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Revised Tolmachev-Morel-Anderson pseudopotential for layered conventional
superconductors with nonlocal Coulomb interaction
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We study the effects of static nonlocal Coulomb interactions in layered conventional superconductors and
show that they generically suppress superconductivity and reduce the critical temperature. Although the nonlocal
Coulomb interaction leads to a significant structure in the superconducting gap function, we find that most
properties can be effectively described by means of an appropriately revised local Coulomb pseudopotential
μ̃∗

C , which is larger than the commonly adopted retarded Tolmachev-Morel-Anderson pseudopotential μ∗
C . To

understand this, we analyze the Bethe-Salpeter equation describing the screening of Coulomb interaction in the
superconducting state and obtain an expression for μ̃∗

C , which is valid in the presence of nonlocal Coulomb
interactions in two dimensions. This analysis also reveals how the structure of the nonlocal Coulomb interaction
weakens the screening effects from high-energy pair fluctuations and therefore yields larger values of the
pseudopotential. Our findings are especially important for layered conventional superconductors with small
Fermi energies and can be readily taken into account within ab initio studies.

DOI: 10.1103/PhysRevB.108.064513

I. INTRODUCTION

Conventional superconductivity in the weak and strong
electron-phonon coupling limit is well described within
Migdal-Eliashberg (ME) theory [1,2], which accurately ap-
proximates superconducting properties around the Fermi
level [3,4]. When both electron-phonon and electron-electron
(Coulomb) interactions are present the corresponding expres-
sions become, however, rather involving [5,6]. Thus, even
for the description of conventional superconductivity approx-
imations are required that take the Coulomb repulsion in
the pairing channel adequately into account. A conventional
scheme to do so was independently introduced by Tolmachev
[7] and by Morel and Anderson [8] yielding the famous
Tolmachev-Morel-Anderson (TMA) local retarded Coulomb
pseudopotential μ∗

C . Using appropriate energy scales, the
TMA expression provides good estimates for μ∗

C which, to-
gether with phonon properties from first principles, yield good
agreement with experimental data for many elemental bulk
superconductors and their alloys [2,9].

Aside from the successful descriptions obtained with the
conventional TMA approach, there are situations in which the
details of the Coulomb interaction and its screening become
important and need to be carefully considered. This includes
the dynamics of the screening, which can lead to plasmonic
contributions to superconductivity [10–18] and the possible
nonlocal character of the electron-electron interaction. The
latter can be crucially important in case of disordered sys-
tems [19,20] or when the screening radius is larger than the
correlation length, i.e., the Cooper pair radius. This defines
the difference between superconducting bulk metals, where
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the screening radius is of the order of the lattice constant
such that the Coulomb interaction can be reasonably well
described by a constant local Hubbard U , and slightly doped
semiconductors, where the screening radius can be very large,
which can become even more problematic in two dimensions
(2D) as the screening properties of three-dimensional (3D)
and 2D electron gases are essentially different [21–23].

For layered superconductors with reduced screening and
hence naturally enhanced nonlocal Coulomb interactions it
is thus a priori not clear whether the conventional local
TMA pseudopotential is still a valid description or if a full
treatment of the nonlocal Coulomb repulsion is required
[24–26]. Nevertheless, the TMA pseudopotential has been
regularly applied to study superconductors in 2D [27–37].
This together with numerous recent experiments on layered
superconductors [38–42] motivates us to study here the effects
of static long-range Coulomb interactions in conventional 2D
superconductivity (dynamical Coulomb effects are discussed
elsewhere see, e.g., Refs. [11], [43] or [12]). To this end we
use the static Thomas-Fermi approximation of the Coulomb
interaction, which coincides with the more accurate random
phase approximation for q < 2kF for both parabolic [21] and
Dirac [22,23] electronic spectra.

We find that a local approximation of the Coulomb in-
teraction is actually still suitable to describe the relevant
superconducting quantities even in the presence of long-range
nonlocal static Coulomb interactions. We show, however, that
the widely adopted TMA μ∗

C strongly overestimates the super-
conducting gap function at the Fermi level and thus the critical
transition temperature. In the case of nonlocal Coulomb in-
teractions, the screening effects resulting from virtual pair
fluctuations at high energies above the Fermi level are strongly
suppressed. This leads to a larger value of the screened
TMA pseudopotential μ̃∗

C , which in turn yields smaller
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superconducting gaps and reduced critical temperatures Tc.
We derive a generalized expression for the evaluation of the
new μ̃∗

C , which takes into account the nonlocality of the static
Coulomb interaction. Our expression elucidates quantitatively
how the inverse screening length � and the chemical potential
control the parameter μ̃∗

C , and thus the critical temperature
Tc. From this analysis it also emerges that the nonlocality
of the Coulomb interaction is crucial for layered SCs with
low carrier density (small Fermi energies) and small effective
masses.

