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Generation of spin-triplet Cooper pairs via a canted antiferromagnet
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Spinful triplet Cooper pairs can be generated from their singlet counterparts available in a conventional
superconductor (S) using two or more noncollinear magnetic moments, typically contributed by different
magnets in a multilayered heterostructure. Here, we theoretically demonstrate that a S interfaced with a canted
antiferromagnet (AFM) harbors spinful triplet Cooper pairs capitalizing on the intrinsic noncollinearity between
the two AFM sublattice magnetizations. As the AFM canting can be controlled by an applied field, our paper
proposes a simple bilayer structure that admits controllable generation of spin-triplet Cooper pairs. Employing
the Bogoliubov–de Gennes framework, we delineate the spatial dependence of the spin-triplet correlations. We
further evaluate the superconducting critical temperature as a function of the AFM canting, which provides one
experimental observable associated with the emergence of these triplet correlations.
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I. INTRODUCTION

The dissipationless flow of charge in superconductors is
partly responsible for their central role in various emerging
quantum technologies [1,2]. The widely available conven-
tional superconductors, such as Al and Nb, are made of
spin-singlet Cooper pairs, which harbor no net spin [3]. A
superconductor hosting spin-triplet Cooper pairs can sup-
port dissipationless spin currents [4–8], deemed valuable for
switching magnetic memories [9–13], as well as exotic ex-
citations, such as Majorana bound states [14,15]. Such an
unconventional superconductor can be engineered from its
conventional counterpart employing heterostructures incorpo-
rating magnetic multilayers [5–8,16]. The basic requirement
for achieving spinful triplets from spin singlets is exposing the
latter to two or more noncollinear spin-splitting fields. A wide
variety of multilayered hybrids comprising conventional su-
perconductors (S) and ferromagnets (FMs) has been employed
to achieve the desired spinful triplets [17–33], coming a long
way from the initial critical temperature studies [34,35].

Since a Néel-ordered antiferromagnet (AFM) bears no net
spin or magnetic moment, for some time it was considered
inert at causing spin splitting in an adjacent S. Indeed, early
experiments found a metallic AFM to behave just like a
normal metal when considering its effect on an adjacent S
[36]. More recent experiments, on the other hand, found the
AFM to substantially affect the adjacent S with intriguing de-
pendencies [37–42]. From the theory perspective, Josephson
junctions [43,44] and interfaces [45,46] involving itinerant
AFMs were shown to exhibit nontrivial properties due to
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quasiparticle reflections. Moreover, a recent work demon-
strated that an uncompensated interface of an insulating AFM
with an adjacent S induces a strong spin-splitting as well as
spin-flip scattering thereby strongly influencing the S [47].
Subsequent work found even the fully compensated interface
between the AFM and S to be spin active [48]. This has been
understood to be due to the AFM inducing Néel triplets whose
pairing amplitude has an alternating sign in space similar to
the AFM spin [49]. Altogether, the potential usefulness of
AFMs [50] in engineering unique superconducting effects and
devices, such as a filter [51], is starting to be understood.

Pekar and Rashba [52] recognized long ago that even
though the net spin vanishes in an AFM, at the lattice con-
stant length scale, the AFM harbors a spin or magnetization
profile that rapidly varies in space changing its sign from one
lattice site to the next, which should manifest itself in physical
observables. As a result, the AFM with its two sublattice mag-
netizations antiparallel to each other generates zero-spin Néel
triplets [49]. Proceeding further along this line of thought, a
homogeneous canted AFM with its sublattice magnetizations
deviating from an antiparallel alignment effectively harbors a
noncollinear spin texture capable of generating spinful triplet
Cooper pairs in an adjacent S. This exciting possibility is theo-
retically examined in the present paper. Furthermore, a recent
experiment [53] demonstrated generation and use of spinful
triplet correlations employing the intrinsically noncollinear
ground state of a kagome AFM.

Here, employing the Bogoliubov–de Gennes (BdG) frame-
work [54], we theoretically investigate a bilayer structure
consisting of an insulating AFM exchange coupled via a com-
pensated interface to an adjacent S. We examine the critical
temperature and spin-triplet correlations in the S as a function
of the canting in the AFM, which allows us to continuously
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tune the AFM from its collinear antiparallel state to it effec-
tively becoming a FM. We find that Néel triplets are generated
in the S both from the interband pairing channel considered
recently [49] and from the conventional intraband pairing.
The former channel is dominant at half filling, in which case
states from two different electronic bands are energetically
close to the chemical potential and can participate in forming
these unconventional Néel triplet Cooper pairs [49]. This can
be compared with pairing at finite energies in other multi-
sublattice systems [55]. The conventional intraband pairing
channel dominates away from half filling when only states
within the same electronic band are energetically close to each
other and the chemical potential. We find that the intraband
pairing channel results in Néel triplet formation due to an
imprinting of the Néel character by the AFM on the normal
state electronic wave functions in the S. Although this channel
of Néel triplet generation is found to be much weaker than
the interband pairing channel, it admits qualitatively unique
effects. We show that it is only in the intraband pairing channel
that spinful Néel triplets are generated due to the intrinsic
noncollinearity of a canted AFM. The S critical temperature
variation as a function of the AFM canting angle is found to
be consistent with the intraband Néel triplets being weaker
than their interband counterparts, and may offer a convenient
experimental signature of this interplay.

The paper is organized as follows. Section II introduces
the model and BdG framework employed in our analysis. The
dependence of spin-triplet correlations on space and AFM
canting is discussed in Sec. III, while the variation of su-
perconducting critical temperature is discussed in Sec. IV.
Until this point, we consider a one-dimensional model that al-
lows a simple and semianalytic understanding of the essential
physics. In Sec. V, we employ a two-dimensional (2D) model
for the S to validate our prior results and further examine the
spatial dependence of the s-wave and p-wave triplet correla-
tions. We conclude with discussion and summary of the key
points in Sec. VI. The Appendixes provide details of the BdG
framework, analytic evaluation of the normal state electronic
properties in the bilayer, a discussion of the decay length of
the spin-triplet correlations inside the S, critical temperature
results for the 2D system, triplet correlations for a different
configuration of the AFM sublattice magnetizations, and the
parameters employed in our numerical routines.

