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Wurtzite/zinc-blende crystal-phase GaAs heterostructures in the tight-binding approximation
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Crystal-phase semiconductor heterostructures allow for electron confinement without uncertainties caused by
chemical intermixing found in material heterostructures and are candidates for next generation optoelectronics
devices ranging from single-photon emitters to high efficiency light-emitting diodes. While there has been a great
deal of experimental work developing fabrication processes for these structures, theoretical calculations have
been limited due to a lack of atomistic models that are able to incorporate the zinc-blende and wurtzite within
the same structure. Here, we present calculations of the electronic energies in GaAs nanowires containing various
thicknesses of zinc-blende and wurtzite layers using a recently developed tight-binding model for wurtzite III-V
semiconductors that is compatible with a zinc-blende model. By comparing results in the flat-band and the
unscreened limits, we explain the sensitivity of experimentally observed band gaps on zinc-blende and wurtzite
well widths. Our calculations suggest that experiments on devices are likely near the flat-band limit under typical
operating conditions.
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I. INTRODUCTION

Polytypic semiconductor heterostructures differ from ma-
terial heterostructures in that the crystal phase is varied
rather than the chemical composition. This allows for high
quality interfaces [1] with low lattice mismatch [2] and
defect densities that make them interesting candidates for
carrier manipulation in next generation quantum devices.
The most widely studied of such structures are III-V semi-
conductor nanowires, in which growth conditions are tuned
to controllably [3] alternate between zinc-blende (ZB) and
wurtzite (WZ) crystal structures [4–6]. Experimental inves-
tigations have demonstrated the ability to fabricate quantum
wells (QW) [7–9] and dots [10–12] in GaAs and InP
nanowires. These devices are being actively investigated for
their use in next generation solar cells, light-emitting diodes,
single-photon emitters [10,11], and high speed quantum
sensors [13,14].

While there has been significant progress in the growth and
characterization of these structures, theoretical investigations
have so far been limited by the difficulty of combining ZB
and WZ crystals in the same calculation. Some work has
been done using single-band effective mass models [3,15] and
eight-band k · p theory [16]. Since the WZ and ZB forms
of binary III-V materials differ only in their atomic posi-
tions, an atomistic model such as empirical tight-binding (TB)
would seem well suited. TB models have been widely used
to model the electronic properties of ZB III-V semiconductor
heterostructures [17–21]. Unfortunately, the most commonly
used TB models for bulk III-V materials are based on first
nearest neighbor Slater-Koster TB, which is known to lack
polytypic transferability [22,23].
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To address this issue, we recently [24] proposed a method
of dealing with the lack of polytypic transferability in
Slater-Koster TB models by extending the semitransferability
treatment for single polytype chemical variations [25–27] to
polytypic variations. The availability of a semitransferable
III-V TB model for WZ III-V’s allows for the treatment of
systems with WZ-ZB crystal phase heterojunctions.

We present calculations of one-dimensional (1D) GaAs
WZ-ZB superlattices, including effects from strain and po-
larization, using a 20-band spds∗ TB model. Effects from
strain-induced piezoelectric polarization, and the spontaneous
polarization in the WZ region, were included. We treat the
resulting electrostatic potential in two limits: the metallic or
flat-band limit, in which the carrier density is sufficiently
large to completely screen the polarization potential, and the
insulating limit in which there are no free carriers, and thus the
polarization potential is entirely unscreened. Our results are
applicable to intermediate radius nanowires and larger, which
typically have diameters d � 100 nm and can be treated ef-
fectively as having 1D axial confinement.

Section II A describes the polytype crystal structures and
the material parameters used in this work. Section II D out-
lines the construction of the TB Hamiltonian with strain and
the inclusion of the polarization potential arising from the
gradient in the polarization potential across the interface.
Section III presents the results, with electronic energies as
functions of WZ and ZB well widths.

II. BACKGROUND AND METHODS

A. Geometry: WZ and ZB stacking

In materials with tetrahedral coordination, rotating layers
of anion-cation dimers by π/3 about specific axes maintains
the global coordination number. This allows materials to take
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TABLE I. GaAs material constants. The ZB lattice parameters
(a, c, u) were calculated using the primitive ZB lattice constant
5.6532 Å [25]. α and β are the Keating VFF bond length and angle
parameters, respectively. The same elastic constants were used in the
WZ and ZB regions. δEv is the WZ valence band maxima relative to
the ZB valence band maxima (δEv = Ewz

9v − Ezb
6v).