The paper is organized as follows. In Sec. II we introduce
the extended 2D BCS model to account for the nonlocal
Coulomb interaction. In Sec. III we present our main re-
sults obtained from numerical solutions of the extended gap
equation. In Sec. IV we derive the Bethe-Salpeter equation de-
scribing the screening of the Coulomb interaction within the
superconducting state due to virtual pair fluctuations from
full nonlocal and dynamical Eliashberg equations and derive
the generalized expression for μ̃∗

C which we compare to the
numerical data. Section V summarizes our findings and high-
lights in which regime they are most important.

II. MODEL DEFINITIONS AND PROPERTIES

To study the effects of static nonlocal Coulomb interactions
to the superconducting properties of a layered system, we
solve the Hamiltonian

H =
∑
k,σ

ξkc†
kσ ckσ

+
∑
k,k′

[−gkk′ + Vkk′]c†
k↑c†

−k↓c−k′↓ck′↑

(1)

within mean-field BCS theory, where ckσ
(c†

kσ
) denotes the

annihilation (creation) of a an electron with spin σ and mo-
mentum k. ξk = ξk = h̄2k2

2m∗ − μ is a 2D electron gas dispersion
with k = |k|, μ the chemical potential, and m∗ the effective
mass. gkk′ and Vkk′ describe the effective attractive interac-
tion mediated by phonons and the static Coulomb repulsion
between electrons, respectively. For the phonon mediated at-
traction we use the BCS model [4,44]

gkk′ =
{

g for |ξk| < ωD and |ξk′ | < ωD,

0 elsewhere
(2)

which allows for electron paring within the Debye energy ωD

around the Fermi level. To understand the effects of nonlocal
Coulomb repulsion we employ the static Thomas-Fermi (TF)
approximation for the Coulomb interaction kernel Vkk′ ,

Vkk′ = 2πe2

�

1

ε|k − k′| + �
, (3)

where � denotes the normalization area, e the electron charge,
and ε a homogeneous local screening. We allow the TF wave
vector �TF = 4πe2ρ0/� to be a free parameter � as it serves
as a measure for the nonlocality. ρ0 denotes the normal density
of states at the Fermi level.

In order to understand the effects of static nonlocal
Coulomb interaction on the gap function, this nonlocal BCS
description represents a most convenient framework. To
benchmark the accompanying BCS approximations, we fur-
ther show numerically in Appendix C that our findings also

hold for the general dynamical and nonlocal Eliashberg for-
malism.

For the BCS description we obtain after mean-field decou-
pling the gap equation


k = −
∑

k′
[−gkk′ + Vkk′]

tanh (βEk′/2)

2Ek′

k′ , (4)

where Ek =
√

ξ 2
k + 
2

k is the Bogoliubov dispersion relation
and β the inverse temperature. In the presence of the nonlocal
Coulomb interaction there are no analytical solutions known
and we need to solve the gap function numerically. The com-
mon approximation to gain anyway analytical insights into the
problem is by projecting the Coulomb kernel onto the Fermi
surface via a double average of the form [7,8]

μC = 〈〈Vkk′ 〉〉FS = 1

ρ0

∑
k,k′

Vkk′δ(ξk )δ(ξk′ ) =: ρ0U, (5)

where U describes an effective local interaction. We denote
the gap function obtained with this local approximation by

L

k , which can be analytically derived yielding [8,45]


L
k =

{

L

1 for |ξk| < ωD,


L
2 elsewhere

(6)

with


L
1 = ωD

sinh
(

1
λ−μ∗

C

) and 
L
2 = − μ∗

C

λ − μ∗
C


L
1 . (7)

Here λ = ρ0g is the effective electron-phonon coupling
strength and μ∗

C is the retarded Tolmachev-Morel-Anderson
(TMA) pseudopotential defined by

μ∗
C = μC

1 + μC log D
ωD

, (8)

where D is the electron cutoff energy, which is typically
of the order of the electron bandwidth [8,45]. The retarded
pseudopotential μ∗

C is always smaller than the bare μC due
to screening effects from virtual pair fluctuations at energies
between ωD and D. Thus, even for λ − μC < 0 we can have
λ − μ∗

C > 0, i.e., a superconducting solution can exist. This
underlines the importance of screening of the Coulomb repul-
sion by the high-energy degrees of freedom in this problem.