II. AFM/S BILAYER MODEL

We consider a bilayer structure comprising an insulating
AFM exchange coupled via a compensated interface to the S
layer, as depicted schematically in Fig. 1(a). We anticipate that
all three kinds of spin-triplet correlations will be generated
in the S when the AFM sublattice magnetizations are canted
[Fig. 1(a)]. We employ the Bogoliubov–de Gennes method
and numerically evaluate the superconducting properties self-
consistently [54]. The canted-AFM is taken to be an ideal
insulator with a large band gap. Consequently, the Hamilto-
nian is formulated only for the itinerant electrons in S, as they
never enter the insulating AFM. The AFM’s influence on the
S is accounted for by incorporating a spatially dependent spin
splitting caused by the AFM spins [47,56,57]. Furthermore,
with the aim of allowing a semianalytic understanding to the

FIG. 1. (a) Schematic depiction of the system and key physics
under investigation. Equal-spin and zero-spin triplet correlations
are generated in a conventional s-wave spin-singlet superconductor
when it is interfaced with a canted antiferromagnet (canted AFM).
This results from the intrinsic noncollinearity between the two AFM
sublattice magnetizations. (b) Schematic depiction of our model
investigated using the Bogoliubov–de Gennes method. The black
circles represent lattice sites of the superconductor hosting itinerant
electrons and Cooper pairs. Blue (red) circles represent A (B) sublat-
tice sites of the electrically insulating canted-AFM. The blue and red
arrows denote the local AFM magnetic moments. The canting angle
θt allows us to vary the magnet from being a collinear AFM (θt = 0)
to a ferromagnet (θt = π/2).

essential physics, we consider a one-dimensional model as
depicted schematically in Fig. 1(b). The resulting Hamiltonian
is given by

H = −μ
∑
j,σ

c†
j,σ c j,σ − t

∑
〈i, j〉

∑
σ

c†
i,σ c j,σ − J

2

∑
j

�Mj · �S j

+
∑

j

( |� j |2
U

+ �∗
j c j,↓c j,↑ + � jc

†
j,↑c†

j,↓

)
, (1)

where c†
j,σ (c j,σ ) is the creation (annihilation) operator of

an electron with spin σ at site j of the S layer, with j =
1, 2, . . . , N as the site index. Here, the spin quantization axis
is taken along the z axis. We further consider periodic bound-
ary conditions by allowing electrons to hop between sites
j = 1 and j = N .

In Eq. (1), μ is the chemical potential. Within our theoret-
ical method, it is determined via the filling factor f , which
is the fraction of filled electronic states in the system. For
f = 0.5 (half-filled band), we obtain μ = 0. This corresponds
to the Fermi wave-vector kF = π/2a located at the AFM Bril-
louin zone boundary (BZB), where a is the lattice constant.
The normal state electronic dispersion and properties for the
case of an AFM in its collinear antiparallel state have been
discussed in Appendix A. For f �= 0.5, μ is nonzero and the
Fermi level is away from the AFM BZB. In the following
analysis, we will consider the two qualitatively distinct cases
of f = 0.5 and f �= 0.5, corresponding to μ = 0 and μ �= 0.
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The second term in Eq. (1) is the kinetic energy term,
describing hopping between nearest-neighboring sites 〈i, j〉
with t > 0 as the hopping parameter.

The third term in the Hamiltonian [Eq. (1)] accounts for
the spin splitting due to the localized magnetic moments
in the canted-AFM [6,47,58,59]. J �Mj/2 is the local spin-
splitting field which causes an energy shift of spin-up and
spin-down electrons by ∓J/2, with respect to the local spin-
quantization axis along �Mj . The strength of this spin splitting,
and thus the value of J in our model, depends on the S
thickness and several other parameters [47]. It can thus be
tuned in a broad range via appropriate thin film fabrica-
tion [47] as per the experimental requirements. Here, �Mj =
[(−1) j+1 cos θt x̂ + sin θt ŷ] is the unit vector along the di-
rection of local magnetic moment at the jth canted-AFM
site. The AFM sublattice magnetizations are taken to be in
the x-y plane to examine the spin-triplet correlation with the
quantization axis (z) perpendicular to this plane. A differ-
ent magnetic configuration has also been investigated and
discussed in the Appendixes. �S j = [(c†

j,↑c j,↑ − c†
j,↓c j,↓)ẑ +

(c†
j,↑c j,↓ + c†

j,↓c j,↑)x̂ + (−ic†
j,↑c j,↓ + ic†

j,↓c j,↑)ŷ] is the spin
operator of an electron at site j of the S.

The last term in Eq. (1) accounts for the conventional
s-wave spin-singlet superconducting correlations. It is ob-
tained by mean-field approximation of the pairing interaction
−U

∑
j n j,↑n j,↓, where U > 0 is the attractive pairing po-

tential and n j,σ = c†
j,σ c j,σ is the number operator [54].

� j = −U 〈c j,↓c j,↑〉 is the resulting superconducting order
parameter.

The total Hamiltonian Eq. (1) is numerically diagonalized
and the superconducting state is determined self-consistently
as detailed in Appendix B. The exact parameters employed in
our numerical routines have been specified in Appendix E.

