and
gives rise to a gapped state that break the S(3)

3 symmetry
completely. The condensable algebra 1 ⊕ a1 ⊕ 2b is also La-
grangian, and gives rise to a gapped state that break the S(3)

3
symmetry down to anomaly-free Z3 symmetry. These are
the only two gapped states allowed by the anomalous S(3)

3
symmetry.

The condensable algebra 1 ⊕ a2 is not Lagrangian. We find
a canonical domain wall between Gau(3)

S3
and MDS:

(
Aai
Gau(3)

S3
|MDS

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1
0 1 0 0 a1

1 1 0 0 a2

0 0 0 0 b
0 0 0 0 b1

0 0 0 0 b2

0 0 1 0 c
0 0 0 1 c1

1 b s+ s−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (70)

which tells us that MDS is induced from Gau(3)
S3

via a conden-
sation of 1 ⊕ a2. The 1 ⊕ a2 state is the canonical boundary
of MDS, which breaks the anomalous S(3)

3 symmetry down
to anomalous Z(1)

2 symmetry. Such a state must be gapless
and is described by the Lagrangian (55) with K given by
Eq. (56).

The 1 ⊕ b condensation is similar to the 1 ⊕ a2 conden-
sation discussed above, due to a a2 ↔ b automorphism of
Gau(3)

S3
topological order. The 1 ⊕ b state has the full anoma-

lous S(3)
3 symmetry where the a2 excitations are gapped

(i.e., the S3 charges, carrying the two-dimensional represen-
tation, are gapped). Such a gapless state is described by the
Lagrangian (55) with K given by Eq. (56). We note that 1
state also has the full anomalous S(3)

3 symmetry. However,
in 1 state, the a2 excitations are gapless. So the 1 state
and 1 ⊕ b state actually have different symmetry breaking
patterns, despite both states have the full anomalous S(3)

3
symmetry.

The condensable algebra 1 ⊕ a1 is not Lagrangian.
We find a canonical domain wall between Gau(3)

S3
and

GauZ3 :

(
Aai
Gau(3)

S3
|GauZ3

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 a1

0 1 1 0 0 0 0 0 0 a2

0 0 0 1 1 0 0 0 0 b
0 0 0 0 0 1 1 0 0 b1

0 0 0 0 0 0 0 1 1 b2

0 0 0 0 0 0 0 0 0 c
0 0 0 0 0 0 0 0 0 c1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(71)

which suggests that GauZ3 is induced from Gau(3)
S3

via a
condensation of 1 ⊕ a1. The 1 ⊕ a1 state is the canoni-
cal boundary of GauZ3 , which breaks the anomalous S(3)

3
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symmetry down to Z3 ∨ Z̃3 symmetry. The 1 ⊕ a1 state
must be gapless. Such a gapless state is described by the
(c, c̄) = ( 4

5 , 4
5 ) CFT constructed from (6,5) minimal model

[see Eq. (42)].

The 1 state is the canonical boundary of Gau(3)
S3

, which has

the full symmetry TO Gau(3)
S3

, which is gapless. The gapless
state is described by the following multicomponent partition
function:

Z
Gau(3)

S3
1 = χ

m6×u(1)2×m̄6×ū(1)2
1,0;1,0;1,0;1,0 + χ

m6×u(1)2×m̄6×ū(1)2

1,0;2, 1
4 ;5,−3;2,− 1

4

+ χ
m6×u(1)2×m̄6×ū(1)2
5,3;1,0;5,−3;1,0 + χ

m6×u(1)2×m̄6×ū(1)2

5,3;2, 1
4 ;1,0;2,− 1

4

+ χ
m6×u(1)2×m̄6×ū(1)2

6, 2
5 ;1,0;6,− 2

5 ;1,0
+ χ

m6×u(1)2×m̄6×ū(1)2

6, 2
5 ;2, 1

4 ;10,− 7
5 ;2,− 1

4

+ χ
m6×u(1)2×m̄6×ū(1)2

10, 7
5 ;1,0;10,− 7

5 ;1,0
+ χ

m6×u(1)2×m̄6×ū(1)2

10, 7
5 ;2, 1

4 ;6,− 2
5 ;2,− 1

4

,

Z
Gau(3)

S3
a1 = χ

m6×u(1)2×m̄6×ū(1)2
1,0;1,0;5,−3;1,0 + χ

m6×u(1)2×m̄6×ū(1)2

1,0;2, 1
4 ;1,0;2,− 1

4

+ χ
m6×u(1)2×m̄6×ū(1)2
5,3;1,0;1,0;1,0 + χ

m6×u(1)2×m̄6×ū(1)2

5,3;2, 1
4 ;5,−3;2,− 1

4

+ χ
m6×u(1)2×m̄6×ū(1)2

6, 2
5 ;1,0;10,− 7

5 ;1,0
+ χ

m6×u(1)2×m̄6×ū(1)2

6, 2
5 ;2, 1

4 ;6,− 2
5 ;2,− 1

4

+ χ
m6×u(1)2×m̄6×ū(1)2

10, 7
5 ;1,0;6,− 2

5 ;1,0
+ χ

m6×u(1)2×m̄6×ū(1)2

10, 7
5 ;2, 1

4 ;10,− 7
5 ;2,− 1

4

,

Z
Gau(3)

S3
a2 = χ

m6×u(1)2×m̄6×ū(1)2

3, 2
3 ;1,0;3,− 2

3 ;1,0
+ χ

m6×u(1)2×m̄6×ū(1)2

3, 2
3 ;2, 1

4 ;3,− 2
3 ;2,− 1

4

+ χ
m6×u(1)2×m̄6×ū(1)2

8, 1
15 ;1,0;8,− 1

15 ;1,0
+ χ

m6×u(1)2×m̄6×ū(1)2

8, 1
15 ;2, 1

4 ;8,− 1
15 ;2,− 1

4

,

Z
Gau(3)

S3
b = χ

m6×u(1)2×m̄6×ū(1)2

3, 2
3 ;1,0;3,− 2

3 ;1,0
+ χ

m6×u(1)2×m̄6×ū(1)2

3, 2
3 ;2, 1

4 ;3,− 2
3 ;2,− 1

4

+ χ
m6×u(1)2×m̄6×ū(1)2

8, 1
15 ;1,0;8,− 1

15 ;1,0
+ χ

m6×u(1)2×m̄6×ū(1)2

8, 1
15 ;2, 1

4 ;8,− 1
15 ;2,− 1

4

,

Z
Gau(3)

S3
b1

= χ
m6×u(1)2×m̄6×ū(1)2

1,0;1,0;3,− 2
3 ;1,0

+ χ
m6×u(1)2×m̄6×ū(1)2

1,0;2, 1
4 ;3,− 2

3 ;2,− 1
4

+ χ
m6×u(1)2×m̄6×ū(1)2

5,3;1,0;3,− 2
3 ;1,0

+ χ
m6×u(1)2×m̄6×ū(1)2

5,3;2, 1
4 ;3,− 2

3 ;2,− 1
4

+ χ
m6×u(1)2×m̄6×ū(1)2

6, 2
5 ;1,0;8,− 1

15 ;1,0
+ χ

m6×u(1)2×m̄6×ū(1)2

6, 2
5 ;2, 1

4 ;8,− 1
15 ;2,− 1

4

+ χ
m6×u(1)2×m̄6×ū(1)2

10, 7
5 ;1,0;8,− 1

15 ;1,0
+ χ

m6×u(1)2×m̄6×ū(1)2

10, 7
5 ;2, 1

4 ;8,− 1
15 ;2,− 1

4

,

Z
Gau(3)

S3
b2

= χ
m6×u(1)2×m̄6×ū(1)2

3, 2
3 ;1,0;1,0;1,0

+ χ
m6×u(1)2×m̄6×ū(1)2

3, 2
3 ;1,0;5,−3;1,0

+ χ
m6×u(1)2×m̄6×ū(1)2

3, 2
3 ;2, 1

4 ;1,0;2,− 1
4

+ χ
m6×u(1)2×m̄6×ū(1)2

3, 2
3 ;2, 1

4 ;5,−3;2,− 1
4

+ χ
m6×u(1)2×m̄6×ū(1)2

8, 1
15 ;1,0;6,− 2

5 ;1,0
+ χ

m6×u(1)2×m̄6×ū(1)2

8, 1
15 ;1,0;10,− 7

5 ;1,0
+ χ

m6×u(1)2×m̄6×ū(1)2

8, 1
15 ;2, 1

4 ;6,− 2
5 ;2,− 1

4

+ χ
m6×u(1)2×m̄6×ū(1)2

8, 1
15 ;2, 1

4 ;10,− 7
5 ;2,− 1

4

,

Z
Gau(3)

S3
c = χ

m6×u(1)2×m̄6×ū(1)2

2, 1
8 ;1,0;4,− 13

8 ;2,− 1
4

+ χ
m6×u(1)2×m̄6×ū(1)2

2, 1
8 ;2, 1

4 ;2,− 1
8 ;1,0

+ χ
m6×u(1)2×m̄6×ū(1)2

4, 13
8 ;1,0;2,− 1

8 ;2,− 1
4

+ χ
m6×u(1)2×m̄6×ū(1)2

4, 13
8 ;2, 1

4 ;4,− 13
8 ;1,0

+ χ
m6×u(1)2×m̄6×ū(1)2

7, 1
40 ;1,0;9,− 21

40 ;2,− 1
4

+ χ
m6×u(1)2×m̄6×ū(1)2

7, 1
40 ;2, 1

4 ;7,− 1
40 ;1,0

+ χ
m6×u(1)2×m̄6×ū(1)2

9, 21
40 ;1,0;7,− 1

40 ;2,− 1
4

+ χ
m6×u(1)2×m̄6×ū(1)2

9, 21
40 ;2, 1

4 ;9,− 21
40 ;1,0

,

Z
Gau(3)

S3
c1 = χ

m6×u(1)2×m̄6×ū(1)2

2, 1
8 ;1,0;2,− 1

8 ;2,− 1
4

+ χ
m6×u(1)2×m̄6×ū(1)2

2, 1
8 ;2, 1

4 ;4,− 13
8 ;1,0

+ χ
m6×u(1)2×m̄6×ū(1)2

4, 13
8 ;1,0;4,− 13

8 ;2,− 1
4

+ χ
m6×u(1)2×m̄6×ū(1)2

4, 13
8 ;2, 1

4 ;2,− 1
8 ;1,0

+ χ
m6×u(1)2×m̄6×ū(1)2

7, 1
40 ;1,0;7,− 1

40 ;2,− 1
4

+ χ
m6×u(1)2×m̄6×ū(1)2

7, 1
40 ;2, 1

4 ;9,− 21
40 ;1,0

+ χ
m6×u(1)2×m̄6×ū(1)2

9, 21
40 ;1,0;9,− 21

40 ;2,− 1
4

+ χ
m6×u(1)2×m̄6×ū(1)2

9, 21
40 ;2, 1

4 ;7,− 1
40 ;1,0

. (72)

Equation (72) describes a gapless state that does not break the
anomalous S(3)

3 symmetry. The gapless state is described by
a m6 × u(1)2 × m̄6 × ū(1)2 CFT with central charge (c, c̄) =
( 9

5 , 9
5 ). Such a CFT is nonchiral, where right movers and left

movers have the dynamics. In particular, the right movers
(and left movers) are described by a (6,5) minimal model
CFT (denoted as m6) and a U(1) level-2 CFT [i.e., K matrix
K = (2)]. Such a CFT corresponds a gapless state with one
S(3)

3 symmetric relevant operator. Thus the CFT may describe
a stable continuous phase transition. The gapped and gapless
phases for systems with anomalous S(3)

3 symmetry is summa-
rized in Table V.