In the following we explore the validity of the local ap-
proximation of the Coulomb repulsion in the presence of a
nonlocal Coulomb kernel and clarify the role of the nonlocal-
ity to the superconducting gap function, critical temperature
Tc, and spectral function.

III. GAP FUNCTION STRUCTURE WITH LOCAL
AND NONLOCAL COULOMB KERNELS

In Fig. 1 we show the gap function 
k = 
k , as obtained
from numerically solving Eq. (4) in polar coordinates (see
Appendix A) with the full nonlocal Coulomb kernel Vkk′

and using h̄2/m∗ = 1 Å2 eV, μ = 0.5 eV, λ = 0.5, ωD =
75 meV, � = 1.5 Å−1, and ε = 10. The cutoff in k space is
set to the Debye wave vector kD = √

4π/a with a = 3 Å.
For comparison we also show the analytical results for the
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FIG. 1. Gap functions 
k and 
L
k obtained by solving the gap

equation at T = 0 using the full nonlocal Coulomb kernel and a
local one utilizing the conventional TMA pseudopotential μ∗

C , re-
spectively. 
̃L

k represents the gap function with a local Coulomb
kernel fitted to reproduce the 
k at kF .

local approximation 
L
k from Eq. (6) using the Fermi-surface-

averaged local Coulomb interaction from Eq. (5) yielding
μ∗

C ≈ 0.135 via Eq. (8). From this comparison we find two
important differences: (1) Similar to 
L

k , 
k also exhibits
a separation into positive (low-energy) and negative (high-
energy) components, but the nonlocality of the Coulomb
repulsion induces a significant structure in the negative part
(especially towards large k away from kF ) as well as a bending
in the positive parts around kF . (2) The conventional local
approximation significantly overestimates the gap functions
at the Fermi level, i.e., 
L

kF
> 
kF

, and also underestimates
the negative parts.

In Fig. 2 we show both gap functions evaluated at the Fermi
level 
L

kF
(T ) and 
kF

(T ) as functions of the temperature
T . The data show that the conventional local approximation
also significantly overestimates the critical temperature Tc of

FIG. 2. Gap functions at kF as function of temperature T . The
temperature axis is normalized to the critical temperature Tc as pre-
dicted with BCS relation using 
kF (0).

FIG. 3. Comparison of SC spectral functions ρ(ω), ρL (ω), and
ρ̃L (ω) resulting from 
k , 
L

k , and 
̃L
k , respectively.

the nonlocal problem in perfect agreement with the full non-
local and dynamical Eliashberg-type treatment discussed in
Appendix C. Furthermore and even more important, we find
that in the full nonlocal case Tc is related to zero-temperature
value of the gap at the Fermi level 
kF (0) by the BCS ratio
Tc = 2
kF (0)

3.35 .
This observation motivates us to fit the gap function 
k of

the nonlocal interaction model with a gap function 
̃L of the
form of Eq. (6), i.e., using a local Coulomb interaction. This
gap 
̃L is constructed by adjusting μ∗

C in Eq. (7) such that

̃L

kF
= 
kF

holds. This yields a significantly enhanced μ̃∗
C ≈

0.157 as compared to μ∗
C ≈ 0.135 calculated from Eq. (8).

The resulting effective local model gap function at T = 0 is
shown in Fig. 1, which yields by definition the same Tc as the
full model. To further investigate the quality of this effective
local model, which disregards all curvature of 
k , we calcu-
late the interacting spectral functions ρ(ω) = ∫

dk δ(ω − Ek )
for all three gap functions (
k , 
L

k , and 
̃L
k ) and show them

in Fig. 3.
We find that the full spectral function ρ(ω) can be accu-

rately approximated by the spectral function ρ̃L(ω) obtained
from the fitted local interaction model. Thus, the curvature
of 
k does not have a major impact to the spectral function,
which has a twofold reason: the bending in 
k within the low-
energy region around kF is rather small and does not affect
strongly the coherence peaks. Second, as soon as |ξ | > ωD the
detailed structure of 
k 
 ωD does not affect the Bogoliubov
dispersion E =

√
ξ 2 + 
2 anymore. The negative component

of 
k thus leaves no significant trace in the spectral function.
This analysis shows that within the BCS framework the

value of the gap function at kF is sufficient for the evaluation
of the relevant SC quantities in layered materials. However,
the data also show that in this generic model the commonly
adopted TMA approach always overestimates the value of the
gap function at the Fermi level and therefore overestimates the
critical temperature Tc as it underestimates μ∗

C . The nonlocal
Coulomb interactions thus reduce the gap function at the
Fermi level.
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FIG. 4. Relative difference between 
L
kF

and 
kF as a function
of inverse screening length �/�TF, and chemical potential μ. Here
the white marker denotes the parameters (�, μ) as used for the data
shown in Figs. 1–3.