III. TRIPLET CORRELATIONS

In this section, we quantify and investigate the different
spin-triplet correlations in the S. Consider the anomalous Mat-
subara Green’s function Fj j,σσ ′ (τ ) = −〈Tτ c j,σ (τ )c j,σ ′ (0)〉,
where τ = it̃ is the imaginary time with t̃ as the time [60,61].
Further, Tτ is the ordering operator for imaginary time τ . In
the Fourier space, we obtain

Fj j,σσ ′ (iωl ) =
∫ β

0
eiωl τ Fj j,σσ ′ (τ ) dτ, (2)

where β = h̄/kBT , kB is the Boltzmann constant, T is the
temperature, and ωl = (2l + 1)π/β are the fermionic Mat-
subara frequencies with integer l . See Appendix B for further
calculation details. Since the spin-triplet correlations are odd
in frequency [5], we take a sum over all positive Matsubara
frequencies to define an appropriate dimensionless quantity
that would allow us to quantify the correlations:

Fj,σσ ′ = 1

β

∑
ωl >0

Fj j,σσ ′ (iωl ). (3)

Employing this notation, we express the relevant supercon-
ducting correlations

F s
j = 1

2
(Fj,↓↑ − Fj,↑↓), (4)

Ft,z
j = −1

2
(Fj,↓↑ + Fj,↑↓), (5)

Ft,x
j = 1

2
(Fj,↑↑ − Fj,↓↓), (6)

Ft,y
j = i

2
(Fj,↑↑ + Fj,↓↓). (7)

F s is the spin-singlet correlation. Ft,z, Ft,x, and Ft,y are the
zero-spin triplet correlations when spin is measured along
the z, x, and y axes, respectively. Together, the latter three
[Eqs. (5)–(7)] allow us to express all three kinds of the spin-
triplet correlations with z quantization axis. We evaluate the
quantities defined in Eqs. (4)–(7) to investigate the different
superconducting correlations in our system.

A. Numerical results

In an isolated conventional S, only F s is nonzero while
Ft,x, Ft,y, and Ft,z are zero. Now, if we consider a FM/S
bilayer, then the propagating electronic wave functions in the
normal state of the S film acquire a spin-dependent phase as-
sociated with their spin-dependent energies resulting from the
spin-splitting induced by the FM [62]. The result is a relative
phase difference between the opposite spin electrons as they
propagate. In the superconducting state of the S layer, this
causes the zero-spin triplet correlation with spin-quantization
axis along the FM magnetization to become nonzero [5,62].
For example, if the magnetization of the FM is along the
z axis, then Ft,z becomes nonzero while Ft,x and Ft,y re-
main zero. Similarly, Ft,x and Ft,y become nonzero when
magnetization of the ferromagnet is along the x and y axes,
respectively.

Quasiclassical theory [60,61] shows that the triplet vector
�Ft
j = Ft,x

j x̂ + Ft,y
j ŷ + Ft,z

j ẑ always has a component aligning

with the local exchange field J �Mj/2 whether the magnetiza-
tion of the ferromagnet in a FM/S bilayer is homogeneous
or inhomogeneous [4,63]. We, therefore, study these correla-
tions to decompose the contribution of antiferromagnetic and
ferromagnetic components of the canted-AFM.

For θt = 0 (Fig. 1), our considered AFM becomes a
collinear antiferromagnet with the axis of magnetic moments
along the x direction. As we increase the value of θt by a small
amount, the canted-AFM acquires a net magnetization along
the y direction. So the canted-AFM can be decomposed into
an AFM component (along the x axis) and a FM component
(along the y axis). For a collinear AFM, we obtain Néel
triplets. This means the component of �Ft

j parallel to the axis
of the Néel vector modulates with the Néel order of the AFM
[49]. For θt = π/2, we effectively obtain a FM/S structure
with the FM magnetization along the y axis.

We now investigate the case of θt = π/4 that produces
maximum noncollinearity between the two AFM sublattice
magnetization. In Fig. 2, triplet correlations for a canted-
AFM/S bilayer have been plotted as a function of space for
filling factor f = 0.6. We see that Ft,z, the component of �Ft

perpendicular to the canted-AFM sublattice magnetizations
plane, is also being generated along with the in-plane com-
ponents Ft,x and Ft,y. It oscillates from a constant positive
to negative value with Néel order. This oscillation can be
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FIG. 2. Spatial variation of the normalized triplet correlations for ten lattice sites considering maximal noncollinearity corresponding to the
canting angle θt = π/4 and filling factor f = 0.6 (μ/�0 ≈ 37, where 2�0 is the zero-temperature superconducting gap without the adjacent
AFM). We plot the real part of the zero-spin triplet correlation Ft,z

j (a), and the imaginary parts of the spin-triplet correlations Ft,x
j (b), and Ft,y

j

(c). The imaginary part of the former and the real parts of the latter two are zero. All the correlations are normalized by the spatially averaged
magnitude of the singlet correlation |F s|. The detailed parameters employed for the numerical evaluation are specified in Appendix E.

understood in terms of the noncollinearity that generates Ft,z.
From one lattice site to the next, the angle between the spin
splitting at the site and its direct neighbors is changing signs.
However, Ft,z only appears for nonzero μ and is zero at half
filling ( f = 0.5) where μ = 0. Ft,x too oscillates between a
constant positive and negative value with Néel order, while
Ft,y is constant in space. Both Ft,x and Ft,y are imaginary,
consistent with previous theoretical results for FM/S bilayers
[62,63]. The AFM sublattice magnetization configuration has
been chosen here to obtain and focus on the nonzero and
spatially constant sum of the equal-spin triplets F↑↑ and F↓↓.
In Appendix F, we present the correlations for a configuration
when the AFM Néel order is aligned with the z axis [49]. To
conclude this discussion, the intrinsic noncollinearity of the
canted AFM successfully generates all three components of
the spin-triplet correlations. The generation of spinful triplet
Cooper pairs has conventionally been accomplished via the
noncollinearity between the magnetizations of different FM
layers [33].

We now examine the dependence of these spin triplets on
the canting angle. To this end, we plot the average magnitudes
of the three spin-triplet correlations versus the canting angle θt

in Fig. 3. As we change θt from 0 to π/2, the system changes
from a collinear AFM (along x axis) to a collinear F (along
y axis). As discussed above, Ft,z is found to vanish identi-
cally at μ = 0 ( f = 0.5) for all canting angles. This will be
explained further below. However, for nonzero μ (away from
the half-filling case), it increases from 0 to a finite value as we
go from a collinear AFM alignment to maximal noncollinear-
ity between the sublattice magnetic moments, and decreases
back to zero in the ferromagnetic alignment [Fig. 3(a)]. This
component thus results directly due to the AFM sublattice
magnetization noncollinearity.