Parameter ZB WZ

a (Å) 3.9974 3.9855a

c (Å) 9.7916 6.5590a

u 0.3750 0.3746a

α = α′ (N/m) 41.19b 41.19b

β = β ′ (N/m) 8.95b 8.95b

r0 (Å) 2.4479 2.4435
r′

0 (Å) 2.4479 2.4568
cos θ0 −0.3333 −0.3301
cos θ ′

0 −0.3333 −0.3366
Psp (C/m2) 0 0.0027c

e14 (C/m2) −0.160d

e31 (C/m2) 0.15e

e33 (C/m2) −0.295e

δEv (meV) 125f

aReference [28]; bReference [29]; cReference [30]; dReference [31];
eReference [32]; fReference [33].

on a wide range of configurations, known as polytypes, that
differ only in the sequence of the rotated layers, called A, B,
and C in Ramsdell notation. Hexagonal WZ viewed along the
[0001] axis has AB stacking, while cubic ZB viewed along the
analogous [111] axis has ABC stacking. Since stacking layers
preserve the local tetrahedral symmetry and chemistry regard-
less of the stacking order, these interfaces are exceptionally
well lattice matched (Table I). Here we consider superlattices
constructed from alternating 2D slabs of WZ and ZB GaAs
with varying thicknesses along the ẑ axis (Fig. 1).

Provided each layer shares a common internal lattice
constant, u, the atomic positions for an arbitrary stacking
sequence in our supercell can be expressed simply in terms
of the supercell lattice vectors,

a1 =
{

1

2
,

√
3

2
, 0

}
a, a2 =

{
1

2
,

√
3

2
, 0

}
a, (1)

a3 = {0, 0, c},
and basis vectors,

tA(n) = {0, 0, nc/N}, ta(n) = {0, 0, (2uc + nc)/N},

tB(n) =
{

0,
a√
3
, nc/N

}
, tb(n) =

{
0,

a√
3
, (2u + n)c/N

}
,

tC (n) =
{

0,
2a√

3
, nc/N

}
, tc(n) =

{
0,

2a√
3
, (2u + n)c/N

}
,

(2)

where a, c, and u are lattice parameters, n indexes the layer
depth starting from n = 0, N counts the total number of layers
in the structure, and c = Na√

12u−3
. The upper and lower case

FIG. 1. Polytype heterostructure SL unit cell, containing two WZ
unit cells and one (nonprimitive) ZB-[111] unit cell. By consider-
ing the crystal environment out to second-nearest neighbors, atoms
can be unambiguously categorized as either WZ or ZB. First- and
second-nearest neighbors of a C-layer atom are identified as ZB,
whereas atoms further away are WZ. The red lines represent the
NN bonds that are averaged at the interface between WZ and ZB
segments.

subscripts on the basis vectors are used to differentiate the
two atoms belonging to a particular Ramsdell layer (i.e., “A”
and “a” are in the “A” layer). While a common u value is used
to facilitate defining the initial structure, the atoms are free
to move during the relaxation step as outlined in Sec. II B.
Note that each layer contains two atoms, denoted here using
an upper- and a lowercase letter (e.g., “A” and “a” belong to
the same n). The lattice constants for bulk WZ and ZB GaAs
are listed in Table I.

B. Strain

While small, the lattice mismatch present at the WZ-ZB
interface results in a biaxial strain and a nonzero piezoelectric
polarization. In order to determine the strain profile for each
of the structures investigated, it is first necessary to determine
the relaxed atomic positions for each atom in the superlattice.
This was accomplished using a generalized valence force
field (VFF) model that allows for different equilibrium bond
lengths and angles to account for the nonideal WZ structure
[34]. Since we are concerned with large nanowires we take
the radius to infinity and model the wire as a superlattice.
The system is modeled as a 1D chain of atoms with different
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polytypes along the chain with corresponding bulk crystal
structure in the transverse directions. In a planar superlattice
the in-plane lattice constant conforms to the substrate and
crystal relaxes in the growth direction to minimize the elastic
energy. For our nanowire we take the transverse lattice con-
stant to be the weighted mean of the polytypes.