This is indeed generic as depicted in Fig. 4 where we
show the relative difference between the full 
kF and the
conventional local TMA approximation 
L

kF
. This deviation

is controlled by the inverse screening length � as well as
by the chemical potential μ. As � decreases, the nonlocality
in the Coulomb interaction becomes stronger and thus we
find larger differences between 
kF and 
L

kF
. Interestingly,

the deviation is also found to increase for smaller chemical

potentials. These trends to 
kF and 
L
kF

and thus Tc and T L
c

are again in perfect agreement with the full nonlocal and dy-
namical Eliashberg-type treatment discussed in Appendix C.
In the next section, the analysis of the Bethe-Salpeter equa-
tion will reveal the physical reasons determining this behavior
and provides an accurate quantitative description.

IV. BETHE-SALPETER EQUATION AND REVISED
TOLMACHEV-MOREL-ANDERSON POTENTIAL

From the previous analysis we understand that a local
Coulomb interaction model can accurately reproduce the gap
function of the full nonlocal Coulomb model at kF , which
controls most relevant SC quantities. The possibility to em-
ploy a local Coulomb kernel is a significant simplification of
the problem, as the gap function at the Fermi level admits
in this case a simple analytical solution (6). We therefore
aim to understand the nature of the parameter μ̃∗

C , which is
responsible for the deviation between 
kF and 
̃L

kF
.

The discrepancy between μ∗
C and the correct value μ̃∗

C is
to be attributed to the role of nonlocality of the Coulomb
interaction in the retardation effects. In order to understand
this, we study the Eliashberg equations in the presence of
dynamic phonon-mediated interaction and static but nonlo-
cal Coulomb repulsion. Hence, in this model the Coulomb
interaction is approximated to be frequency independent. We
closely follow Vonsovsky et al. [4] (see also Pellegrini et al.
[24]) and start from the Eliashberg equation for the anomalous

self-energy φk(ω) = φ
ph
k (ω) + φC

k , which reads as in spectral
representation

φ
ph
k (ω) = −

∑
k′

∫
dz′

∫
dz |gkk′ |2 bkk′ (z)

tanh βz′
2 + coth βz

2

ω + iη − z − z′ Im
φk′ (z′)

[Zk′ (z′)z′]2 − ξ 2
k′ − φ2

k′ (z′)
, (9)

φC
k = −

∑
k′

∫
dz′ Vkk′ tanh

βz′

2
Im

φk′ (z′)
[Zk′ (z′)z′]2 − ξ 2

k′ − φ2
k′ (z′)

, (10)

where gkk′ is the electron-phonon coupling, bkk′ (z) the phonon spectral function, Vkk′ the static nonlocal Coulomb interaction,
and Zk(z) the mass renormalization function. For our discussion we focus on Eq. (10) defining the Coulomb component φC.
Since Zk(z) is resulting from the phonon properties only it becomes Zk(z) = 1 above a cutoff energy ωc where the phonon
component φph furthermore vanishes. This allows us to split the frequency integration domain into a low-energy domain �1 with
|z| < ωc and a high-energy domain �2 with |z| > ωc yielding

φC
k = −

∑
k′

[ ∫
�1

dz′ Vkk′ tanh
βz′

2
Im

φk′ (z′)
[Zk′ (z′)z′]2 − ξ 2

k′ − φ2
k′ (z′)

+
∫

�2

dz′Vkk′ tanh
βz′

2
Im

φC
k′

[z′]2 − ξ 2
k′ −

[
φC

k′
]2

]
.

For every z′ ∈ �2 we have tanh βz′
2 → 1 since ωc  Tc and E2

k = ξ 2
k + [φC

k ]2. This allows us to perform the integral in �2 exactly
yielding

φC
k = −

∑
k′

[ ∫
�1

dz′ Vkk′ tanh
βz′

2
Im

φk′ (z′)
[Zk′ (z′)z′]2 − ξ 2

k′ − φ2
k′ (z′)

+ Vkk′
φC

k′

2|Ek′ | θ (|Ek′ | − ωc)

]
. (11)
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FIG. 5. Schematic representation of the conventional TMA ap-
proach in contrast to our revised approach to evaluate the retarded
potential.