VII. SUMMARY

It is well known that symmetry and anomaly can constrain
the low energy properties of quantum systems. However, even
given a symmetry and/or an anomaly, there still can be a lot
of allowed possible low energy properties, which are hard

to organize and hard to understand. In this paper, we used
Symm/TO correspondence proposed in Refs. [33,42,48,49],
to view symmetry and anomaly from a new point of view,
and also to place them in a more generalized framework. This
allows us to organize the low energy properties according to
the condensation patterns and their reduced symmetry TO.
These patterns of condensations can describe, in a unified way,
symmetry breaking phases, symmetry enriched topological
phases, symmetry protected topological phases, and gapless
critical points connecting these phases. These patterns of
symmetry TO reductions, and the associated gapped/gapless
phases, are classified by the condensable algebras A in the
symmetry TO M.

In order to similarly study phases and symmetry in n-
dimensional space for n > 1, the theory of condensable
algebra needs to be further developed. In some sense, a
condensable algebra should correspond to an n-dimensional
domain wall in a topological order in (n + 1)-dimensional
space, which describes a symmetry for a quantum system
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TABLE V. Possible gapped and gapless states for systems with anomalous S(3)
3 symmetry.

condensable algebra A reduced symmetry TO M/A Stable low energy state

1 ⊕ a1 ⊕ 2a2

(
Gau(3)

S3

)
/1⊕a1⊕2a2

= trivial S3 symmetry breaking gapped Z1 state

1 ⊕ a1 ⊕ 2b
(
Gau(3)

S3

)
/1⊕a1⊕2b

= trivial Gapped Z3 state

1 ⊕ a2

(
Gau(3)

S3

)
/1⊕a2

= MDS K = (2 0
0 −2) chiral boson theory (55)

1 ⊕ b
(
Gau(3)

S3

)
/1⊕b

= MDS K = (2 0
0 −2) chiral boson theory (55)

1 ⊕ a1

(
Gau(3)

S3

)
/1⊕a1

= GauZ3 (c, c̄) = (
4
5 , 4

5

)
CFT (42)

1
(
Gau(3)

S3

)
/1 = Gau(3)

S3
(c, c̄) = (

9
5 , 9

5

)
CFT m6 × u(1)2 × m̄6 × ū(1)2 (72)

in n spatial dimensions. These domain walls are necessarily
descendant excitations [i.e., formed by the condensation of
(n − 1)-dimensional, (n − 2)-dimensional, etc. excitations].
Under such a generalization of condensable algebra, one must
also include topological orders in n-dimensional space with-
out any symmetry. This is because condensation of trivial
excitations in the symmetry TO [i.e., topological order in (n +
1)-dimensional space] can give rise to topological order in n-
dimensional space. Condensation of nontrivial excitations, on
the other hand, can give rise to symmetry enriched topological
order in n-dimensional space. In this way, an appropriately
generalized analog of condensable algebra should be able
to describe symmetry-enriched topologically ordered gapped
phases of quantum systems in n > 1 spatial dimensions.

For gapless states, the possible low energy properties with
a reduced symmetry TO M/A are the same as the possible
low energy properties of the 1-condensed boundary of M/A.
In the language of bulk topological order, this refers to the
1-condensed boundary of the topological order induced from
M via the condensation of A, which we denote by M/A. We
find that possible low energy properties, such as scaling di-
mensions, are determined by the reduced symmetry TO M/A,
and can be computed using an algebraic number theoretical
method.

Different condensable algebras A′s of M can give rise to
the same reduced symmetry TO M/A, which implies that
different patterns of condensation associated to a symmetry
TO can give rise to the same set of low energy properties. This
allows us to show that some seemingly different continuous
quantum phase transitions are described by the same critical
theory. It appears that Symm/TO correspondence is a pow-
erful way to use symmetry TO (also referred to as categorical
symmetry h© before) to study, or even to classify, gapless quan-
tum states and the associated quantum field theories (up to
local low-energy equivalence). In higher than 1 + 1D, similar
techniques are lacking, partly due to a lack of systematic
understanding of gapped boundaries of 3 + 1D and higher
topological orders. This constitutes one major direction for
future research.
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APPENDIX A: SOME REMARKS ON THE TERM
CATEGORICAL SYMMETRY©h

To address some comments from referee about the term
categorical symmetry h©, we make some remarks here. The
term categorical symmetry h© was introduced in 2019 [49],
which is a way to describe a symmetry by viewing it as a (non-
invertible) gravitational anomaly [48], or by including both
symmetry charges and symmetry defects at an equal footing.
We stress that at equal footing is the key here. If we only
include symmetry charges, and use the fusion ring (i.e., con-
servation law) of symmetry charges to describe the symmetry,
it will lead to a group theory (or fusion category) description
of symmetry.15 If we only use symmetry transformations (or
symmetry defects) to describe the symmetry, it will also lead
to a group theory (or fusion category [34–40,138,139]) de-
scription of symmetry. On the other hand, if we include both
symmetry charges and symmetry defects at an equal footing,
and use the fusion rings (i.e., conservation laws) of symmetry
charges and symmetry defects to describe the symmetry, we
find that we also need to include the “braiding” properties
of symmetry charges and symmetry defects. Thus we need
to use noninvertible topological order in one higher dimen-
sion (called symmetry TO), or more precisely, “nondegenerate
braided fusion n-category” to describe such a structure, if the
system is in n-dimensional space. This way, the categorical
symmetry h© point of view leads to Symm/TO correspondence
[48,49] (see Fig. 20).

In an earlier work Ref. [69], categorical symmetry h© ap-
peared in 1 + 1D CFT as the ambient category of enriched
fusion category of all the topological defect lines and is, at the
same time, the category of modules over a chiral or nonchiral
symmetry (i.e., a VOA or a full field algebra). Topological
field theory (TFT) in one higher dimension was also used in
Ref. [140] to discuss a duality relation in 1 + 1D Ising model.

15We do not need to include the “braiding” properties of symmetry
charges, since their are always trivial for anomaly-free and anoma-
lous symmetries.
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FIG. 20. Symm/TO correspondence where (emergent) symmetry
is viewed as anomaly (Fig. 1 in Ref. [126]).

Later, “categorical symmetry” was also used to refer to
“noninvertible symmetry” (which was called “fusion category
symmetry,” a term first introduced also in 2019 [38]). “Simons
Collaboration on Global Categorical Symmetries” founded in
2021 used the term “categorical symmetry” with “noninvert-
ible” meaning.

In 2021, motivated by Ref. [141], Ref. [142] introduced
“symmetry TFT”, which is closely related to “symmetry TO.”
A possible difference is that, for example, in 2 + 1D, the
Z2 × Z2-DW theory and the Z4-gauge theory are usually re-
garded as different field theories. Thus they may be viewed
as different TFT’s, but they correspond to the same symmetry
TO. In other words, symmetry TFT may carry extra informa-
tion about the field theory representations, which is not needed
here.

In 2022, “topological symmetry” was introduced [143].
“Topological symmetry” corresponds to a pair (ρ, σ ), where
σ is the symmetry TO discussed above, and ρ a gapped
boundary of the symmetry TO: bulk(ρ) = σ (see Fig. 21). The
pair (ρ, σ ) describes a (generalized) symmetry in a quantum
field theory F (using the notations in Ref. [42]): F ∼= ρ �σ F̃ ,
where F̃ is a boundary of σ , i.e., bulk(F̃ ) = σ .

In 2020, Ref. [42] also used a similar pair (R̃, bulk(C)) (see
Fig. 22) to describe an anomaly-free algebraic higher sym-
metry (i.e., noninvertible higher symmetry), where bulk(C) is
a nondegenerate braided fusion higher category (i.e., a sym-
metry TO corresponding to σ in the above) and R̃ is a local
fusion higher category that satisfy Z(R̃) = bulk(C) (i.e., a
gapped boundary of the symmetry TO corresponding to ρ

in the above). Reference [42] used the pair (R̃, bulk(C)) to
classify symmetry protected topological orders and symmetry
enriched topological orders with the anomaly-free algebraic
higher symmetry. Here C corresponds to F̃ in the above. In
Ref. [42], R̃ in the pair is assumed to be a local fusion higher
category. Since, bulk(C) = bulk(R̃), Ref. [42] usually used
R̃, or its dual R, to describe the symmetry, which is referred
to as algebraic higher symmetry (that is anomaly-free since R
and R̃ are assumed to be local fusion higher categories).

FIG. 21. A pair (ρ, σ ) describes a “topological symmetry” in an
anomaly-free field theory F (Fig. 1 in Ref. [143]).

FIG. 22. In Ref. [42], Fig. 21 was drawn as the above, where
F = C, F̃ = C, ρ = R̃, and σ = bulk(C). (See Figs. 24 and 29 in
Ref. [42]).

It turns out that the pair (ρ, σ ) also appeared in a 2015
work [46,47], but was interpreted differently as a morphism

from F̃ to F , which leads an equivalence F
θ∼= ρ �σ F̃ (see

Fig. 21). Such an equivalence corresponds to a symmetry
described by (ρ, σ ), as pointed out in Refs. [42,143].