The relaxed atomic positions are determined by minimiz-
ing the total elastic energy. The contribution to the total elastic
energy from atom i in the superlattice is

Ui = U c.p
i + U z

i ,

U c.p.
i = 3

16r2
0i

3∑
j=1

[
αi

(|ri j |2 − r2
0i

)2

+ 2βi

3∑
k> j

(
ri j · rik − r2

0i cos θ0i
)2

]
,

U z
i = 3

16r′2
0i

[
α′

i

(|ri4|2 − r′2
0i

)2

+ 2β ′
i

3∑
k=1

(ri4 · rik − r0ir
′
0i cos θ ′

0i )
2

]
, (3)

where αi, βi are the bond-distance and bond-angle elastic con-
stants, respectively, and r0i, cos θ0i are the bulk equilibrium
bond lengths and angles (Table I). The prime/unprimed nota-
tion in Eq. (3) is used to distinguish the atom displaced along
the ẑ axis (primed) from the three coplanar atoms that lie in
the plane normal to the ẑ axis (unprimed).

As we consider the polytypic interface to be atomically
sharp, we separate terms into two distinct cases in calculating
the contributions (Ui) to the total elastic energy. In the simple
case where the central atom i and all four nearest neighbors are
located in the same region (i.e., WZ or ZB), the corresponding
values listed in Table I are used. For atoms located at the
polytypic interface where some of the nearest neighbors are
categorized as belonging to a different region than the central
atom, the values for that pair of atoms are taken to be the
average of the WZ and ZB values.

In nanowire heterostructures with comparable volumes of
WZ and ZB, the relaxed lattice constant will be somewhere
between that of the independent bulk phases. We simulate this
effect by taking the shared lateral lattice constant, a⊥, to be
the weighted average of the bulk lattice constants in the two
polytypes,

a⊥ = (awzNwz + azbNzb)/(Nzb + Nwz ). (4)

This is reasonable given that we have assumed above that
WZ and ZB are similarly compressible and are interested in
systems with comparable amounts of WZ and ZB content over
length scales small compared to the nanowire radius.

During relaxation of the atomic positions, we considered
the system to be rigid in the lateral plane but free to expand
along the transverse axis in order to minimize the VFF poten-
tial in Eq. 3. Strain was then calculated for each atom using
a tetrahedral differencing method [35]. We found the strain
components for semi-bulk-like sheets of WZ and ZB to be of

the form

ε⊥ = εxx = εyy,

ε‖ = εzz,

εxy = εyz = εzx = 0, (5)

where ⊥ and ‖ are relative to the growth axis (ẑ). From Table I,
we can see that the smaller lateral lattice constant in WZ
relative to ZB exerts a compressive strain on the ZB region
(or, conversely, ZB exerts a tensile strain on WZ). It is worth
noting that, in finite radius nanowires, Eq. (5) holds only in
the bulk region of the nanowire. In general, the terminating
surface will introduce off-diagonal shear components [36].

C. Polarization

The polarization in a polytypic layer has contributions from
both the spontaneous (Psp) and strain induced piezoelectric
(Ppiezo) polarizations,

Pi = Psp,i + Ppiezo,i. (6)

In cubic materials, Psp is zero by symmetry, although strain
along the conventional [111] axis may induce a piezoelectric
polarization. Hexagonal materials with C6v symmetry contain
a polar axis that supports a nonzero Psp directed along (ẑ)
that is proportional to the deviation from the ideal crystal
(c/a − √

8/3) and ionicity (i.e., difference in electronegativity
between the atomic species).

We include polarization effects using a continuum approx-
imation. The relaxed atomic positions are used to compute a
local strain tensor from which we obtain the polarization in
each polytope. Due to the assumption of a large wire radius,
the polarization is a (different) constant in each polytope and
the polarization is computed using a bulk model. The polar-
ization is used to compute the potential which is then added to
the TB Hamiltonian.