To solve this equation, we utilize an ansatz of the following
form:

φC
k =

∫
�1

dz′ ∑
k′

Wkk′ tanh
βz′

2
Im

φk′ (z′)
[Zk′ (z′)z′]2 − ξ 2

k′ − φ2
k′ (z′)

,

which we plug into Eq. (11). Relabeling the momentum index
we find a self-consistent Bethe-Salpeter equation defining the
screeened Coulomb potential Wkk′ ,

Wkk′ = Vkk′ −
∑
q∈χ̄

Vkq
1

2|ξq|Wqk′, (12)

where Ek ∼ ξk for energies larger than ωc ∼ ωD, and the
domain χ̄ denotes q such that |ξq| > ωD. This BSE describes
the screening of the Coulomb interaction due to fluctuations
of virtual pairs, and can be diagrammatically depicted as

For a local potential Vkk′ = U one obtains the conventional
retarded TMA potential μ∗

C in the form of Eq. (8).
The total φk(iωn) is thus solely determined by an integral

over the low-frequency domain �1, which shows that the
details of the specific dynamic phonon-mediated interaction
are irrelevant in determining the screening of the bare static
nonlocal Coulomb kernel.

From our previous analysis we understand that a single
parameter μ̃∗

C is capable to encode the relevant retardation
effects affecting the energy gap at the Fermi level. To cor-
rectly account for this it is therefore necessary to evaluate the
retarded (nonlocal) potential Wkk′ first, and only subsequently
project it onto the Fermi surface. This procedure is depicted
schematically in Fig. 5. By commuting the conventional order
of operations, which is normally employed to estimate μ∗

C , we
ensure that the nonlocal screening effects due to high-energy
virtual pair fluctuations are evaluated before the potential is
projected onto the Fermi surface.

In 2D and for isotropic dispersion relations ξq = ξq and
isotropic Coulomb kernels Vkk′ = Vkk′ , we can perform this
approach analytically to obtain an explicit expression for μ̃∗

C .
To this end, we introduce the reduced angle-integrated BSE

(at T = 0), with zkk′ = fkk′
U and z∗

kk′ = f ∗
kk′
U , and project onto

the Fermi surface:

z∗
kF kF

= zkF kF − U
∫

χ̄

dq zkF q
1

2|ξq| z∗
qkF

, (13)

where fkk′ and f ∗
kk′ are the angle-integrated versions of Vkk′

and Wkk′ , respectively (see Appendix A). To solve this self-
consistent equation we choose an ansatz of the form z∗

kF q =
αzkF q and obtain

α = 1

1 + μCγ
, (14)

with

γ = 1

ρ0

∫
χ̄

dq
z2

kF q

2|ξq| . (15)

This finally yields the revised retarded potential

μ̃∗
C = μC

1 + μCγ
. (16)

This result is a generalization of the TMA potential μ∗
C , which

now takes into account the effect of nonlocal screening in
the BSE. In the local limit zkF q = 1 (large � and large μ) γ

immediately yields

γ =
∫ D

ωD

dξ
1

|ξ | = log

(
D

ωD

)
, (17)

such that μ̃∗
C correctly reduces to μ∗

C as in Eq. (8). In Fig. 6
we analyze the quality of the revised μ̃∗

C by comparing it with
the optimal μ∗

C , which is obtained by inverting the relation
from Eq. (6) using the numerically obtained 
kF . Addition-
ally, we show the comparison with the conventional TMA
pseudopotential μ∗

C . The qualitative and quantitative agree-
ment between the numerically obtained optimal value and our
revised approximation is very good for all � as well as for
different μ, even for small values of �, where the nonlocality
of the Coulomb interaction is strong.

In order to understand why μ̃∗
C > μ∗

C we need to analyze γ

from Eq. (15) and therefore the function z2
kF k . To this end we

show in Fig. 7 z2
kF k for different values of � and chemical

potential μ. We notice that this function is approximately
constant for the states below the Fermi level and rapidly de-
cays for the states above it. Thus, in the presence of nonlocal
interactions, pair fluctuations involving occupied sates below
the Fermi level contribute to the screening (retardation) as in
the case of a local potential, whereas the effects of screening
from pair fluctuations involving unoccupied states above the
Fermi level are strongly suppressed, as dictated by the decay
of z2

kF k for large momenta k. It is furthermore important to
note that γ not only depends on the inverse screening length
�, but also strongly depends on the chemical potential μ

through z2
kF k . This is different to the conventional case, where

the chemical potential does not control directly the screening
effects. This eventually explains the trends we observed in
Fig. 4, where the discrepancy between μ̃∗

C and μ∗
C increases

for smaller chemical potential.