More specifically, in Refs. [46,47], morphism between
n + 1D (gapped or gapless) quantum field theories Cn and Dn

with (nonperturbative) gravitational anomalies [43] are stud-
ied. The partition function of a n + 1D anomalous field theory
Dn on space-time Mn+1 is define only after we view Mn+1 as a
boundary of Nn+2 (like Wess-Zumino-Witten theory [77,144])
and is denoted as

Z (Dn; Mn+1, Nn+2), Mn+1 = ∂Nn+2. (A1)

The morphism is a topological domain wall ( f (1)
n−1, f (0)

n )
between anomalous field theories (see Fig. 23, (4.3) of
Ref. [46]), where f (1)

n−1 is invertible. Since f (1)
n−1 is invertible,

the morphism ( f (1)
n−1, f (0)

n ) (i.e., the presence of topological
domain wall) gives rise to an equivalence relation (see (4.3)
in Ref. [46], which is called a decomposition in Ref. [63]):

Dn

f (1)
n−1∼= f (0)

n �Zn(Cn ) Cn, (A2)

where Dn and f (0)
n �Zn(Cn ) Cn have the same partition function

[63]

Z (Dn; Mn+1, Nn+2) = Z ( f (0)
n �Zn(Cn ) Cn; Mn+1, Nn+2),

(A3)

which is the defining property of the equivalence relation
or the decomposition (A2) [63]. Since the domain wall
( f (1)

n−1, f (0)
n ) is topological and f (1)

n−1 is invertible, the above
implies that the two anomalous field theories Cn and Dn have
the same local low energy properties defined in footnote 13.
Some explicit examples of such local low energy equivalence
were discussed in Ref. [62,63].

The equivalence relation or the decomposition, (A2)
and (A3), reveals the symmetry described by the pair
( f (0)

n ,Zn(Cn)) [62,63], in the anomalous field theories Dn

FIG. 23. A morphism between n + 1D (gapped or gapless) quan-
tum field theories Cn and Dn with (noninvertible) gravitational
anomalies. See (4.3) of Ref. [46].
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FIG. 24. When Dn ≡ F is anomaly-free, Fig. 23 becomes the
above, which is another way to represent Fig. 21.

and Cn. Thus morphism between (anomalous) quantum field
theories defined in Ref. [46] corresponds to symmetry.

In the special case when Dn is an anomaly-free field theory
(denoted as F ), its center (i.e., the bulk) Zn(Dn) = bulk(Dn)
is trivial and Fig. 23 becomes Fig. 24, if we rename Cn

as F̃ , Zn(Cn) as σ , and f (0)
n as ρ. Due to the equivalence

relation (A2) and (A3), the pair (ρ, σ ) can be viewed as a
symmetry of an anomaly-free field theory F as pointed out
in Refs. [42,143]. In other words, the equivalence relation
or the decomposition, (A2) and (A3), reveals the symmetry
(ρ, σ ) in the anomaly-free field theory F and in the anomalous
field theory F̃ . Reference [63] used the equivalence relation
or decomposition, (A2) and (A3), to identify maximal cate-
gorical symmetry h© in an anomaly-free field theory F . Note
that the anomalous field theory F̃ corresponds to anomaly-free
field theory F restricted in the symmetric sub-Hilbert space
Vsymmetric [49].

The categorical symmetry h© of the anomaly-free field the-
ory F only corresponds to the σ in the pair. We see a clear
distinction between categorical symmetry h© and symmetry:
a categorical symmetry h© is a holoequivalent class of sym-
metries, as indicated by (4). (Two symmetries, (ρ, σ ) and
(ρ ′, σ ′), are holoequivalent if σ ∼= σ ′ [42].)

We have been using categorical symmetry h© to just mean
“including both symmetry charges and symmetry defects at an
equal footing, and including their “braiding” properties.” This
leads to Symm/TO correspondence. However, “categorical
symmetry” has since been used to mean different things. This
causes some confusions.

Another source of confusion comes from the fact that cate-
gorical symmetry h© has several equivalent descriptions, that
emphasis different aspects of Symm/TO correspondence: a
categorical symmetry h© can be, equivalently, described by the
following.

(1) A noninvertible gravitational anomaly [48] (see
Fig. 20). Here we view symmetry by restricting to symmetric
sub-Hilbert space. The symmetric sub-Hilbert space does not
have a tensor product decomposition Vsymm �= ⊗

i Vi, where
V ′

i s are vector spaces on lattice sites i. This implies a nonin-
vertible gravitational anomaly, and thus a symmetry can be
described by a noninvertible gravitational anomaly.

(2) A symmetry + dual symmetry + braiding [49].
Conservation (i.e., the fusion ring) of symmetry charges cor-
responds to symmetry. Conservation (i.e., the fusion ring)
of symmetry defects corresponds to dual-symmetry. Here
we treat symmetry charges and symmetry defects at an
equal footing. The fusion ring of symmetry charges/defects
corresponds to “symmetry” in categorical symmetry h©. The
braiding properties of symmetry charges/defects corresponds
to “categorical” in categorical symmetry h©. In fact, the term

categorical symmetry h© is a parallel generalization of the
term “anomalous symmetry.” The fusion ring of the symmetry
charges correspond to “symmetry” in “anomalous symmetry”
and the braiding properties of symmetry defects corresponds
to “anomalous” in “anomalous symmetry” [32,59].

(3) A topological order in one higher dimension (sym-
metry TO) [42,49]. This is because gravitational anomaly =
topological order in one higher dimension [43].

(4) A part of topological skeleton introduced in Ref. [64].
(5) A nondegenerate braided fusion higher category

[38,42]. This is because topological order is described by
nondegenerate braided fusion higher category. We use a short
name “nBF category” to refer to “nondegenerate braided fu-
sion higher category.” Thus nBF category, replacing group
and higher group, is used to describe (generalized) symmetry.
This leads to a unified frame work to classify spontaneous
symmetry breaking order, topological order, symmetry pro-
tect topological order, symmetry enriched topological order,
etc. in any dimension [42].

(6) An equivalence class of algebras of commutant patch
operators (also called transparent patch operators) [33,66].
This is a nonholographic point of view that does not go to one
higher dimension, and leads to the notion of patch symmetry
[see Eq. (4)]. Here a symmetry is defined via the algebra
of local symmetric operators. Using an algebra formed by
commutant patch operators (that are constructed from local
symmetric operators and define the patch symmetry), we can
compute a nondegenerate braided fusion category that de-
scribes a categorical symmetry h©.

Let us use some simple examples to illustrate the notion
of categorical symmetry h©. In 1 + 1D Ising model with Z2

symmetry. The Z2 symmetry charge is denoted by e and
Z2 symmetry defect is denoted by m. The Z2 symmetry is
described by the fusion ring e ⊗ e = 1 (the conservation law).
The Z2 symmetry is also described by transformation law
U 2 = id. On the other hand, the categorical symmetry h© of
the Ising model is described by the fusion ring of Z2 sym-
metry charges e ⊗ e = 1 and the fusion ring of Z2 symmetry
defects m ⊗ m = 1, as well as a nontrivial “braiding” property
between e and m. In other words, categorical symmetry h©
treats the symmetry charges and symmetry transformations
(or symmetry defects) at equal footing. Such a treatment leads
to nBF category description of symmetry (instead of group
description of symmetry).

In an 1 + 1D model with Z4 symmetry. The Z4 symme-
try charges are denoted by ek , k = 1, 2, 3, and Z4 symmetry
defects are denoted by mk , k = 1, 2, 3. The Z4 symme-
try is described by the fusion ring e ⊗ e ⊗ e ⊗ e = 1 (the
conservation law). The Z4 symmetry is also described by
transformation law U 4 = id, or m ⊗ m ⊗ m ⊗ m = 1. In con-
trast, the categorical symmetry h© of the Z4 model is described
by the fusion ring of Z4 symmetry charges e ⊗ e ⊗ e ⊗ e = 1
and the fusion ring of Z4 symmetry defects m ⊗ m ⊗ m ⊗
m = 1, as well as a nontrivial “braiding” property between
e and m.

However, if we call e2 = e1 the charge and m = m1 the
defect of first Z2-symmetry, and m2 = e2 the charge and e =
m2 the defect of second Z′

2-symmetry, then the same cate-
gorical symmetry h© will describe Z2 × Z′

2 symmetry with a
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TABLE VI. The first row is the classification of 2+1D topological orders [up to E (8) invertible topological order] for bosonic systems with
no symmetry, up to 10 types of anyons. This leads to a classification of 2+1D symmetry TOs, which classify all the 1+1D global symmetries
up to holo-equivalence (the second row). Such a classification include all finite-group symmetries with potential anomalies (the third row). It
also includes beyond-group symmetries, such as the Fibonacci symmetry in Fig. 25.

No. of anyon types (rank) 1 2 3 4 5 6 7 8 9 10 11

No. of 2 + 1D topological orders (MTC) 1 4 12 18 10 50 28 64 81 76 44
No. of symmetry TOs (MTC in trivial Witt class) 1 0 0 3 0 0 0 6 6 3 0
No. of finite-group symmetries (with anomaly ω ) 1 0 0 2Zω

2
0 0 0 6Sω

3
3Zω

3
0 0

mixed anomaly [33]. This example demonstrates a difference
between the usual symmetry point of view and categorical
symmetry h© point of view. The categorical symmetry h© point
of view allows us to see certain relations more easily.

Since many people use “categorical symmetry” to mean
noninvertible symmetry, in this paper, we will use an equiva-
lent notion symmetry TO to refer to categorical symmetry h©,
hoping to avoid confusions. In fact, symmetry TO (i.e.,
categorical symmetry h©) is the “Drinfeld” center of global
symmetry or fusion category symmetry.

Recently, modular tensor categories with up to 11 types
of anyons were classified [145]. This leads to a classification
of 1+1D generalized symmetries with 11 or fewer symmetry
charges/defects, via the classification of 2+1D symmetry TOs
up to rank 11 (see Table VI). For example, for global symme-
tries with four types of symmetry charges/defects, the three
holo-equivalence classes (which contain only one symmetry
each in this case) are (1) Z2 symmetry where the symmetry
TO is the 2+1D Z2 gauge theory; (2) anomalous Z2 symmetry
where the symmetry TO is the double-semion topological
order; (3) Fibonacci symmetry where the symmetry TO is
the double-Fibonacci topological order (see Fig. 25). From
Table VI, we also see a clear distinction between generic TO
which may not allow gapped boundary and symmetry TO
which allows gapped boundary.