For a general strain tensor, the piezoelectric polarization
for ZB and WZ within the continuum approximation are

PZB
piezo =

⎛
⎜⎜⎝

−2e14(
√

2εxy + εzx )/
√

3√
2e14(−εxx + εyy − √

2εyz )/
√

3

−e14(εxx + εyy − 2εzz )/
√

3

⎞
⎟⎟⎠ (7)

and

PWZ
piezo =

⎛
⎜⎝

2e15εzx

2e15εyz

e31(εxx + εyy) + e33εzz

⎞
⎟⎠, (8)

where εi j are the elements of the strain tensor and
e14, e15, e31, and e33 are the linear piezoelectric coefficients
(Table I). (Note that PZB

piezo has a conventional [111] axis
aligned with the ẑ.)

Using the relations for the strain tensor described in Eq. (5),
Eqs. (7) and (8) simplify to

PZB
piezo =

⎛
⎝ 0

0
−2e14(εZB

⊥ − εZB
‖ )/

√
3

⎞
⎠ (9)

075104-3



JOSEPH SINK AND CRAIG PRYOR PHYSICAL REVIEW B 108, 075104 (2023)

FIG. 2. Schematic of supercell geometry. dSC is the supercell
period along the growth axis; dZB and dWZ are the widths of the ZB
and WZ segments, respectively. The supercell is depicted with half
of the WZ polytype on either side of the ZB polytype to emphasize
electron confinement. Both WZ and ZB are direct gap materials. The
type-II alignment results in the gap shown above, Eg.

and

PWZ
piezo =

⎛
⎝ 0

0
2eWZ

31 εWZ
⊥ + eWZ

33 εWZ
‖

⎞
⎠. (10)

Ignoring surface effects, the polarization is entirely directed
along the growth axis. The polarization at the polytypic
interface is abrupt and is treated as piecewise constant in
calculating the built-in potential. The surface bound charge
(σb) can then be calculated by taking the difference of the net
polarization across the interface

σb = |(PWZ − PZB) · ẑ|. (11)

The bound sheet charge results in a spatially varying poten-
tial, generally referred to as either the built-in or polarization
potential. This additional confinement results in a quantum
confined Stark shift (QCSE), which in type-II heterostructures
(Fig. 2) results in a well width dependent redshift in the PL
spectrum. Increasing the number of free carriers available to
screen the QCSE, such as by increasing the incident excitation
power or current injection, results in a blueshift of the PL
spectrum. The amount of screening present is a complicated
function of the carrier concentration, which itself is generally
an unknown quantity. To simplify this calculation, we con-
sider the fully insulating and fully metallic limiting regimes.
In the insulating limit, where there are no free carriers avail-
able to screen the potential, the bound sheet charges result
in triangular wells that pull apart the hole and electron wave
functions to opposite sides of the heterostructure, increasing
the radiative lifetimes of carriers. As carriers are added to the
system, the bound charges are increasingly screened, resulting
in progressively flatter bands. The metallic limit assumes suf-
ficient carriers are available to fully screen out all polarization
effects.

The electric field at the center (r = 0) of a periodic array
of infinitely wide (R → ∞) charge sheets is

Ez(z) = 1

2ε0εr

{
σb − Pave in WZ,

−σb − Pave in ZB,
(12)

FIG. 3. Calculated Eg as a function of well width compared with
the experimental results from Ref. [7] on single QWs in nanowires
with radius r ∼ 100 nm. To simulate a single quantum well with a
superlattice calculation, the barrier width (ZB or WZ) was fixed to
20 nm, while the well width (WZ or ZB) was varied over a smaller
range (the dot width in the figure). Using a barrier width of 20 nm
gave results that were insensitive to further increases in the barrier
width. Results are shown for both the metallic (solid) and insulating
(dashed) limits. For a WZ dot in a ZB wire (red) the calculated
gaps in the metallic and insulating limits are very close and both
are in good agreement with measurements. For a ZB dot in a WZ
wire (black) only the metallic limit is in good agreement, indicating
that the measurements were done under conditions of high carrier
concentration.

where dZB and dWZ are the widths of the ZB and WZ regions,
and

Pave = σb
(dWZ − dZB)

(dWZ + dZB)
(13)

is the offset required to enforce periodic boundary conditions.
The dielectric constant was taken to be εr = 12.88 in both
regions.