V. DISCUSSION

Our results show that nonlocal Coulomb interactions can
have a strong effect to superconducting properties by, e.g.,
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FIG. 6. Comparison of the conventional TMA μ∗
C and the revised

μ̃∗
C with numerically obtained optimal μ∗

C as a function of �/�TF

(upper panel) and μ (lower panel).

suppressing Tc. In this context the ab initio study on doped
layered nitrides by Akashi et al. [25] is interesting to note. In
this work, the authors derived the superconducting transition
temperatures in two ways: (a) via the McMillan-Allen-Dynes
(MAD) formula for which they calculate all necessary pa-
rameters from ab initio including the local retarded TMA
Coulomb pseudopotential μ∗

C and (b) directly via density
functional theory for superconductors (SC-DFT) using the full
nonlocal Coulomb interaction. Upon neglecting the Coulomb
repulsion Akashi et al. find these two approaches to be in good
agreement. However, upon taking the Coulomb repulsion into
account they consistently find T SC-DFT

c < T MAD
c . The conven-

tional local retarded Coulomb pseudopotential μ∗
C thus tends

to overestimate the critical temperature or, vice versa, the
nonlocal Coulomb interaction seems to suppress supercon-
ductivity. Similar trends have also been found from solutions
to Eliashberg equations considering the full momentum de-
pendence of the static Coulomb interaction within layered
CaC6 and LiZrNCl [24]. These observations are fully inline
with our findings here. We expect that using our revised μ̃∗

C
within the MAD formula will result in T SC-DFT

c ≈ T MAD
c and

can reproduce the results from Pellegrini et al. [24].

FIG. 7. The function z2(kF , k) for μ = 0.5 eV and different �

(top panel) and for �/�TF = 1.0 and different μ (bottom panel). The
vertical dashed lines denote kF .

In this context experimental data on superconducting
transition metal dichalcogenides (TMDCs) is additionally in-
teresting to note. For MoS2 [46,47] and NbSe2 [48–50] there
is a consistent drop in Tc in their monolayer limits com-
pared to their multilayer compounds. While hybridization and
substrate effects might play a role to describe this behav-
ior [28,51], it might (at least partially) also result from the
enhanced long-range Coulomb interaction in the monolayer
limit, which is suppressed in the multilayer compounds.

VI. CONCLUSION AND OUTLOOK

We analyzed the behavior of conventional two-dimensional
superconductors subject to static nonlocal Coulomb inter-
actions within both an extended nonlocal BCS model for
a numerical benchmark and a more general nonlocal and
dynamical Eliashberg-type framework. We found that the
nonlocal Coulomb interaction leads to modifications to the
superconducting gap function in momentum space, most im-
portantly, in form of a reduced negative amplitude at large
momenta away from the Fermi surface. Upon numerically
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and analytically analyzing the Bethe-Salpeter equation (BSE)
describing the screening of the bare Coulomb repulsion by
pair fluctuations, we understood that high-energy screening
processes are suppressed in the case of nonlocal Coulomb in-
teractions, which effectively enhances the Coulomb repulsion
and thus suppresses superconductivity.

We demonstrate that the widely applied Fermi-surface
averaged Tolmachev-Morel-Anderson local Coulomb pseu-
dopotential μ∗

C overestimates the BSE screening, yielding to
too small Coulomb repulsion and thus too large supercon-
ducting gaps and transition temperatures as soon as nonlocal
Coulomb interactions are present. This finding is in line with
numerical data by Akashi et al. showing that the TMA μ∗

C
overestimates Tc in layered nitrides [25].

Finally, we reanalyzed the BSE in the presence of non-
local Coulomb repulsion and were able to derive a revised
Tolmachev-Morel-Anderson local Coulomb pseudopotential
μ̃∗

C , which takes into account the reduced screening at high
energies. This μ̃∗

C allows to quantitatively approximate the
gap function from the full nonlocal Coulomb kernel at the
Fermi level. The existence of such a refined local pseudopo-
tential is an important finding on its own, as it allows it to be
an effective fitting parameter to reproduce experimental data
even without microscopic knowledge of the Coulomb interac-
tions. Furthermore, in case one has access to the microscopic
Coulomb interaction Vkk′ , our refined μ̃∗

C is relatively easy
to evaluate. Nevertheless, we need to note that the onset of
a finite gap function must not necessarily coincide with the
onset of superconductivity in layered systems. The difference
between Tc and the relevant Berezinsky-Kosterlitz–Thouless
transition temperature for mildly anisotropic layered super-
conductors can be on the order of a few percent [52,53].