APPENDIX B: STRUCTURE OF PHASE DIAGRAM

Condensable algebras A have many relations, such as
algebra-subalgebra relation, overlap relations, etc. These rela-
tions can constrain the phase diagram of condensation patterns

FIG. 25. A 1+1D lattice model with emergent Fibonacci sym-
metry at low energies. The 1+1D lattice model is constructed from
a slab of 2+1D lattice. In the bulk, we have a commuting-projector
Hamiltonian that realizes a double-Fibonacci topological order [146]
with large energy gap. The top boundary R̃ is a gapped boundary of
the double-Fibonacci topological order with large energy gap. The
lower boundary is described by an anomalous low energy theory
LETano. The low energy theory LETa f of the slab has an emergent
Fibonacci symmetry below the energy gaps of the bulk and top
boundary.

A in M symmetric systems. To describe such a phase dia-
gram, let XM be the space of all M systems (which is called
moduli space), that have liquid ground states [67,68]. XM is
parametrized by the coupling constants in the Hamiltonians
with the symmetry.

The moduli space XM can be divided in to many regions,
each described by a different condensation A, which will be
called A phase. The state in the A phase will be called A state.
Here the A phase can be gapped. The A phase can also be
gapless, in which case, the gapless A state has no symmetric
relevant operators.

The boundary between two regions of condensations A1

and A2 describes the phase transition between A1 and A2. If
the phase transition is first order, at the boundary, the system
has degenerate ground states: one described by A1 condensa-
tion and the other by A2 condensation. If the phase transition
is continuous, at the boundary, the system has a condensation
described by Ac. Starting in the A1 phase, as we approach
the Ac boundary, certain condensation becomes weaker and
weaker. At the boundary, we reach a smaller condensation
Ac ⊂ A1. Similarly, we have Ac ⊂ A2. Thus A stable con-
tinuous transition between A1 and A2 phases is described by
a critical point with Ac condensation that satisfies

Ac ⊂ A1, Ac ⊂ A2. (B1)

The gapless Ac state has only one symmetric relevant oper-
ator. Here A1 and A2 can be the same, in which case, the
gapless Ac state describes a continuous transition between the
same phase.

To summarize, an A state is with no symmetric relevant
operator form the stable phases. A gapless Ac state is with
one and only one symmetric relevant operator describe stable
continuous transitions between stable phases. Similarly, the
gapless At state is with two and only two symmetric relevant
operators are tricritical points, a kind of multicritical points.

FIG. 26. Some possible structures of the phases near a tricriti-
cal point At (the dot). The solid curves are continuous transitions
(described by Ac1, Ac2, etc.). The dashed curves are first-order
transitions.
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FIG. 27. The curves with arrow represent the RG flow. The dots
represent the fixed points of the RG flow. The plane is a subspace
of the total moduli space XM (the space formed by M systems). Let
XA

M be the subspace formed by A states. The horizontal line is a
subspace of XAc

M . In (a), the subspaces XA+
M and XA−

M are upper
and lower half planes. In (b), the subspaces XA+

M and XA−
M are two

marked curves. (c) and (d) are combinations of (a) and (b).

Some structures of the phases near a tricritical point are de-
scribed in Fig. 26.

Let us consider a stable continuous transition, whose crit-
ical point is described by a gapless Ac state that has one
symmetric relevant operator. The possible renormalization-
group (RG) flows are presented schematically in Fig. 27.
However, what are the resulting states after a long RG flow?
To address this question, let us introduce a notion of allowed
competing pair for the condensable algebra Ac, which is a pair
of excitations a+ and a− with nontrivial mutual statistics, but
they both have trivial mutual statistics with respect to Ac.16

If a+ condenses, a− will be confined and uncondense. If a−
condenses, a+ will be confined and uncondense. Thus we can
imagine that there is some parameter ε in the Hamiltonian that
controls whether a+ condenses or a− condenses. For example,
we could have a situation that ε > 0 causes a+ to condense
and ε < 0 causes a− to condense. a+ and a− cannot both
condense due to their nontrivial mutual statistics, but a+ and
a− can be both uncondensed. Let us assume this can happen
only if we fine tune ε, so as to set ε = 0 (otherwise, we would
have had a stable gapless phase).

If the gapless Ac state only allows one competing pair,
then the two different condensations of the one competing
pair should correspond to the relevant direction. However if

16More precisely, an allowed competing pair (a+, a−) for a con-
densable algebra Ac has the following defining properties: (1) a+
can be added to Ac to generate a larger condensable algebra and so
does a−. (2) a+ and a− cannot be added together to generate a larger
condensable algebra.

the gapless Ac state allows several competing pairs, then the
only relevant direction should correspond to one of these com-
peting pairs. With these considerations, we propose that the
switching between two different condensations of a competing
pair is the basic mechanism for continuous phase transition.
The resulting two condensable algebras A+ and A− from the
two condensations must contain the condensing particle and
must contain Ac as a sub algebra.

To be more concrete, let us assume the competing pair
(a+, a−) corresponds to the relevant direction. After the
condensation of a+, or a−, the condensable algebra Ac

will change to A+ = Ac ⊕ a+ ⊕ + · · · or A− = Ac ⊕ a− ⊕
+ · · · , where · · · represent any additional excitations that
condense together with the a+ or a− condensations.

Now, we need to consider several cases separately. If A+
and A− are Lagrangian, then the switching between two dif-
ferent condensations of the competing pair (a+, a−) will cause
a stable continuous phase transition between the A+ and A−
states. We will have a local phase diagram as in Fig. 27(a),
where we have assumed that the parameter ε mentioned above
has an overlap with the relevant direction of the RG flow.

If A+ and A− are both non-Lagrangian, then the switching
between two different condensations of the competing pair
(a+, a−) will cause a continuous phase transition between the
gapless A+ and the gapless A− states. Let us further assume
that both A+ and A− states have one relevant operator [if
neither has a relevant operator, the local phase diagram will
be given by Fig. 27(a) as in the previous case]. In this case,
the continuous transition will be multicritical. The local phase
diagram will be controlled by the relevant operator and the
dangerously irrelevant operator, a mechanism discussed in
Ref. [147]. The unstable A+ state can become A1 state or
A2 state. The unstable A− state can become A3 state or A4

state. Thus we find the phase diagram shown schematically in
Fig. 27(b).

From the phase diagram Fig. 27(b), we see that there
are stable continuous transitions A1 ↔ A3 and A2 ↔ A4.
Whether we get an A1 ↔ A3 transition or an A2 ↔ A4 tran-
sition is controlled by dangerously irrelevant operators. From
the phase diagram, we also see a direct continuous transition
A1 ↔ A4 and a direct continuous transition A2 ↔ A3. These
two transitions are not stable and are controlled by a multi-
critical point. The critical points for all the four transitions
A1 ↔ A3, A2 ↔ A4 A1 ↔ A4, and A2 ↔ A3, are described
by the same critical theory with condensation pattern Ac and
with only one relevant operator. How can a critical theory
with only one relevant operator sometimes describe stable
continuous transition, and other times describe multicritical
continuous transition? This is because sometimes tuning dan-
gerously irrelevant operators can also cause phase transitions.
Thus a critical theory with only one relevant operator can
sometimes describe a multicritical point.

If A+ is Lagrangian but A− is non-Lagrangian, the local
phase diagram will be a combination of the above two cases,
and is given by Fig. 27(c). Similarly, if A+ is non-Lagrangian
but A− is Lagrangian, we get a phase diagram Fig. 27(d).

From the above discussion, we see that the properties of
a continuous phase transition are not only determined by
the number of relevant operators of the critical point, as we
usually expect, they are also determined by the condensation
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pattern Ac of the critical point. In particular, the num-
ber of condensations needed to change Ac into Lagrangian
condensable algebra will strongly influence the critical prop-
erties. Compared to Landau symmetry breaking theory, the
holographic theory replaces the group-subgroup relation by
the relations of condensable algebras. The new theory applies
to beyond-Landau continuous phase transitions, as well as
noninvertible symmetries (i.e., algebraic higher symmetries),
as we discuss in the main text.

APPENDIX C: ALGEBRAIC NUMBER THEORETICAL
METHOD TO CALCULATE CONDENSABLE ALGEBRAS
AND GAPPED/GAPLESS BOUNDARIES/DOMAIN WALLS

We have see that the symmetry TO M, its condensable
algebras A, and the induced topological orders M/A are very
important in understanding the patterns of possible conden-
sations and the allowed gaplessness by the symmetry TO M.
For 1 + 1D symmetry, there are some simple relations among
A, M, and M/A, where M, and M/A are viewed 2 + 1D as
topological orders.

Let us use a, b, and c to label the anyons in M. As a
2 + 1D topological order, M is characterized by modular ma-
trices S̃M = (S̃ab

M) and T̃M = (T̃ ab
M ), whose indices are labeled

by the anyons. S̃M and T̃M are unitary matrices that generate
a representation of SL(2,Zn), where n is the smallest integer
that satisfy T̃ n

M = id. We call n as the order of T̃M and denote
it as n = ord(T̃M). T̃M is a diagonal matrix and S̃M is a
symmetric matrix.

From S̃M and T̃M, we define normalized Scat and T cat ma-
trices and unitary S and T matrices

Scat
M = S̃M/S̃11

M, T cat
M = T̃M/T̃ 11

M .

SM = Scat
M/DM, TM = T cat

M . (C1)

Let da be the quantum dimension of anyon a, which is given
by da = (Scat

M )a1. Let sa be the topological spin of anyon a,
which is given by e i 2πsa = (T cat

M )aa. The total dimension of
M is defined as D2

M ≡ ∑
a∈M d2

a . Also let dA be the quantum
dimension of the condensable algebra A, i.e., if

A =
⊕
a∈M

Aaa (C2)

then dA = ∑
a Aada. We also have a particle to antiparticle

conjugation a → ā. Similarly, we use i, j, and k to label the
anyons in M/A. Following the above, we can define S̃M/A =
(S̃i j

M/A
), T̃M/A = (T̃ i j

M/A
), Scat

M/A
, T cat

M/A
, SM/A , TM/A , as well

as di, si, and D2
M/A

. Then we have the following properties.
(1) The distinct s′

is form a sub set of {sa | a ∈ M}.
(2) (Scat

M )ab, (T cat
M )aa, D2

M, da, and dA are cyclotomic
integers, whose conductors divide ord(T cat

M ). DM is a real cy-
clotomic integer whose conductors divide ord(T̃M) (assuming
S̃11
M is real).