The spatially averaged value of |Ft,x| decreases as θt goes
from 0 to π/2 [Fig. 3(b)]. This component, therefore, essen-
tially follows the Néel vector magnitude and appears to stem
directly from the antiferromagnetism [49]. It has been under-
stood as being due to the interband pairing, which is feasible
when μ is smaller or comparable to the superconducting gap.
However, we also find such Néel triplets to be present for

μ ≈ 37�0 ( f = 0.6), although they are significantly weaker
than for the case of μ = 0 [Fig. 3(b)]. We attribute this obser-
vation to a modification of the normal state electronic wave
functions by the AFM, so even the conventional intraband
pairing causes a finite generation of the Néel triplets. Finally,
the average value of |Ft,y| increases with the canting angle
and appears to be caused primarily by the net magnetization.

B. Insights from simplified analytics

To understand the difference between μ = 0 and
μ �= 0 cases, we examine the electronic properties of a
bilayer comprising a normal metal and an AFM, as detailed in
Appendix A. For μ = 0, the Fermi wave vector is kF = π/2a.
This means that the electrons participating in the formation
of Cooper pairs have |k| ∼ π/2a. The eigenfunctions with
|k| ∼ π/2a are such that the probability of finding an electron
is nonzero on one sublattice while it is zero on the other
sublattice. Now, the electrons near the Fermi level of the
S which interact with sublattice A do not see sublattice
B and vice versa. Therefore, the triplet correlations are
generated independently by sublattices A and B. The resultant
correlations we obtain are a sum of correlations generated by
the two sublattices. So, the only nonzero components are Ft,x

and Ft,y. This separation of the two sublattices at a special
value of the electronic chemical potential is reminiscent of a
similar result obtained for spin pumping via AFMs [64–67].

In contrast, for μ �= 0, the Fermi level is within one of
the bands and the wave functions of the states near the Fermi
energy are such that the electrons on a site of the A sublattice
also have a nonzero probability at the sites of the B sublattice.
There is no way for the electrons to arrange themselves to
decouple the two sublattices [66,67]. The electrons experience
a spin-splitting field in one direction at site 1 (of sublattice A)
and in another direction at site 2 (of sublattice B), then again
the first orientation at site 3 (of sublattice A). So, the electrons
see the noncollinearity between the magnetic moments on the
adjacent lattice sites. Therefore, the correlation Ft,z along the
direction perpendicular to the plane of magnetic moments of
the canted-AFM becomes nonzero along with the in-plane
components Ft,x and Ft,y when μ �= 0. At the same time,
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FIG. 3. Variation of triplet correlations with canting angle θt for filling factors f = 0.5 (μ = 0) and f = 0.6 (μ/�0 ≈ 37), where �0

represents the zero-temperature value of the superconducting order parameter in absence of the canted-AFM layer. (a) The average magnitude
of the normalized spin-triplet correlation Ft,z is maximum when the noncollinearity between the two sublattices is maximum, i.e., at θt = π/4.
However, it is zero at half filling ( f = 0.5). (b) Average magnitude of the normalized spin-triplet correlation Ft,x = [F↑↑ − F↓↓]/2 decreases
as the effective antiferromagnetism becomes weaker with increasing θt . (c) The average magnitude of the normalized spin-triplet correlation
Ft,y = [i(F↑↑ + F↓↓)]/2 increases as the effective ferromagnetism becomes stronger with increasing θt . The averages are taken over all sites
and are denoted via an overhead bar. The detailed parameters employed for the numerical evaluation are specified in Appendix E.

the electronic amplitudes at the two sublattices are different
due to the adjacent AFM, as detailed in Appendix A. This
lends the normal electronic states a weak Néel character which
manifests itself in the emergence of Néel triplets even for the
conventional intraband pairing.

IV. CRITICAL TEMPERATURE

The formation of spin-triplet Cooper pairs comes at the
cost of destroying their spin-singlet counterparts that are orig-
inally produced in and stabilize the superconducting state
[59,68,69]. Hence, the critical temperature is reduced with
the formation of spin-triplets, which may offer a conve-
nient experimental signature. Thus, we investigate the critical
temperature of our AFM/S bilayer now via numerical self-
consistent solution of the BdG Eq. (1).

Critical temperature Tc versus canting angle θt is plotted in
Fig. 4 for (a) f = 0.5 (μ = 0) and (b) f = 0.6 (μ ≈ 37�0).
We find that for μ = 0, Tc increases with θt while it manifests
the opposite dependence for μ �= 0. These intriguing and dis-

tinct dependencies can be understood based on our analysis of
spin-triplets generation above.

Let us first consider the f = 0.5, corresponding to the
μ = 0 case presented in Fig. 4(a). In this case, a strong gener-
ation of spin-zero Néel triplets [Fig. 3(b)] due to interband
pairing leads to maximal Tc suppression at θt = 0. Hence,
the Tc increases with θt since the Tc suppression is stronger
for the collinear AFM case (θt = 0) than for the FM case
(θt = π/2). Further, when the exchange field is large enough,
we find a complete suppression of superconductivity at θt = 0
corresponding to a vanishing Tc. The abrupt change in Tc

with θt here is attributed to the additional contribution to
superconductivity suppression by the opening of a normal
dispersion band gap by the AFM, as described in Appendix A.
This normal-state band gap predominantly affects the super-
conducting pairing at half filling when μ = 0.