As in layered materials environmental screening is in
general reduced, we expect our findings to be most impor-
tant for conventional superconductivity in thin-film metals in
two ways: (1) superconducting properties including transition
temperatures are likely reduced in the thin-film limit due
to strong internal nonlocal Coulomb interactions and weak
external screening; (2) environmental or substrate screening
to thin-film superconductors could be beneficial as it gen-
erally reduces the bare Coulomb repulsion in the thin-film
superconductor and reduces its long-range character. Thus,
environmental screening will effectively decrease the non-
locality of the Coulomb repulsion, which, according to our
findings presented here, should enhance Tc.

Furthermore, our findings show that nonlocal Coulomb
interaction effects are important at reduced Fermi levels. We
thus expect the nonlocal Coulomb interaction to reduce su-
perconducting properties mostly in slightly doped layered
semiconducting systems with small effective masses. This
might be one of the reasons why the critical temperatures in
monolayers of doped MoS2 and WS2 are reduced compared
to their multilayer counterparts.
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APPENDIX A: POLAR COORDINATES REPRESENTATION

The Coulomb interaction in polar coordinates reads as

V (k, k′, θ, θ ′) = 2πe2

�

1

ε
√

k2 + k′2 − 2kk′ cos(θ − θ ′) + �
,

(A1)

which allows us to define the angle-integrated interaction as

fkk′ :=
∫ 2π

0

dθ

2π

∫ 2π

0

dθ ′

2π
V (k, k′, θ, θ ′). (A2)

With φ = θ + θ ′ and φ = θ − θ ′ we can evaluate

fkk′ = 2
∫ 2π

0

dφ′

2π

∫ φ′

0

dφ

2π

2πe2/�

ε
√

k2 + k′2 − 2kk′ cos φ + �

(A3)

=
∫ 2π

0

dφ

2π

2πe2/�

ε
√

k2 + k′2 − 2kk′ cos φ + �
.

(A4)

The gap equation at T = 0 then takes the form


k = �

2π

∫
dk′k′[gkk′ − fkk′ ]


k′

2Ek′
. (A5)

In polar representation the conventional Coulomb potential
from Eq. (5) is given by

μC = ρ0 fkF kF =: ρ0U . (A6)

We note that the isotropic 2D system is a particular case, as
only here we can readily derive the angle-integrated BSE in
form Eq. (13).

APPENDIX B: ANALYTICAL SOLUTION OF THE GAP
EQUATION

In the case of a local Coulomb interaction the gap equa-
tion from Eq. (6) leads to the system of equations


1 = (g − U )
∫

χ

dk

1

2
√(

ξ 2
k + 
2

1

) − U
∫

χ̄

dk

2

2|ξk| ,


2 = − U
∫

χ

dk

1

2
√(

ξ 2
k + 
2

1

) − U
∫

χ̄

dk

2

2|ξk| ,
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which yield after integration


1 =(g − U )
1ρ0arsinh

(
ωD


1

)
− U
2ρ0 log

(
D

ωD

)
,


2 = − U
1ρ0arsinh

(
ωD


1

)
− U
2ρ0 log

(
D

ωD

)
.

This system of equations is solved by the expression from
Eq. (7).

In the case of nonlocal Coulomb interactions, we know
the gap function exhibits a structure in momentum space.
However, the domain χ where |ξk| < ωD is typically much
smaller than χ̄ . This allows us to neglect any k dependence of
the gap function within the region χ , and approximate it with

̃kF =: 
̃1. By denoting the negative part of the energy gap
with 
2(k) the angle-integrated gap equation reads as


̃1 = g
∫

χ

dk′ 
̃1

2
√(

ξ 2
k′ + 
̃2

1

) −
∫

χ

dk′ fkF k′

̃1

2
√(

ξ 2
k′ + 
̃2

1

)
−

∫
χ̄

dk′ fkF k′

2(k′)
2|ξk′ | , (B1)


2(k) = −
∫

χ

dk′ fkk′

̃1

2
√(

ξ 2
k′ + 
̃2

1

) −
∫

χ̄

dk′ fkk′

2(k′)
2|ξk′ | .

(B2)

To proceed we define the dimensionless gap δ(k) :=

2(k)/
̃1 and search for a solution with the ansatz

δ(k) = −α fkF k,

where α is a scalar. By approximating fkk′ with fkk′
F

for k′ ∈
χ in the first term of the right-hand side and employing the
isotropy fkF k = fkkF , we finally arrive at the expression

α =
ρ0arsinh

(
ωD


̃1

)
1 + 1

fkF k

∫
χ̄

fkk′ fkF k′ 1
2|ξ |

. (B3)

α is here still a function of the external variable k, thus a scalar
α cannot provide a full solution for all k. However, we find (1)
for large values of k = k̄, the function fk̄k′ becomes approxi-
mately constant. This means that we can approximate fk̄k′ with
fk̄kF

and obtain an asymptotically correct approximation for

2(k) in the nonlocal interaction model:

δ(k̄) = − μC

1 + μCγ1
zkF k̄arsinh

(
ωD


̃1

)
,

where zkF k = fkF k

U and the coefficient γ1 is defined

γ1 = 1

ρ0

∫
χ̄

dk
z(kF , k)

2|ξk| .