(3) (Scat
M/A

)i j , (T cat
M/A

)ii, D2
M/A

, and di are cyclotomic in-
tegers, whose conductors divide ord(T cat

M/A
). DM/A is a real

cyclotomic integer whose conductors divide ord(T̃M/A ) (as-
suming S̃11

M/A
is real).

(4) DM = DM/AdA.
(5) Aa in A are nonnegative integers, Aa = Aā, and

A1 = 1.
(6) For a ∈ A (i.e., for Aa �= 0), the corresponding sa = 0

mod 1, i.e., the anyons in A are all bosonic.
(7) if a, b ∈ A, then at least one of the fusion products in

a ⊗ b must be contained A, i.e., ∃c ∈ A such that a ⊗ b =
c ⊕ · · · .

Now, let us assume A to be Lagrangian, then the A-
condensed boundary of M is gapped. Let us use x to label
the (simple) excitations on the gapped boundary. If we bring
a bulk excitation a to such a boundary, it will become a
(composite) boundary excitation X

X = ⊕Ma
x x, Ma

x ∈ N. (C3)

Then Aa is given by Aa = Ma
1 . In other words, Aa �= 0 means

that a condenses on the boundary (i.e., the bulk a can become
the null excitation 1 on the boundary). Ma

x satisfies∑
c

Nab
M,cMc

x =
∑
y,z

Ma
y Mb

z Kyz
x , (C4)

where Nab
M,c describes the fusion ring of the bulk excitations

in M and Kxy
z describes the fusion ring of the boundary exci-

tations. By rewriting
∑

y = ∑
y=1 +∑

y �=1, we find∑
c

Nab
M,cMc

x � AaMb
x . (C5)

Let Āa ≡ ∑
x �=1 Ma

x and do
∑

x �=1 to the above, we obtain
(noticing Ā1 = 0) ∑

c �=1

Nab
M,cĀc � AaĀb. (C6)

Taking x = 1, Eq. (C4) reduces to∑
c

Nab
M,cAc = AaAb +

∑
x �=1

Ma
x Mb

x̄ . (C7)

Since Ma
x � 0, we obtain an additional condition on Aa∑

c

Nab
M,cAc � AaAb. (C8)

We can try to obtain a stronger condition, by showing∑
x �=1 Ma

x Mb
x̄ is equal or larger than a positive integer. Sum-

ming over x, Eq. (C4) implies∑
c

Nab
M,c(Ac + Āc) � AaAb + AaĀb + AbĀa. (C9)

Combining the above two equations, we find∑
x �=1

Ma
x Mb

x̄ � AaĀb + AbĀa −
∑
c �=1

Nab
M,cĀc. (C10)

Taking b = ā in Eq. (C7), we find∑
c

Naā
M,cAc � (Aa)2 + Āa. (C11)

From the conservation of quantum dimensions, we have

da =
∑

x

Ma
x dx = Aa +

∑
x �=1

Ma
x dx, (C12)
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which implies

δ(da) � Āa � da − Aa, (C13)

where δ(da) is defined as

δ(d ) =
{

0 if d ∈ N,

1 if d �∈ N.
(C14)

Let us define Āa
max to be the largest integer that is less than both

da − Aa and
∑

c Naā
M,cAc − (Aa)2. Note that both terms must

be larger than δ(da) and Āa
max is equal or larger than δ(da):

Āa
max � δ(da). (C15)

Substituting Āa � Āa
max into Eq. (C10), we obtain∑

x �=1

Ma
x Mb

x̄ � max

⎛⎝0, AaĀb + AbĀa −
∑
c �=1

Nab
M,cĀc

max

⎞⎠
� max

(
0, Aaδ(db) + Abδ(da) −

∑
c �=1

Nab
M,cĀc

max

)
.

(C16)

For Lagrangian A, the condensation of A give rises to a
gapped boundary. Reference [48] gave a physical picture of
the multicomponent τ -independent partition function Za of
the corresponding gapped boundary. From such a physical
picture, we find that Aa = Za and satisfies Eq. (5). Summa-
rizing the above discussions, we see that

A = SMA, A = TMA,

Aa � da − δ(da), AaAā �
∑

c

Naā
M,cAc − δ(da),

AaAb �
∑

c

Nab
M,cAc, (C17)

where A = (A1, Aa, . . . )�. The last condition can be improved
to

AaAb �
∑

c

Nab
M,cAc − max

(
0, Aaδ(db) + Abδ(da)

−
∑
c �=1

Nab
M,cĀc

max

)
. (C18)

Now, let us assume A not to be Lagrangian. In this case,
M/A is nontrivial. Let us consider the domain wall between M
and M/A. Such a domain wall can be viewed as a boundary of
M�M/A topological order form by stacking M and the spa-
tial reflection of M/A. Since the domain wall, and hence the
boundary, is gapped, there must be a Lagrangian condensable
algebra AM�M/A

in M�M/A, whose condensation gives
rise to the boundary. Let

AM�M/A
=

⊕
a∈M, i∈M/A

Aai a ⊗ i, (C19)

then the matrix A = (Aai ) satisfies

SMA = ASM/A , TMA = ATM/A , Aai � dadi − δ(dadi ),

AaiAb j �
∑
c,k

Nab
M,cNi j

M/A,kAck − δa,b̄δi, j̄δ(dadi ), (C20)

where Eqs. (C13) and (C11) are used. The above conditions
only require the domain wall between M and M/A to be
gapped. However, since M and M/A are related by a con-
densation of A, there is a special domain wall (called the
canonical domain wall) such that all the excitation in M/A
can pass through the domain wall to go into M without leav-
ing any nontrivial excitations on the wall. For the canonical
domain wall, the corresponding Aai must satisfy the following
condition:

for any i, there exists an a such that Aai �= 0. (C21)

The canonical domain wall can be viewed as AM→M/A -
condensed boundary of M with

AM→M/A =
⊕

Aa1a. (C22)

We note that anyon a in M condenses on the canonical domain
wall between M and M/A, if and only if Aa1 �= 0. This implies
that

AM→M/A = A, Aa = Aa1. (C23)

The domain wall can also be viewed as AM/A→M-condensed
boundary of M/A with

AM/A→M =
⊕

A1ii. (C24)

Since M/A comes from a condensation of M, the canonical
domain wall must be an 1-condensed boundary of M/A, i.e.,

AM/A→M = 1, A1i = δ1,i. (C25)

We can obtain more conditions on Aa. From Eq. (C20), we
find

DM/A

DM

∑
b∈M

(
Scat
M

)ab
Abi =

∑
j∈M/A

Aa j
(
Scat
M/A

) ji
, (C26)

which implies∑
b∈M

(
Scat
M

)ab
Abi∑

b∈M dbAb
= cyclotomic integer

for all a ∈ M, i ∈ M/A. (C27)

In particular, A = ⊕
a Aaa must satisfies∑

b∈M
(
Scat
M

)ab
Ab∑

b∈M dbAb
= cyclotomic integer for all a ∈ M.

(C28)

From Eq. (C20), we also obtain

Aa � da − δ(da),

AaAb �
∑

c

Nab
M,cAc − δa,b̄δ(da). (C29)

These conditions can help us to find possible condensable
algebras A = ⊕

a Aaa, which we call different condensation
patterns of the system. These conditions can also help us to
find possible condensation-induced topological orders M/A,
which determine the low energy properties of the gapless A
state. When combined with conformal character of CFT’s [see
Eq. (14)], these conditions allow us to obtain gapless (and
gapped) boundaries of topological order M and M/A. This
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represents an algebraic number theoretical way to calculate
properties of critical points.

APPENDIX D: SPT ORDER AS AUTOMORPHISM
OF HOLOCAT SYMMETRY

In a 1 + 1D Z2 × Z′
2-symmetric system, its holocat sym-

metry is described symmetry TO GauZ2×Z′
2

(i.e., a 2 + 1D
Z2 × Z′

2-gauge theory). Let us elaborate on one of the bound-
ary of GauZ2×Z′

2
, the 1 ⊕ e2m1 ⊕ e1m2 ⊕ f1 f2-condensed

boundary, to make contact with Refs. [41,42], where a classifi-
cation of SPT order for finite symmetries, higher symmetries,
and algebraic higher symmetries17 was given in terms of cer-
tain automorphisms of the corresponding symmetry TO. The
argument is based on the fact that the boundary of a bulk
topological order can be changed by stacking with a domain
wall of the bulk TO. It is assumed that all the changes of a
gapped boundary phase to other gapped boundary phases can
be obtained this way. The gapped boundaries that correspond
to trivial and nontrivial SPT orders form a group, i.e., they all
have inverses. This motivates the association of SPT orders
with certain invertible domain walls in the bulk topological
order which correspond to automorphisms of the TO [41,42].
The Z2 × Z′

2-SPT state, the 1 ⊕ e2m1 ⊕ e1m2 ⊕ f1 f2 state,
furnishes a simple example of this result.

Let us spell this out in more detail. According to
Refs. [41,42], all anomaly-free generalized symmetries are
described and classified by local fusion higher category R
formed by the symmetry charges. For 1 + 1D Z2 × Z′

2 sym-
metry, R is a fusion 1-category consisting of the anyons
(1, e1, e2, e1e2) as objects. The dual symmetry Z̃2 × Z̃′

2 is
described by the dual fusion 1-category, R̃, similarly formed
by (1, m1, m2, m1m2). The symmetry TO of R and R̃ are the
same and is given by their Drinfeld center

GauZ2×Z′
2
= Z(R) = Z(R̃). (D1)

Since center is bulk [43,46,47], the above expression means
that the 2 + 1D TO GauZ2×Z′

2
has two gapped boundaries with

excitations described by R and R̃. The R-boundary is induced
by condensing AR = 1 ⊕ m1 ⊕ m2 ⊕ m1m2. The R̃ bound-
ary is induced by condensing AR̃ = 1 ⊕ e1 ⊕ e2 ⊕ e1e2. The
AR-condensed boundary is the Z2 × Z′

2-symmetric state with
trivial SPT order. The gapped state with nontrivial SPT order
is given by condensation of α(AR) on the boundary, where
α is an automorphism of the bulk topological order GauZ2×Z′

2

that satisfies α(AR̃) = AR̃. In other words, the automorphism
acts trivially on the so-called electric Lagrangian condensable
algebra. This requirement for the automorphism α is required
so that it does not alter the description of the symmetry on
the boundary system. For our example GauZ2×Z′

2
, one of the

automorphisms is (e1 ↔ e2, m1 ↔ m2), which exchanges Z2

and Z′
2 and changes 1 ⊕ e1 ⊕ e2 ⊕ e1e2 to 1 ⊕ e2 ⊕ e1 ⊕ e1e2.