For the case of f = 0.6, the Néel spin triplet generation
by the antiferromagnetic order is much weaker (Fig. 3). On
the other hand, the ordinary spin-triplet generation by a FM
remain of the same order of magnitude as for f = 0.5. Thus,

FIG. 4. (a) Normalized critical temperature Tc versus canting angle θt for filling factor (a) f = 0.5 and (b) f = 0.6 considering different
values of the spin-splitting J . Here, Tc0 and 2�0 are, respectively, the critical temperature and the zero-temperature superconducting gap of the
same superconductor without the AFM layer. The detailed parameters employed for the numerical evaluation are specified in Appendix E.
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(a) (b) (c)

FIG. 5. Spatial variation of the spin-triplet correlations for a 2D superconductor. The sites are indexed as ( jx, jy ). The sites with index
( jx, 1) form the layer adjacent to the AFM. A small section of size 14 × 14 of a superconducting sheet of size 102 × 14 has been plotted
here for clarity. The real part of the normalized zero-spin triplet correlation Ft,z

j (a), and the imaginary parts of the normalized spin-triplet
correlations Ft,x

j (b), and Ft,y
j (c) have been plotted as color maps. The imaginary part of the former and real parts of the latter two are zero.

We consider maximal noncollinearity (θt = π/4) and filling fraction f = 0.6 (μ = 18.5|�0|). Here, |�0| is the average magnitude of the
superconducting order parameter in absence of the canted-AFM layer and all the correlations are normalized with respect to the magnitude of
the singlet correlation |F s

j |. The detailed parameters employed for the numerical evaluation are specified in Appendix E.

Tc is largest for θt = 0 and decreases with θt . The amplitude
of spin triplets generated due to the noncollinearity [Fig. 3(a)]
remains small and does not seem to affect the Tc dependence
substantially. Contrary to the μ = 0 case, the variation of Tc

with θt is smooth even for large values of the exchange field J .

V. CORRELATIONS IN 2D

In our discussion above, we have considered a one-
dimensional (1D) S with the aim of examining essential
physics employing analytic results discussed in Appendix A.
We now validate these results using a two-dimensional (2D)
model for the S. This further allows us to examine how the
spin-triplet correlations vary with space as we move away
from the S/AFM interface.

In Fig. 1(b), the superconducting lattice is along the x axis.
We add more such 1D layers in the y direction to create our
2D model for the S. Each site of this 2D sheet is indexed as
( jx, jy) so jx takes a value between 1 to Nx, and jy takes a
value between 1 to Ny, where Nx and Ny are the number of
sites along x and y directions, respectively. The spin-splitting
effect is experienced only by the electrons at the sites next to
the AFM/S interface. Thus, it suffices to treat the AFM via the
same 1D model as before. Overall, the Hamiltonian of Eq. (1)
is modified by letting all site indices j take the form ( jx, jy).
Summation in the spin-splitting term is now over the sites with
indices of the form ( jx, 1). We continue to consider periodic
boundary condition along the x axis, like in the 1D case.

Carrying out the BdG diagonalization self-consistently and
numerically, we evaluate the spatially resolved spin-triplet
correlations [Eqs. (4)–(7)] for this system and plot them in
Fig. 5. We have the same observations in the first layer (along
the AFM/S interface) of the 2D sheet as the 1D case discussed
in Sec. III. Additional calculations not presented here confirm
that Ft,z appears only when μ is nonzero. We observe that
Ft,x and Ft,z show modulation between positive and negative
values along the y axis apart from along the x axis. This is in-
teresting because the system has nothing imposing Néel order

along the y axis on the correlations. In addition, we find some
layers in which the alternating pattern of positive and negative
values is skipped. This is attributed to Friedel-like oscillations
[49,54]. We found that these skipping of patterns only appears
for nonzero μ while we get a perfect alternating pattern along
the y axis for μ = 0 case. Although these Néel triplet cor-
relations flip signs at the length scale of a lattice constant,
their magnitude decays at the coherence length scale (shown
in Appendix C). The correlation component Ft,y [Fig. 5(c)] is
constant in each layer along the interface (along the x axis)
but decays as we move away from the interface along the y
direction. So, the 2D case is consistent with and corroborates
our 1D results, resulting in a similar trend in Tc suppression
(Appendix D). We find that the spatial pattern (oscillating
with Néel order or being constant in space) imposed on su-
perconducting correlations along the interfacial direction also
manifests itself perpendicular to the AFM/S interface.

In the 2D case, where the AFM/S interface breaks trans-
lational symmetry along the y axis, even-frequency py-wave
spin-triplet correlations are created, in addition to the odd-
frequency s-wave ones [13,15]. These are quantified as [70]

Pt,z
j = 1

8
[〈c j,↓c j+ŷ,↑〉 + 〈c j,↑c j+ŷ,↓〉

− 〈c j,↓c j−ŷ,↑〉 − 〈c j,↑c j−ŷ,↓〉], (8)

Pt,x
j = 1

8
[−〈c j,↑c j+ŷ,↑〉 + 〈c j,↓c j+ŷ,↓〉

+ 〈c j,↑c j−ŷ,↑〉 − 〈c j,↓c j−ŷ,↓〉], (9)

Pt,y
j = i

8
[−〈c j,↑c j+ŷ,↑〉 − 〈c j,↓c j+ŷ,↓〉

+ 〈c j,↑c j−ŷ,↑〉 + 〈c j,↓c j−ŷ,↓〉], (10)

where the site index j ± ŷ ≡ ( jx, jy ± 1) are the nearest
neighbors of site j along the y axis, and Pt,α

j represent the
zero-spin py-wave triplet correlation when the spin is mea-
sured along the α axis (α = x, y, z).
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(a) (b) (c)

FIG. 6. Spatial variation of the py-wave triplet correlations in a 2D superconductor. The sites are indexed as ( jx, jy ). The sites with index
( jx, 1) form the layer adjacent to the AFM. A small section of size 12 × 12 of a superconducting sheet of size 202 × 14 has been plotted here
for clarity. The imaginary part of the normalized zero-spin py-wave triplet correlation Pt,z

j (a) and the real parts of the normalized py-wave
spin-triplet correlations Pt,x

j (b) and Pt,y
j (c) have been plotted here. The real part of the former and the imaginary parts of the latter two are zero.

We consider maximal noncollinearity (θt = π/4) and filling factor f = 0.6. All the correlations are normalized with respect to the magnitude
of the s-wave singlet correlation |F s

j |. The detailed parameters employed for the numerical evaluation are specified in Appendix E.