(2) Most importantly, Eq. (B3) allows us to evaluate 
̃1 by es-
timating the screening (retardation) effects of the high-energy
pair fluctuations acting at the Fermi level. This is achieved by
setting k = kF in Eq. (B3) such that we get

α = 1

1 + μCγ
ρ0arsinh

(
ωD


̃1

)

with

γ = 1

ρ0

∫
χ̄

dk z2(kF , k)
1

2|ξk| .

This yields with Eq. (B1)

1 =
[
λ − μC

1 + μCγ

]
arsinh

(
ωD


̃1

)
,

which allows us to identify the revised TMA pseudopotential
μ̃∗

C as

μ̃∗
C = μC

1 + μCγ
.

This result is consistent with the one we obtained by analyzing
the Bethe-Salpeter equation.

APPENDIX C: TC FROM NUMERICAL SOLUTION OF
ELIASHBERG EQUATION WITH NONLOCAL COULOMB

INTERACTION

To further analyze the generality of our results we solve
an Eliashberg-type gap equation for a one-band model with
quadratic dispersion and obtain Tc in the presence of a static
nonlocal Coulomb interaction Vkk′ and local electron-phonon
coupling. The general linearized equation for the anoma-
lous self-energy φ(k, iωn) without mass-enhancement terms
in Matsubara frequencies reads as

φk (iωm) = 1

β

∑
n

∑
k′

[Dkk′ (iωm − iωn) − Vkk′ ]
φk′ (iωn)

[iωn]2 − ξ 2
k′

,

(C1)
where Dkk′ (iνn) denotes the phonon-mediated interaction. We
use here a local Einstein phonon model of the form

Dkk′ (iνn) = D(iνn) = g2 2ω0

iνn
2 − ω2

0

, (C2)

with ω0 = 0.3 eV and a local electron-phonon interaction of
g2 = 1.25 eV2. We solve this linearized equation as an eigen-
value equation for φ. The critical temperature Tc is defined
as the temperature at which the leading eigenvalue becomes
unity. The calculations are performed for a quadratic band
with h̄2/m∗ = 1 Å2 eV on 320 × 320 k and q grids, using
a Matsubara frequency cutoff of 10 eV, a k-space cutoff of
π/0.65 Å−1 utilizing a 2D solver we recently implemented
[43] within Triqs [54] and Tprf [55]. We proceed in analogy
with our investigation of the static BCS model and compare Tc

of the two different cases of nonlocal interaction Vkk′ at ε = 30
and local interaction U = μc/ρ0. To this end, we calculate μc

for the nonlocal interactions Vkk′ using Eq (A6) yielding

μC = ρ0e2

�εkF
I

(
�

2kF ε

)
, (C3)

with

I (x) =
∫ π

0
dθ

1

sin θ + x

= 2√
x2 − 1

[
π

2
− arctan

(
1√

x2 − 1

)]
.
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FIG. 8. Left panel: Normalized deviation of T nonlocal
c from T local

c , as a function of TF inverse wavelength � and chemical potential μ. The
comparison is taken at fixed value of μC , obtained via FS projection. Center and right panels: Comparison of Tc in the local and nonlocal cases
for μ = 1 eV, as function of μC and of μ∗

C as expected from the conventional TMA formula.

The resulting comparison is shown in Fig. 8. The data show
that the Tc obtained with the nonlocal interaction is always
smaller than the one obtained with the local interaction.
Moreover, the deviation from the conventional approach is
enhanced for smaller chemical potential, as shown in the anal-
ysis of the z(kF , q) function in the main text. We note that the
extent of the deviation is quantitatively in line with the results
obtained from the BCS gap function at T = 0, as presented in
Fig. 4. From the right panel of Fig. 8, we understand that an
adequate μ̃∗

C value to approximate Tc in the nonlocal case with

the help of an effective local model needs to be larger than the
usual μ∗

C
These numerical results obtained in the framework of a

general nonlocal and dynamical theory complement the an-
alytical derivation in Sec. IV and show that the role of static
nonlocality in the Coulomb repulsion is independent from the
specific details of the phonon model for conventional phonon-
mediated superconductors. This is in excellent agreement
with our BCS-based derivation and discussion in the main
text.
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