However, such an automorphism changes the symmetry since,
for instance, Z2 symmetry may correspond to spin rotation
while Z′

2 to charge conjugation. So we need to exclude such

17Also known as noninvertible symmetries.

automorphisms.18 By observation, we find another nontrivial
automorphism of GauZ2×Z′

2
:

α(e1) = e1, α(e2) = e2, α(m1) = e2m1, α(m2) = e1m2,

which maps AR̃ to AR̃ and maps AR to

α(1 ⊕ m1 ⊕ m2 ⊕ m1m2)

= α(1) ⊕ α(m1) ⊕ α(m2) ⊕ α(m1)α(m2)

= 1 ⊕ e2m1 ⊕ e1m2 ⊕ f1 f2. (D2)

Thus the gapped 1 ⊕ e2m1 ⊕ e1m2 ⊕ f1 f2 state is a nontrivial
Z2 × Z′

2-SPT state.

APPENDIX E: GAPLESS BOUNDARIES OF GauS3

WITH CENTRAL CHARGE (c, c̄) � ( 5
6 , 5

6 )

In this section, we list all the multicomponent boundary
partition functions with central charge (c, c̄) � ( 5

6 , 5
6 ) for the

2 + 1D topological order GauS3 . These gapless boundaries are
described by CFT’s constructed from minimal models. Here
χm4

h are conformal characters with conformal dimension h, for
(4,3) minimal model. χm5

h are conformal characters for (5,4)
minimal model, etc.

We can determine the condensable algebra A that produces
the boundary by examine the appearances of |χm#

0 |2 term.
From partition function Z1, we can also determine the number
of relevant operators.

1 ⊕ a2-condensed boundary with 1 relevant operator:

Z1 = ∣∣χm4
0

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Za1 = ∣∣χm4
1

16

∣∣2
,

Za2 = ∣∣χm4
0

∣∣2 + ∣∣χm4
1

16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Zb = 0,

Zb1 = 0,

Zb2 = 0,

Zc = ∣∣χm4
1

16

∣∣2
,

Zc1 = χm4
0 χ̄m4

1
2

+ χm4
1
2

χ̄m4
0 , (E1)

Z1 = ∣∣χm4
0

∣∣2 + ∣∣χm4
1
16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Za1 = ∣∣χm4
0

∣∣2 + ∣∣χm4
1
16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Za2 = 2
∣∣χm4

0

∣∣2 + 2
∣∣χm4

1
16

∣∣2 + 2
∣∣χm4

1
2

∣∣2
,

Zb = 0,

Zb1 = 0,

Zb2 = 0,

Zc = 0,

Zc1 = 0. (E2)

18Note that, here, we view 1 ⊕ e1 ⊕ e2 ⊕ e1e2 and 1 ⊕ e2 ⊕ e1 ⊕
e1e2 as unequal condensable algebras: 1 ⊕ e1 ⊕ e2 ⊕ e1e2 �= 1 ⊕
e2 ⊕ e1 ⊕ e1e2.
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1 ⊕ b-condensed boundary with 1 relevant operator:

Z1 = ∣∣χm4
0

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Za1 = ∣∣χm4
1

16

∣∣2
,

Za2 = 0,

Zb = ∣∣χm4
0

∣∣2 + ∣∣χm4
1
16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Zb1 = 0,

Zb2 = 0,

Zc = ∣∣χm4
1

16

∣∣2
,

Zc1 = χm4
0 χ̄m4

1
2

+ χm4
1
2

χ̄m4
0 , (E3)

Z1 = ∣∣χm4
0

∣∣2 + ∣∣χm4
1

16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Za1 = ∣∣χm4
0

∣∣2 + ∣∣χm4
1

16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Za2 = 0,

Zb = 2
∣∣χm4

0

∣∣2 + 2
∣∣χm4

1
16

∣∣2 + 2
∣∣χm4

1
2

∣∣2
,

Zb1 = 0,

Zb2 = 0,

Zc = 0,

Zc1 = 0, (E4)

Z1 = ∣∣χm4
0

∣∣2 + ∣∣χm4
1
16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Za1 = 0,

Za2 = ∣∣χm4
0

∣∣2 + ∣∣χm4
1
16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Zb = 0,

Zb1 = 0,

Zb2 = 0,

Zc = ∣∣χm4
0

∣∣2 + ∣∣χm4
1
16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Zc1 = 0, (E5)

Z1 = ∣∣χm4
0

∣∣2 + ∣∣χm4
1
16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Za1 = 0,

Za2 = 0,

Zb = ∣∣χm4
0

∣∣2 + ∣∣χm4
1
16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Zb1 = 0,

Zb2 = 0,

Zc = ∣∣χm4
0

∣∣2 + ∣∣χm4
1
16

∣∣2 + ∣∣χm4
1
2

∣∣2
,

Zc1 = 0. (E6)

1 ⊕ a2-condensed boundary with 2 relevant operators:

Z1 = ∣∣χm5
0

∣∣2 + ∣∣χm5
1

10

∣∣2 + ∣∣χm5
3
5

∣∣2 + ∣∣χm5
3
2

∣∣2
,

Za1 = ∣∣χm5
7

16

∣∣2 + ∣∣χm5
3

80

∣∣2
,

Za2 = ∣∣χm5
0

∣∣2 + ∣∣χm5
1

10

∣∣2 + ∣∣χm5
3
5

∣∣2 + ∣∣χm5
3
2

∣∣2 + ∣∣χm5
7
16

∣∣2

+ ∣∣χm5
3

80

∣∣2
,

Zb = 0,

Zb1 = 0,

Zb2 = 0,

Zc = ∣∣χm5
7

16

∣∣2 + ∣∣χm5
3

80

∣∣2
,

Zc1 = χm5
0 χ̄m5

3
2

+ χm5
1

10
χ̄m5

3
5

+ χm5
3
5

χ̄m5
1

10
+ χm5

3
2

χ̄m5
0 , (E7)

Z1 = ∣∣χm5
0

∣∣2+∣∣χm5
1

10

∣∣2+∣∣χm5
3
5

∣∣2+∣∣χm5
3
2

∣∣2 + ∣∣χm5
7

16

∣∣2 + ∣∣χm5
3

80

∣∣2
,

Za1 = ∣∣χm5
0

∣∣2+ ∣∣χm5
1

10

∣∣2+ ∣∣χm5
3
5

∣∣2+∣∣χm5
3
2

∣∣2 + ∣∣χm5
7

16

∣∣2 + ∣∣χm5
3

80

∣∣2
,

Za2 = 2
∣∣χm5

0

∣∣2 + 2
∣∣χm5

1
10

∣∣2 + 2
∣∣χm5

3
5

∣∣2 + 2
∣∣χm5

3
2

∣∣2 + 2
∣∣χm5

7
16

∣∣2

+ 2
∣∣χm5

3
80

∣∣2
,

Zb = 0,

Zb1 = 0,

Zb2 = 0,

Zc = 0,

Zc1 = 0. (E8)

1 ⊕ b-condensed boundary with two relevant operators:

Z1 = ∣∣χm5
0

∣∣2 + ∣∣χm5
1

10

∣∣2 + ∣∣χm5
3
5

∣∣2 + ∣∣χm5
3
2

∣∣2
,

Za1 = ∣∣χm5
7

16

∣∣2 + ∣∣χm5
3

80

∣∣2
,

Za2 = 0,

Zb = ∣∣χm5
0

∣∣2+∣∣χm5
1

10

∣∣2 + ∣∣χm5
3
5

∣∣2 + ∣∣χm5
3
2

∣∣2 + ∣∣χm5
7
16

∣∣2 + ∣∣χm5
3

80

∣∣2
,

Zb1 = 0,

Zb2 = 0,

Zc = ∣∣χm5
7

16

∣∣2 + ∣∣χm5
3

80

∣∣2
,

Zc1 = χm5
0 χ̄m5

3
2

+ χm5
1

10
χ̄m5

3
5

+ χm5
3
5

χ̄m5
1

10
+ χm5

3
2

χ̄m5
0 , (E9)

Z1 = ∣∣χm5
0

∣∣2+∣∣χm5
1

10

∣∣2+∣∣χm5
3
5

∣∣2+∣∣χm5
3
2

∣∣2 + ∣∣χm5
7
16

∣∣2 + ∣∣χm5
3

80

∣∣2
,

Za1 = ∣∣χm5
0

∣∣2+∣∣χm5
1

10

∣∣2+∣∣χm5
3
5

∣∣2+∣∣χm5
3
2

∣∣2 + ∣∣χm5
7
16

∣∣2 + ∣∣χm5
3

80

∣∣2
,

Za2 = 0,

Zb = 2
∣∣χm5

0

∣∣2 + 2
∣∣χm5

1
10

∣∣2 + 2
∣∣χm5

3
5

∣∣2 + 2
∣∣χm5

3
2

∣∣2 + 2
∣∣χm5

7
16

∣∣2

+ 2
∣∣χm5

3
80

∣∣2
,

Zb1 = 0,

Zb2 = 0,

Zc = 0,

Zc1 = 0, (E10)

075105-37



ARKYA CHATTERJEE AND XIAO-GANG WEN PHYSICAL REVIEW B 108, 075105 (2023)

Z1 = ∣∣χm5
0

∣∣2 + ∣∣χm5
1

10

∣∣2 + ∣∣χm5
3
5

∣∣2 + ∣∣χm5
3
2

∣∣2 + ∣∣χm5
7
16

∣∣2

+ ∣∣χm5
3

80

∣∣2
,

Za1 = 0,

Za2 = ∣∣χm5
0

∣∣2 + ∣∣χm5
1

10

∣∣2 + ∣∣χm5
3
5

∣∣2 + ∣∣χm5
3
2

∣∣2 + ∣∣χm5
7
16

∣∣2

+ ∣∣χm5
3

80

∣∣2
,

Zb = 0,

Zb1 = 0,

Zb2 = 0,

Zc = ∣∣χm5
0

∣∣2 + ∣∣χm5
1

10

∣∣2 + ∣∣χm5
3
5

∣∣2 + ∣∣χm5
3
2

∣∣2 + ∣∣χm5
7
16

∣∣2

+ ∣∣χm5
3

80

∣∣2
,

Zc1 = 0, (E11)