While the s-wave spin-triplets in Figs. 5(a)–5(b) nearly
follow a checkerboard pattern, Pt,z and Pt,x tend to form
stripes along the y direction [Figs. 6(a) and 6(b)] [71]. Unlike
the on-site s-wave pairing, the py-wave pairing cannot take
advantage of the complete decoupling of the two sublattices
at half filling as they are defined on the link between sites in
the A and B sublattices. For Pt,x, this can be seen by realiz-
ing that 〈c j,σ c j+ŷ,σ 〉 = −〈c( j+ŷ),σ c( j+ŷ)−ŷ,σ 〉. Thus, if the link
in the positive y direction from site j gives a positive con-
tribution to Pt,x, then the link in the negative y direction
from site j + ŷ also gives a positive contribution, as can
be seen by insertion into Eq. (9). Thus, a link from the A
sublattice to the B sublattice and a link from the B sub-
lattice to the A sublattice give a contribution to Pt,x of the
same sign. At half filling, the sign of Pt,x is thus dictated
by the sign of the spin splitting induced at the lattice site
closest to the interface. Away from half filling, where the
two sublattices are no longer perfectly decoupled, the perfect
stripe pattern can be shifted along the x direction as can
be seen for Pt,z in Fig. 6(a). The ferromagnetic component
Pt,y

j in Fig. 6(c) remains positive inside the whole S, similar
to the s-wave triplets in Fig. 5(c). Although we here ob-
serve qualitatively different behaviors in the nearest-neighbor
(p-wave) pairing compared to the on-site (s-wave) one, we
must note that the antiferromagnetic component and the com-
ponent resulting from canting are both one order of magnitude
larger for the latter. Thus, the AFM’s influence on the critical
temperature and other key superconducting properties is dom-
inated by the odd-frequency s-wave Néel triplets generated in
the S.

VI. CONCLUDING REMARKS

We have theoretically demonstrated the generation of
all, including the spinful, spin-triplet Cooper pairs in a
conventional S by an adjacent canted AFM. Our proposal
leverages the intrinsic noncollinearity between the two sub-
lattice magnetizations in a canted AFM for applications in
superconducting hybrids. This canting can be induced in-
trinsically by Dzyaloshinskii-Moriya interaction, such as in

hematite [72]. Additionally, it can be induced and controlled
using an applied magnetic field [73]. The resulting spin
triplets have a predominantly Néel character, i.e., their ampli-
tude oscillates in space on the lattice length scale similar to the
Néel spin order. While we have considered a lattice matched
interface for concreteness and simplicity, the essential physics
remains the same even in the presence of disorder with a grad-
ual suppression of the Néel triplets with increasing disorder
[49]. Furthermore, a metallic AFM would lead to similar phe-
nomena as discussed here, with the additional complication of
Cooper pairs leaking into the AFM. The superconducting crit-
ical temperature is more strongly suppressed by the interband
Néel spin triplets than by a ferromagnetic spin-splitting field
of similar magnitude, thereby offering an experimental signa-
ture of their generation. Altogether, our analysis highlights the
noncollinear nature of homogeneous canted antiferromagnets
by employing them for generating spin-triplet Cooper pairs in
a simple superconducting bilayer. This manner of generating
noncollinearity using a homogeneous AFM is expected to
find use in other phenomena that have traditionally relied on
magnetic multilayers or spin textures.
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APPENDIX A: NORMAL METAL INTERFACED
WITH AN ANTIFERROMAGNET

To understand when interband and intraband pairing is
favored, we consider the normal-state wave functions of an
AFM/normal metal bilayer. The Hamiltonian for the conduct-
ing electrons of a normal metal interfaced with an insulating
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AFM is modeled as [74]

H = −μ
∑
j,σ

c†
j,σ c j,σ − t

∑
〈i, j〉

∑
σ

c†
i,σ c j,σ − J

2

∑
j

�Mj · �S j,

(A1)

where �Mj = (−1) j+1ẑ gives the magnetic texture of a
collinear AFM. Other symbols have the same meaning as in
Sec. II of the main text.

To calculate the eigenenergies and eigenvectors, the Hamil-
tonian is written in terms of creation and annihilation
operators for electrons at sublattices A and B. Creation op-
erators for electrons at sublattices A and B are defined as
a†

j,σ = c†
2 j−1,σ , and b†

j,σ = c†
2 j,σ , where j = 1, 2, . . . , N/2.

Then, the basis is changed from Wannier wave functions to
Bloch wave functions using the relations

a†
j,σ =

∑
k∈FBZ

1√
N/2

e−ik(2 j−2)aa†
k,σ

and

b†
j,σ =

∑
k∈FBZ

1√
N/2

e−ik(2 j−1)ab†
k,σ

,

(A2)

where a is the lattice constant and k is a reciprocal lattice
vector in the FBZ. Now, the Hamiltonian can be written in
the form

H =
∑

k

(a†
k,↑ a†

k,↓ b†
k,↑ b†

k,↓)

× H (k)(ak,↑ ak,↓ bk,↑ bk,↓)T , (A3)

giving the dispersion relation

E±(k) = −μ ±
√

4t2 cos2(ka) + (J/2)2, (A4)

where the two energy bands E±(k) are two-fold degenerate.
The eigenvectors for energy band E−(k) are

ψ1(k) = N2

⎛
⎜⎜⎜⎜⎜⎝

2t cos(ka)

0

−J/2 +
√

4t2 cos2(ka) + (J/2)2

0

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

u(1)
Ak↑

u(1)
Ak↓

u(1)
Bk↑

u(1)
Bk↓

⎞
⎟⎟⎟⎟⎟⎠

(A5)
and

ψ2(k) = N1

⎛
⎜⎜⎜⎜⎜⎝

0

2t cos(ka)