The built-in potential resulting from Eq. (12)
[φ(z) = − ∫ z

0 Ez(z′)dz′] has a simple sawtooth triangular
structure. The functional form of this potential was verified
by solving the Poisson equation for an axisymmetric finite
radius cylindrical nanowire with spatially varying dielectric
constant and polarization in the WZ, ZB, and free space
regions via finite element relaxation on a regularly spaced
grid. It was found that the large dielectric discontinuity
at the air interface efficiently suppresses the fringe field,
producing a potential only weakly dependent on the radius of
the cylinder. We focus on the interior of the nanowire, where
the potential is linear and free from other surface effects. This
is consistent with our modeling the nanowire as having an
infinite radius.

D. Tight binding

We use a 20-band spds∗ semitransferable model for ZB
[25] and WZ [24] GaAs. Far away from the interface, the
unstrained system has either local C6v or Td symmetry and
it is trivial to identify and assign a region as bulk WZ or
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(a) (b)

(c) (d)

FIG. 4. Gap and its sensitivity to variations in layer widths. The upper two graphs show Eg as a function of WZ and ZB widths. (a) Eg as
a function of ZB width for various fixed WZ widths (4 to 40 atoms). (b) Eg as a function of WZ width for various fixed ZB widths (4 to 40
atoms). In both (a) and (b) the bulk WZ and ZB gaps are shown for comparison. The horizontal dashed line labeled Eg is the zero confinement
energy band gap limit, calculated by taking the difference of the unstrained ZB conduction band minima and WZ valence band maxima. The
lower two graphs show the sensitivity of Eg to variations in widths. (c) dEg/dN as a function of ZB width for various fixed WZ widths (4
to 40 atoms). (d) dEg/dN as a function of WZ width for various fixed ZB widths (4 to 40 atoms). Solid curves are for the metallic limit and
dashed lines are for the insulating limit.

ZB. However, the region near the polytypic interface requires
care, as the local symmetry is reduced to C3v and exists in a
hybridized form of WZ and ZB. This leads to ambiguity as
to which set of TB parameters should be used. To resolve this,
we use a scheme of assigning atoms as belonging to either WZ
or ZB based on the symmetry of the crystal environment out
to second-nearest neighbors. Since both the ZB and WZ struc-
ture contain A and B layers, this criteria effectively amounts to
measuring the distance of a given atom from a “C”-layer atom.
In this way, the transition between the WZ and ZB crystal
phase is atomically sharp.

The on-site energies are taken to be the bulk values for their
respective crystal phase without averaging. Likewise, hopping
elements between atomic sites of the same polytype are set
to the bulk values for that polytype. The ambiguous region is
then limited to the interface bonds between WZ and ZB layers.

The semitransferable nature of the TB parameters allows for
the hybridization of the bonds to be treated by taking linear
combinations [tinterface = tWZ(1 − x) + tZBx] of the bulk WZ
and ZB values. We have found that taking the mixing ratio of
WZ and ZB bonds to be equal (x = 0.5) works well without
producing noticeable interface artifacts in the envelope of the
TB wave function.

The valence band offset and the polarization potential,
φ(r), are spatially varying local potentials included as offsets
to the diagonal elements of the Hamiltonian,

Hα,α
i,i = εα

i + φ(ri ) + (δEv )i, (14)

where i is the atomic site index, ri is the position of atom i,
α is the band index, and εα

i is the on-site energy from the TB
model.
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(a) (b)

(c) (d)

FIG. 5. Difference in Eg between metallic and insulating limits as a function of superlattice structure and the sensitivity of the difference
to variations in layer widths. The upper two graphs show 
Eg = Emetallic

g − E insulating
g as a function of WZ and ZB widths. (a) 
Eg as a function

of ZB width for various fixed WZ widths (4 to 40 atoms). (b) 
Eg as a function of WZ width for various fixed ZB widths (4 to 40 atoms). The
lower two graphs show the sensitivity of 
Eg to variations in widths. (c) d
Eg/dN as a function of ZB width for various fixed WZ widths
(4 to 40 atoms). (d) d
Eg/dN as a function of WZ width for various fixed ZB widths (4 to 40 atoms). Solid curves are for the metallic limit
and dashed lines are for the insulating limit.