Z1 = ∣∣χm5
0

∣∣2 + ∣∣χm5
1

10

∣∣2 + ∣∣χm5
3
5

∣∣2 + ∣∣χm5
3
2

∣∣2 + ∣∣χm5
7
16

∣∣2

+ ∣∣χm5
3

80

∣∣2
,

Za1 = 0,

Za2 = 0,

Zb = ∣∣χm5
0

∣∣2 + ∣∣χm5
1

10

∣∣2 + ∣∣χm5
3
5

∣∣2 + ∣∣χm5
3
2

∣∣2 + ∣∣χm5
7
16

∣∣2

+ ∣∣χm5
3

80

∣∣2
,

Zb1 = 0,

Zb2 = 0,

Zc = ∣∣χm5
0

∣∣2 + ∣∣χm5
1

10

∣∣2 + ∣∣χm5
3
5

∣∣2 + ∣∣χm5
3
2

∣∣2 + ∣∣χm5
7
16

∣∣2

+ ∣∣χm5
3

80

∣∣2
,

Zc1 = 0. (E12)

1 ⊕ a2-condensed boundary with three relevant operators:

Z1 = ∣∣χm6
0

∣∣2 + ∣∣χm6
2
3

∣∣2 + ∣∣χm6
3

∣∣2 + ∣∣χm6
2
5

∣∣2 + ∣∣χm6
1
15

∣∣2

+ ∣∣χm6
7
5

∣∣2
,

Za1 = ∣∣χm6
1
8

∣∣2 + ∣∣χm6
13
8

∣∣2 + ∣∣χm6
1

40

∣∣2 + ∣∣χm6
21
40

∣∣2
,

Za2 = ∣∣χm6
0
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1 ⊕ b-condensed boundary with three relevant operators:
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1 ⊕ a1-condensed boundary with one relevant operator:
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1-condensed boundary with one relevant operator:
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1 ⊕ a2-condensed boundary with three relevant operators:
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1 ⊕ b-condensed boundary with three relevant operators:
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1
40

∣∣2 + 2
∣∣χm6

1
15

∣∣2 + 2
∣∣χm6

21
40

∣∣2 + 2
∣∣χm6

7
5

∣∣2
,

Zb1 = 0,

Zb2 = 0,

Zc = 0,

Zc1 = 0. (E25)

1 ⊕ a2-condensed boundary with four relevant operators:

Z1 = ∣∣χm7
0

∣∣2 + ∣∣χm7
1
7

∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
12
7

∣∣2 + ∣∣χm7
22
7

∣∣2

+ ∣∣χm7
5

∣∣2 + ∣∣χm7
4
3

∣∣2 + ∣∣χm7
10
21

∣∣2 + ∣∣χm7
1

21

∣∣2
,

Za1 = ∣∣χm7
3
8

∣∣2 + ∣∣χm7
1
56

∣∣2 + ∣∣χm7
5
56

∣∣2 + ∣∣χm7
33
56

∣∣2 + ∣∣χm7
85
56

∣∣2

+ ∣∣χm7
23
8

∣∣2
,

Za2 = ∣∣χm7
0

∣∣2 + ∣∣χm7
1
7

∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
12
7

∣∣2 + ∣∣χm7
22
7

∣∣2

+ ∣∣χm7
5

∣∣2 + ∣∣χm7
3
8

∣∣2 + ∣∣χm7
1

56

∣∣2 + ∣∣χm7
5

56

∣∣2 + ∣∣χm7
33
56

∣∣2

+ ∣∣χm7
85
56

∣∣2 + ∣∣χm7
23
8

∣∣2 + ∣∣χm7
4
3

∣∣2 + ∣∣χm7
10
21

∣∣2 + ∣∣χm7
1
21

∣∣2
,

Zb = 0,

Zb1 = 0,

Zb2 = 0,

Zc = χm7
0 χ̄m7

5 + χm7
1
7

χ̄m7
22
7

+ χm7
5
7

χ̄m7
12
7

+ χm7
12
7

χ̄m7
5
7

+ χm7
22
7

χ̄m7
1
7

+ χm7
5 χ̄m7

0 + ∣∣χm7
4
3

∣∣2 + ∣∣χm7
10
21

∣∣2 + ∣∣χm7
1
21

∣∣2
,

Zc1 = χm7
3
8

χ̄m7
23
8

+ χm7
1
56

χ̄m7
85
56

+ χm7
5

56
χ̄m7

33
56

+ χm7
33
56

χ̄m7
5

56

+ χm7
85
56

χ̄m7
1

56
+ χm7

23
8

χ̄m7
3
8

. (E26)

1 ⊕ b-condensed boundary with four relevant operators:

Z1 = ∣∣χm7
0

∣∣2 + ∣∣χm7
1
7

∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
12
7

∣∣2 + ∣∣χm7
22
7

∣∣2

+ ∣∣χm7
5

∣∣2 + ∣∣χm7
4
3

∣∣2 + ∣∣χm7
10
21

∣∣2 + ∣∣χm7
1
21

∣∣2
,

Za1 = ∣∣χm7
3
8

∣∣2 + ∣∣χm7
1
56

∣∣2 + ∣∣χm7
5

56

∣∣2 + ∣∣χm7
33
56

∣∣2 + ∣∣χm7
85
56

∣∣2

+ ∣∣χm7
23
8

∣∣2
,

Za2 = 0,

Zb = ∣∣χm7
0

∣∣2 + ∣∣χm7
1
7

∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
12
7

∣∣2 + ∣∣χm7
22
7

∣∣2

+ ∣∣χm7
5

∣∣2 + ∣∣χm7
3
8

∣∣2 + ∣∣χm7
1

56

∣∣2 + ∣∣χm7
5
56

∣∣2 + ∣∣χm7
33
56

∣∣2

+ ∣∣χm7
85
56

∣∣2 + ∣∣χm7
23
8

∣∣2 + ∣∣χm7
4
3

∣∣2 + ∣∣χm7
10
21

∣∣2 + ∣∣χm7
1
21

∣∣2
,

Zb1 = 0,

Zb2 = 0,

Zc = χm7
0 χ̄m7

5 + χm7
1
7

χ̄m7
22
7

+ χm7
5
7

χ̄m7
12
7

+ χm7
12
7

χ̄m7
5
7

+ χm7
22
7

χ̄m7
1
7

+ χm7
5 χ̄m7

0 + ∣∣χm7
4
3

∣∣2 + ∣∣χm7
10
21

∣∣2 + ∣∣χm7
1
21

∣∣2
,

Zc1 = χm7
3
8

χ̄m7
23
8

+ χm7
1
56

χ̄m7
85
56

+ χm7
5

56
χ̄m7

33
56

+ χm7
33
56

χ̄m7
5

56

+ χm7
85
56

χ̄m7
1

56
+ χm7

23
8

χ̄m7
3
8

, (E27)

Z1 = ∣∣χm7
0

∣∣2 + χm7
0 χ̄m7

5 + ∣∣χm7
1
7

∣∣2 + χm7
1
7

χ̄m7
22
7

+ ∣∣χm7
5
7

∣∣2

+ χm7
5
7

χ̄m7
12
7

+ χm7
12
7

χ̄m7
5
7

+ ∣∣χm7
12
7

∣∣2 + χm7
22
7

χ̄m7
1
7

+ ∣∣χm7
22
7

∣∣2 + χm7
5 χ̄m7

0 + ∣∣χm7
5

∣∣2 + 2
∣∣χm7

4
3

∣∣2

+ 2
∣∣χm7

10
21

∣∣2 + 2
∣∣χm7

1
21

∣∣2
,

Za1 = ∣∣χm7
0

∣∣2 + χm7
0 χ̄m7

5 + ∣∣χm7
1
7

∣∣2 + χm7
1
7

χ̄m7
22
7

+ ∣∣χm7
5
7

∣∣2

+ χm7
5
7

χ̄m7
12
7

+ χm7
12
7

χ̄m7
5
7

+ ∣∣χm7
12
7

∣∣2 + χm7
22
7

χ̄m7
1
7

+ ∣∣χm7
22
7

∣∣2 + χm7
5 χ̄m7

0 + ∣∣χm7
5

∣∣2 + 2
∣∣χm7

4
3

∣∣2

+ 2
∣∣χm7

10
21

∣∣2 + 2
∣∣χm7

1
21

∣∣2
,

Za2 = 0,

Zb = 2
∣∣χm7

0

∣∣2 + 2χm7
0 χ̄m7

5 + 2
∣∣χm7

1
7

∣∣2 + 2χm7
1
7

χ̄m7
22
7

+ 2
∣∣χm7

5
7

∣∣2
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+ 2χm7
5
7

χ̄m7
12
7

+ 2χm7
12
7

χ̄m7
5
7

+ 2
∣∣χm7
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7

∣∣2 + 2χm7
22
7

χ̄m7
1
7

+ 2
∣∣χm7

22
7

∣∣2 + 2χm7
5 χ̄m7

0 + 2
∣∣χm7
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∣∣2 + 4
∣∣χm7

4
3

∣∣2

+ 4
∣∣χm7

10
21

∣∣2 + 4
∣∣χm7

1
21

∣∣2
,

Zb1 = 0,

Zb2 = 0,

Zc = 0,

Zc1 = 0. (E28)

1 ⊕ a1-condensed boundary with two relevant operators:

Z1 = ∣∣χm7
0

∣∣2 + χm7
0 χ̄m7

5 + ∣∣χm7
1
7

∣∣2 + χm7
1
7

χ̄m7
22
7

+ ∣∣χm7
5
7

∣∣2

+ χm7
5
7

χ̄m7
12
7

+ χm7
12
7

χ̄m7
5
7

+ ∣∣χm7
12
7

∣∣2 + χm7
22
7

χ̄m7
1
7

+ ∣∣χm7
22
7

∣∣2 + χm7
5 χ̄m7

0 + ∣∣χm7
5

∣∣2
,

Za1 = ∣∣χm7
0

∣∣2 + χm7
0 χ̄m7

5 + ∣∣χm7
1
7

∣∣2 + χm7
1
7

χ̄m7
22
7

+ ∣∣χm7
5
7

∣∣2

+ χm7
5
7

χ̄m7
12
7

+ χm7
12
7

χ̄m7
5
7

+ ∣∣χm7
12
7

∣∣2 + χm7
22
7

χ̄m7
1
7

+ ∣∣χm7
22
7

∣∣2 + χm7
5 χ̄m7

0 + ∣∣χm7
5

∣∣2
,

Za2 = 2
∣∣χm7

4
3

∣∣2 + 2
∣∣χm7

10
21

∣∣2 + 2
∣∣χm7

1
21

∣∣2
,

Zb = 2
∣∣χm7

4
3

∣∣2 + 2
∣∣χm7

10
21

∣∣2 + 2
∣∣χm7

1
21

∣∣2
,

Zb1 = 2χm7
4
3

χ̄m7
0 + 2χm7

4
3

χ̄m7
5 + 2χm7

10
21

χ̄m7
1
7

+ 2χm7
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21

χ̄m7
22
7

+ 2χm7
1
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χ̄m7
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+ 2χm7
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χ̄m7
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Zb2 = 2χm7
0 χ̄m7
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+ 2χm7
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χ̄m7
1
21