0

J/2 +
√

4t2 cos2(ka) + (J/2)2

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

u(2)
Ak↑

u(2)
Ak↓

u(2)
Bk↑

u(2)
Bk↓

⎞
⎟⎟⎟⎟⎟⎠

,

(A6)

whereas the eigenvectors for the energy band E+(k) are

ψ3(k) = N1

⎛
⎜⎜⎜⎜⎜⎝

2t cos(ka)

0

−J/2 −
√

4t2 cos2(ka) + (J/2)2

0

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

u(3)
Ak↑

u(3)
Ak↓

u(3)
Bk↑

u(3)
Bk↓

⎞
⎟⎟⎟⎟⎟⎠

(A7)

FIG. 7. Nonzero components of eigenfunction ψ1 [Eq. (A5)] of
a normal metal/AFM bilayer for different strengths of magnetic
exchange interaction as a function of positive k values in the first
Brillouin zone.

and

ψ4(k) = N2

⎛
⎜⎜⎜⎜⎜⎝

0

2t cos(ka)

0

J/2 −
√

4t2 cos2(ka) + (J/2)2

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

u(4)
Ak↑

u(4)
Ak↓

u(4)
Bk↑

u(4)
Bk↓

⎞
⎟⎟⎟⎟⎟⎠

.

(A8)

Here, N1 and N2 are the normalization factors of the eigen-
vectors. ψ1 and ψ3 correspond to the wave functions of spin ↑
electrons, whereas ψ2 and ψ4 correspond to spin ↓ electrons.
Figure 7 shows a plot of the nonzero components of ψ1 for
positive k values. Let us compare the case of J = 0 and J �= 0
to study how the states of a metal are modified when it is
brought in contact with an AFM.

From Fig. 7, we see that the probabilities of finding a spin
↑ electron at sites of sublattice A and B are equal for J = 0.
However, for J �= 0, the probability on the A sublattice is more
than that on the B sublattice. It is important to note that the
probability of finding spin ↑ electrons at sublattice A sites
becomes 1 and that for sublattice B becomes 0 at k = π/2a.
Similar asymmetries in the sublattices arise for states ψ2, ψ3,
and ψ4 as soon as we make J nonzero. For ψ2, the probability
of finding a spin ↓ electron at sublattice site B becomes more
than that for sublattice A. For the states of E+(k) band (ψ3

and ψ4), the roles of sublattices A and B are interchanged with
respect to spin.

Near the BZB of band E−(k) (i.e., ψ1 and ψ2), all the spin
↑ electrons get localized to the sites of sublattice A and all the
spin ↓ electrons get localized to the sites of sublattice B. For
the band E+(k), sublattices A and B interchange their roles
and we find that spin ↑ electrons get localized at sublattice
B and spin ↓ electrons get localized at sublattice A near the
BZB. This property of the electronic states near the BZB is
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the reason why interband pairing is the dominant mechanism
for the formation of on-site opposite-spin Cooper pairs in an
AFM/S bilayer when the Fermi level lies within the antifer-
romagnetic band gap E+ − E−. On the other hand, intraband
pairing is the dominant mechanism when the Fermi level lies
within one of the two bands.

APPENDIX B: BOGOLIUBOV-DE GENNES CALCULATION

The Hamiltonian in Eq. (1) can be written as

H = −μN +
∑

j

|� j |2
U

+ 1

2

∑
i, j

�
†
i H̃i, j� j, (B1)

where �
†
j = (c†

j,↑ c†
j,↓ c j,↑ c j,↓) and N is the total number

of sites. The matrix H̃ is diagonalized by solving the BdG
equations ∑

j

H̃i, jφ j,n = Enφi,n, where (B2)

φi,n = (ui,n,↑ ui,n,↓ vi,n,↑ vi,n,↓)T , (B3)

is the eigenvector and En the eigenenergies of H̃ . Now the
Hamiltonian can be written as

H = −μN +
∑

j

|� j |2
U

− 1

2

∑̃
n

En +
∑̃

n

†
nEnn, (B4)

where
∑̃

n represents sum over positive eigenenergies and
n’s are Bogoliubov fermionic operators related to the
old fermionic operators by c j,σ = ∑̃

n(u j,n,σ n + v∗
j,n,σ †

n ).
The superconducting order parameter is calculated self-
consistently using the relation

� j = −U
∑̃

n

[u j,n,↓v∗
j,n,↑[1− fFD(En)] + v∗

j,n,↓u j,n,↑ fFD(En)],

(B5)

where fFD(En) = 〈†
nn〉 = 1/(eEn/kBT + 1) is the Fermi-

Dirac distribution.
To calculate the spin-triplet correlations, we consider

the anomalous Matsubara Green’s function Fj j,σσ ′ (τ ) =
−〈Tτ c j,σ (τ )c j,σ ′ (0)〉, where τ = it̃ is the imaginary time, t̃
is the time, and Tτ is the ordering operator for τ . Taking its
Fourier transform, we get

Fj j,σσ ′ (iωl ) =
∫ β

0
eiωl τ Fj j,σσ ′ (τ ) dτ

=
∑̃

n

[
u j,n,σ v∗

j,n,σ ′

iωl − En/h̄
+ v∗

j,n,σ u j,n,σ ′

iωl + En/h̄

]
, (B6)

where β = h̄/kBT , kB is the Boltzmann constant, T is the
temperature, and ωl = (2l + 1)π/β is a Matsubara frequency
for fermions with integer l . This expression is used in calcu-
lating the correlations in Eq. (3) and their relevant components
Eqs. (4)–(7).