The effect of strain is included by using a power law
scaling of the two-center integrals with respect to bond dis-
tance change. This method has been shown to reproduce
the deformation potentials in ZB-GaAs [25]. Experimental
data for the deformation potentials in WZ-GaAs are unavail-
able for comparison. However, the LDA calculations [37]
give similar pressure coefficients for WZ and ZB in III-N
materials.

Note that extending this approach to smaller radii
nanowires would be straightforward using a 3D model. The
strain relaxation would involve minimization of the strain en-
ergy using the conjugate gradient algorithm and the electronic
Hamiltonian would be larger, though sparse. The calculation
of the strain at each atom, and thus the polarization, would
proceed in the same manner as in our 1D calculation, but
using relaxed atomic positions from a 3D VFF calculation.
Calculation of the piezoelectric potential would require solv-
ing Poisson’s equation over the 3D nanowire structure.

III. RESULTS AND DISCUSSION

We present direct band gap energies for a series of ZB
(dZB) and WZ (dWZ) widths in Figs. 3 and 4. In Figs. 4
and 5, the results are split into two categories: constant dWZ

with varying dZB and constant dZB with varying dWZ. These
calculations were done with (insulating limit) and without
(metallic limit) a superimposed polarization potential in order
to estimate the magnitude of the expected blueshift due to
increased screening from free carriers. These calculations can
be used to explain observed trends in PL spectra, as well
as aid in predicting the sensitivity of the electronic states to
fluctuations in carrier density and variations in WZ and ZB
widths. While high sensitivity to structural variations is likely
detrimental in many cases, sensitivity to carrier density may
be beneficial in quantum sensors.

The main features in Figs. 4 and 5 can be summarized as
follows: (a) a blueshift as screening of the built-in potential is
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increased (i.e., photogenerated carriers, electric gating, etc.),
(b) negligible QCSE for layer widths less than approximately
20 atoms [Figs. 5(a) and 5(b)], and (c) redshift [Figs. 4(c) and
4(d)] with increasing dZB or dWZ due to decreased confine-
ment of electrons and holes.

The small blueshift with increasing dWZ in Fig. 4(b) (solid
line, metallic limit) observed after the knee at dWZ ≈ 20 atoms
is caused by a decrease in strain in the WZ region from
increasing WZ content [Eq. (4)] relative to the fixed ZB con-
tent. This effect is present over the whole range of structures
presented, but becomes apparent only at sufficiently small
confinement energies. In the insulating limit with large dWZ

and dZB, the QCSE from the polarization potential is able to
drive the gap below the bulk value.

In the flat-band/metallic limit the energy gap vs well width
(Fig. 3) is in good agreement with experimental results [7,38].
Concerning the NW-QW structures investigated by Vaino-
rius et al. [7], the high sensitivity of the confined electron
state in the ZB region to the polarization potential allows
us to infer that the ZB QWs were operating very close to
the fully screened metallic limit. Due to the large valence
band mass associated with the confined hole state, the WZ-
QWs show very little variation in QCSE over the range of

width experimentally investigated. Additionally, we find the
QCSE shift is in qualitative agreement with analogous III-N
structures [36,39–41] and with experimental data for GaAs
polytypic heterostructures [7,38,42,43]. All show increasing
redshifts with increasing well widths, a stronger dependence
on hole confinement width (WZ region), and a blueshift with
increased screening.

IV. CONCLUSION

We have used a 20-band spds∗ TB model to calculate the
band gaps for WZ bulk Zb GaAs axial polytypic heterostruc-
ture including the effects of strain and polarization. These
calculations allow us to predict PL energies as well as iden-
tify structural regimes that are likely to show heightened or
reduced sensitivity to sample variations in either confinement
thickness or fluctuations in carrier density. This information
can be used to build devices that are robust with respect to the
addition/subtraction of a layer of atoms or sensitive devices
that are easily modulated by external gating, current injec-
tion, or photogeneration, which is a desirable characteristic in
sensors.
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