+ 2χm7
12
7

χ̄m7
1
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+ 2χm7
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7

χ̄m7
10
21

+ 2χm7
5 χ̄m7

4
3

,

Zc = 0,

Zc1 = 0. (E29)

1-condensed boundary with two relevant operators:

Z1 = ∣∣χm7
0

∣∣2 + ∣∣χm7
1
7

∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
12
7

∣∣2 + ∣∣χm7
22
7

∣∣2

+ ∣∣χm7
5

∣∣2
,

Za1 = χm7
0 χ̄m7

5 + χm7
1
7

χ̄m7
22
7

+ χm7
5
7

χ̄m7
12
7

+ χm7
12
7

χ̄m7
5
7

+ χm7
22
7

χ̄m7
1
7

+ χm7
5 χ̄m7

0 ,

Za2 = ∣∣χm7
4
3

∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
1
21

∣∣2
,

Zb = ∣∣χm7
4
3

∣∣2 + ∣∣χm7
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21

∣∣2 + ∣∣χm7
1
21

∣∣2
,

Zb1 = χm7
4
3

χ̄m7
0 + χm7

4
3

χ̄m7
5 + χm7
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χ̄m7
1
7

+ χm7
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χ̄m7
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+ χm7
1
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χ̄m7

5
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+ χm7
1
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χ̄m7
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7

,

Zb2 = χm7
0 χ̄m7

4
3

+ χm7
1
7

χ̄m7
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+ χm7
5
7

χ̄m7
1
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+ χm7
12
7

χ̄m7
1
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+ χm7
22
7

χ̄m7
10
21

+ χm7
5 χ̄m7

4
3

,

Zc = ∣∣χm7
3
8

∣∣2 + ∣∣χm7
1
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∣∣2 + ∣∣χm7
5
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∣∣2 + ∣∣χm7
33
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∣∣2 + ∣∣χm7
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∣∣2

+ ∣∣χm7
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∣∣2
,

Zc1 = χm7
3
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+ χm7
1
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+ χm7
5
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χ̄m7
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+ χm7
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χ̄m7
5
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+ χm7
85
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χ̄m7
1
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+ χm7
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8

χ̄m7
3
8

, (E30)

Z1 = ∣∣χm7
0

∣∣2 + ∣∣χm7
1
7

∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
12
7

∣∣2 + ∣∣χm7
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7

∣∣2

+ ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
1

56

∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
33
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∣∣2

+ ∣∣χm7
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∣∣2 + ∣∣χm7
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8

∣∣2 + ∣∣χm7
4
3

∣∣2 + ∣∣χm7
10
21

∣∣2 + ∣∣χm7
1
21

∣∣2
,

Za1 = 0,

Za2 = ∣∣χm7
0

∣∣2 + ∣∣χm7
1
7

∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
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7

∣∣2 + ∣∣χm7
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7

∣∣2

+ ∣∣χm7
5

∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
1
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∣∣2 + ∣∣χm7
5
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∣∣2 + ∣∣χm7
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+ ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
1
21

∣∣2
,

Zb = 0,

Zb1 = 0,

Zb2 = 0,

Zc = ∣∣χm7
0

∣∣2 + ∣∣χm7
1
7

∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
12
7

∣∣2 + ∣∣χm7
22
7

∣∣2

+ ∣∣χm7
5

∣∣2 + ∣∣χm7
3
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
5
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∣∣2 + ∣∣χm7
33
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∣∣2

+ ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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3

∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
1
21

∣∣2
,

Zc1 = 0. (E31)

1 ⊕ a2-condensed boundary with four relevant operators:

Z1 = ∣∣χm7
0

∣∣2 + ∣∣χm7
1
7

∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
12
7

∣∣2 + ∣∣χm7
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7

∣∣2

+ ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
1
21

∣∣2
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Za1 = χm7
0 χ̄m7

5 + χm7
1
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χ̄m7
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7

+ χm7
5
7

χ̄m7
12
7

+ χm7
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7

χ̄m7
5
7

+ χm7
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7

χ̄m7
1
7

+ χm7
5 χ̄m7

0 + ∣∣χm7
4
3

∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2
,

Za2 = ∣∣χm7
0

∣∣2 + χm7
0 χ̄m7

5 + ∣∣χm7
1
7

∣∣2 + χm7
1
7

χ̄m7
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7

+ ∣∣χm7
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7

∣∣2

+ χm7
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7

+ χm7
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7
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7
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7

∣∣2 + χm7
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∣∣2 + 2
∣∣χm7
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∣∣2 + 2
∣∣χm7
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,
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Zb1 = 0,
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Zc = ∣∣χm7
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, (E32)
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Z1 = ∣∣χm7
0

∣∣2 + ∣∣χm7
1
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∣∣2 + ∣∣χm7
5
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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7
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+ ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
1
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∣∣2
,

Za1 = 0,

Za2 = 0,

Zb = ∣∣χm7
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∣∣2 + ∣∣χm7
1
7

∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
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7

∣∣2 + ∣∣χm7
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7
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+ ∣∣χm7
5

∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
1
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∣∣2 + ∣∣χm7
5
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∣∣2 + ∣∣χm7
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∣∣2

+ ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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,
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Zc = ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
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∣∣2 + ∣∣χm7
1
21

∣∣2
,

Zc1 = 0. (E33)

1 ⊕ b-condensed boundary with four relevant operators:

Z1 = ∣∣χm7
0

∣∣2 + ∣∣χm7
1
7

∣∣2 + ∣∣χm7
5
7

∣∣2 + ∣∣χm7
12
7

∣∣2 + ∣∣χm7
22
7

∣∣2

+ ∣∣χm7
5

∣∣2 + ∣∣χm7
4
3

∣∣2 + ∣∣χm7
10
21

∣∣2 + ∣∣χm7
1
21

∣∣2
,

Za1 = χm7
0 χ̄m7

5 + χm7
1
7

χ̄m7
22
7

+ χm7
5
7

χ̄m7
12
7

+ χm7
12
7

χ̄m7
5
7

+ χm7
22
7

χ̄m7
1
7

+ χm7
5 χ̄m7
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APPENDIX F: 1 + 1D NONINVERTIBLE SYMMETRY ˜S3:
DUAL SYMMETRY OF S3

In Refs. [42,49], a 1 + 1D model with a noninvertible
symmetry, denoted as S̃3, is constructed. The model has de-
grees of freedom on the links i j, which are labeled by the S3

group elements gi j ∈ S3. The S̃3 symmetry transformation are
generated by

WR = Tr

(∏
i

R(gi,i+1)

)
(F1)

for all irreducible representations R of S3, i.e., R = 1, a1, a2.
Using

WRWR′ = Tr

(∏
i

R(gi,i+1) ⊗ R′(gi,i+1)

)
, (F2)

we find that the symmetry transformations satisfy the follow-
ing algebra:

W1W1 = W1, W1Wa1 = Wa1 , W1Wa2 = Wa2 ,

Wa1W1 = Wa1 , Wa1Wa1 = W1, Wa1Wa2 = Wa2 ,

Wa2W1 = Wa2 , Wa2Wa1 = Wa2 ,

Wa2Wa2 = W1 + Wa1 + Wa2 . (F3)

For example, R = a2 is a two-dimensional irreducible repre-
sentation of S3. a2 ⊗ a2 is a four-dimensional reducible repre-
sentation of S3, which is a direction sum of a one-dimensional
trivial representation 1, a one-dimensional nontrivial repre-
sentation a1, and a two-dimensional irreducible representation
a2: a2 ⊗ a2 = 1 ⊕ a1 ⊕ a2. This leads to the last expression in
the above.

The algebra for the symmetry transformations is not a
group algebra like WRWR′ = WR′′ . The composition of two a2

symmetry transformations Wa2Wa2 = W1 + Wa1 + Wa2 makes
the S̃3 symmetry noninvertible. Such kind of symmetry was
referred to as algebraic symmetry, or fusion category symme-
try, etc.

References [42,49] showed that S̃3 and S3 symmetries are
equivalent symmetries, i.e., they have the same holocat sym-
metry. Reference [33] shows that the symmetries with the
same holocat symmetry have isomorphic algebras of local
symmetric operators, which is the meaning of equivalence.
A holocat symmetry is nothing but an isomorphic class of
algebras of local symmetric operators.

From the holographic point of view, both 1 + 1D S3 and S̃3

symmetry are described by the same 2 + 1D topological order
GauS3 . In other words, systems with S3 symmetry are exactly
locally reproduced by boundaries of GauS3 topological orders,
in the sense that the local symmetric operators for a system
have identical correlations with the local symmetric operators
for the corresponding boundary. Similarly, systems with S̃3

symmetry are also exactly locally reproduced by boundaries
of GauS3 topological orders.

The charges of S3 symmetry correspond to a1 and a2

anyons in GauS3 , while the S3 symmetry transformations cor-
respond to string operators that produce b and c anyons in
GauS3 (at the string ends). Similarly, the charges of S̃3 sym-
metry correspond to b and c anyons in GauS3 , while the S̃3

symmetry transformations correspond to string operators that
produce a1 and a2 anyons in GauS3 .

Certainly, we can also divide the anyons in GauS3 differ-
ently. Call some of them charges of a symmetry and others
as the transformation of the symmetry. This way, we get a
different symmetry or an anomalous symmetry, or even a
symmetry beyond anomaly.

This example demonstrates that the notions of symmetry
and anomaly are not essential notions that reflect the physical
properties of a quantum system. They are notions that depend
on our point of views to look at the system. Different angles
to look at the same system will leads to different points of
view. In contrast, holocat symmetry reflects the essence of
(anomalous) symmetries. It more directly reflects the physical
properties of a quantum system.
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