APPENDIX C: DECAY OF TRIPLET CORRELATIONS
WITH DISTANCE IN 2-D

In Sec. V, we discussed the spatial variation of triplet corre-
lations in a 2D S interfaced with a canted-AFM and observed

FIG. 8. The average magnitude of the s-wave spin-triplet corre-
lations normalized by the singlet correlation in each jy layer parallel
to the canted-AFM/S interface (|Ft,α/F s| jy , α = x, y) is plotted
with respect to the distance from the interface. We consider half
filling ( f = 0.5) and maximal canting (θt = π/4). The sites with
index jy = 1 form the layer adjacent to the AFM. Ignoring the edge
effects, we show only the first 25 layers of a superconducting sheet
with 102 × 30 sites. The Ft,z component is zero in all the layers.
The detailed parameters employed for the numerical evaluation are
specified in Appendix E.

that the Néel triplet correlations flip sign on adjacent sites to
form a checkerboard pattern. In Fig. 8, we study the decay
of the s-wave spin-triplet correlations with the distance from
the AFM/S interface. We consider half filling ( f = 0.5) to
avoid the influence of Friedel oscillations. We observe that the
magnitude of both the ferromagnetic and antiferromagnetic

FIG. 9. The critical temperature Tc versus canting angle θt is
plotted for a 2D superconductor of size 302 × 3 interfaced with a
canted-AFM at filling factors f = 0.5 and f = 0.6. Tc0 and |�0|
are the critical temperature and the average superconducting order
parameter at zero-temperature, respectively, in the absence of the
magnetic layer. The detailed parameters employed for the numerical
evaluation are specified in Appendix E.
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FIG. 10. Spatial variation of normalized triplet correlations for ten lattice sites considering θt = π/4 and μ/�0 = 37, corresponding to
filling factor f = 0.6. We show the imaginary part of the triplet correlations Ft,z

j (a) and Ft,x
j (b), and the real part of the triplet correlation

Ft,y
j (c). The real part of the two former and the imaginary parts of the latter are zero. All correlations are normalized by the spatially

averaged magnitude of the singlet correlation |F s|. (d) Orientation of the magnetic moments of sublattices A and B of the AFM in the rotated
configuration.

components of the correlations decay exponentially over a
length scale determined by the coherence length. The rapid
oscillations of the Néel order of the canted-AFM over the
atomic length scale thus only affects the sign of the triplet
correlations.

APPENDIX D: CRITICAL TEMPERATURE
OF 2-D S/CANTED-AFM

In Sec. IV, we found that the critical temperature versus
canting angle curves of a 1D S show opposite trends at half
filling ( f = 0.5) and away from half filling ( f = 0.6). In
Fig. 9, we show that Tc behaves similarly for a 2D S. The
change in Tc as we change the canting angle from the collinear
AFM case (θt = 0) to the FM case (θt = π/2), however,
decreases in magnitude. This is because, with an increasing
S thickness, the effective spin-splitting induced by the AFM
decreases.

APPENDIX E: NUMERICAL PARAMETERS

The parameters used for each of the figures are
(1) Figure 2: A 1D S with number of sites N = 302,

hopping parameter t = 10, pair potential U/t = 1, magnetic
exchange interaction strength J = 0.018 t (= 1.09�0), cant-
ing angle θt = π/4, and filling factor f = 0.6 (μ/�0 = 37),
at temperature T = 0.1 Tc = 0.001 t/kB is taken to calculate
s-wave triplet correlations. Here, 2�0 is the zero-temperature
superconducting gap without the adjacent AFM.

(2) Figure 3: A 1D S with N = 302, t = 10, and U/t = 1
at kBT/t = 0.001 is taken for calculating correlations. For
filling factor f = 0.5 (μ/�0 = 0), J = 0.012 t = 1.09�0 is
taken, and for f = 0.6 (μ/�0 = 37), J = 0.018 t = 1.09�0,
is taken. Here, 2�0 represents the superconducting gap in the
absence of the canted-AFM at zero-temperature.

(3) Figure 4: A 1D S with N = 302, t = 10, U/t =
1 is used for the calculation of Tc for filling factors
f = 0.5 (μ/�0 = 0) and f = 0.6 (μ/�0 = 37). The critical

temperature of the isolated S Tc0 for f = 0.6 is 0.0101 t/kB

and for f = 0.5 is 0.0076 t/kB.
(4) Figure 5: A 2D superconducting sheet with Nx = 102,

Ny = 14, t = 10, J = 0.1 t = 4.3 |�0|, θt = π/4, U/t = 1,
and f = 0.6 (μ/|�0| = 18.5) at kBT/t = 0.001 is used to cal-
culate the s-wave triplet correlations. Here, |�0| represents the
average magnitude of the superconducting order parameter in
absence of the canted-AFM layer.

(5) Figure 6: A 2-D S with Nx = 202, Ny = 14, t =
10, J = 0.1 t = 4.3 |�0|, θt = π/4, U/t = 1, and f =
0.6 (μ/|�0| = 18) at kBT/t = 0.001 is used to calculate the
py-wave triplet correlations. Here, |�0| represents the average
magnitude of the superconducting order parameter in absence
of the AFM.

(6) Figure 8: A 2D S with Nx = 102, Ny = 30, t = 10,
J = 0.1 t = 1.7 |�0|, θt = π/4, U/t = 1, and f = 0.5 (μ =
0) at kBT/t = 0.001 is used to calculate the s-wave triplet
correlations, where |�0| represents the average magnitude of
the superconducting order parameter in absence of the AFM.

(7) Figure 9: A 2D S with Nx = 302, Ny = 3, t = 10,
and U/t = 1 is used to plot Tc versus θt . For f = 0.5, J =
0.047 t = 1.34 |�0| = 2.4 Tc0 is taken, and for f = 0.6, J =
0.07 t = 1.35 |�0| = 2.4 Tc0 is taken, where Tc0 and |�0| are
the critical temperature and the average magnitude of the
superconducting order parameter at zero temperature of the
same S without the AFM layer.

APPENDIX F: CANTED-AFM/S WITH ROTATED
MAGNETIC MOMENTS

To compare the results of this paper with Ref. [49], one
needs to rotate the magnetic moments of the Hamiltonian
[Eq. (1)] to �Mj = [(−1) j+1 cos θt ẑ + sin θt x̂] [see Fig. 10(d)].
The correlations for this rotated system is plotted in Fig. 10.
Here, Ft,z is the Néel triplet correlation coming from the
antiferromagnetic component of the canted-AFM, Ft,x comes
from the ferromagnetic component, and Ft,y comes from the
noncollinearity in the canted AFM.
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