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Chiral phonon mediated high-temperature superconductivity
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Breaking down the traditional perception on phonons which are achiral, the existence of a chiral phonon
carrying angular momentum provides possible ways to couple electrons, photons, spins, magnons, and excitons,
etc. We theoretically proposed an electron-chiral phonon interaction with a two-phonon process, in contrast to a
conventional electron-phonon interaction, and a kind of effective Hubbard interaction through exchanging two
chiral phonons is proposed. Taking a two-dimensional diatomic honeycomb lattice as an example, we found
this repulsive Hubbard interaction mediated by chiral phonons induces unconventional and high-temperature
superconductivity. Moreover, the numerical calculations show an inverse isotope effect which is consistent
with experimental observations in high-Tc superconductors. Our finding on an electron-chiral phonon and the
associated Cooper pair provides a path to understand the high-Tc superconductivity.
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I. INTRODUCTION

The electron-phonon (E-P) interaction plays an impor-
tant role in conventional superconductivity according to the
Bardeen-Cooper-Schrieffer (BCS) theory. However, the effect
of the E-P interaction on the transition temperature (Tc) of
high-temperature superconductivity is complicated and am-
biguous [1]. In BCS theory, Cooper pairs can be formed
through exchanging intermediate phonons which leads to an
effective attraction between electrons. It was still under debate
whether the E-P interaction is adequate to explain high-Tc

superconductivity in cuprates because of the peculiar phe-
nomena: a weak or inverse isotope effect; linear electrical
resistivity; and a kink in the electronic dispersion relations
[2,3]. Other E-P interaction effects such as an unconventional
E-P interaction [4], a polaronic effect [1], a nonadiabatic
effect [5], spatial charge inhomogeneity [6], and the rapid
increase of E-P coupling strength below the critical point in
an optimally doped strange metal [7] further complicate the
underlying mechanisms. Beside phonons, other bosons such
as magnons and plasmons were proposed to be responsible
for the formation of Cooper pairs in a doped Mott insulator
[8].

A nontrivial chiral phonon effect, which characterizes the
phonon angular momentum (PAM) [9], has been theoretically
studied by many researchers [10–23] and has been experimen-
tally observed in various materials such as two-dimensional
(2D) materials [24], hybrid organic-inorganic perovskites
[25], topological insulators [26], ferromagnets [27–29], anti-
ferromagnetic insulators [30], etc. [31–33]. Interestingly, the
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chiral phonon effect was also observed through the thermal
Hall conductivity in the pseudogap phase of cuprates [34].
This finding was attributed to the spin-phonon interaction
[27,35]. It is straightforward to speculate that PAM would
strongly affect the interplay of the spin, charge, and phonon
in high-Tc superconductors and consequently modify the su-
perconducting (SC) phase transition.

PAM is characterized by Lph
l,s = ul,s × pl,s which describes

the rotation of ions around their equilibrium positions [13].
ul,s and pl,s are the displacement and momentum of an sth
atom in an lth unit cell, respectively. Usually, the overall
PAM Lph = ∑

l,s
Lph

l,s vanishes due to the time-reversal and

inversion symmetries. A nonzero Lph and the corresponding
phonon magnetization can be obtained in a nonequilibrium
chiral system where both time-reversal and inversion symme-
tries are broken [36–38].

In this paper, we consider an electron-chiral phonon (E-CP)
interaction in the framework of strong-coupling theory in the
Hubbard model [39]. This interaction is nonadiabatic and is
beyond the Born-Oppenheimer approximation because Lph

l,s
is a function of both ul,s and pl,s. Therefore, the electronic
motion does not only depend on ion coordination but also
depends on momenta. Our calculations reveal the significant
contribution of the E-CP interaction to superconductivity.
Moreover, the roles of the E-P interaction and E-CP interac-
tion are numerically studied and compared in this work.

II. MODEL

The Hamiltonian consists of four parts, H = H0 + Hee +
Hep + He−cp where H0 is the noninteracting part, Hee is the
electron-electron interaction, Hep is the conventional E-P in-
teraction, and He−cp describes the E-CP interaction. h̄ = 1 and
kB = 1 are chosen for simplicity. We adopt a tight-binding
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model for a 2D diatomic honeycomb lattice, then H0 =∑
kσ ψ

†
kσ Mkψkσ + ∑

qν ων
qaν†

q aν
q, where ψ

†
kσ = (c†

k1σ , c†
k2σ )

and ψkσ = (ck1σ , ck2σ )T . c†
ksσ and cksσ are the creation and

annihilation operators of electrons with momentum k and spin
σ (σ =↑,↓) on sublattice s (s = 1, 2),

Mk =
(−μ εk

ε∗
k −μ

)
, (1)

where εk = t[ei( 3
2 kx+

√
3

2 ky ) + ei
√

3ky + ei( 3
2 kx+ 3

√
3

2 ky )], t is the
hopping integral, and the electron wave vector k = (kx, ky).
In addition, aν†

q (aν
q) creates (annihilates) a phonon with wave

vector q = (qx, qy) and mode ν, while ων
q is the corresponding

phonon’s dispersion.
The electron-electron interaction is considered as the Hub-

bard type, which is Hee = U
N

∑
k,k′,q,s c†

k+qs↑c†
k′−qs↓ck′s↓cks↑,

where N is the number of unit cells and U is the
Coulomb interaction. The conventional E-P interaction is
Hep = g̃ep√

N

∑
q,k,s,σ,ν c†

k+qsσ cksσ Aν
q, where g̃ep = gepm−1/4 is

the E-P coupling strength and m is the mass of the atom. Here,
Aν

q = aν
q + aν†

−q.
We assume that the electron spin (Sl,s) feels as a magnetic

field induced by local atomic rotation where the magnetic field
is proportional to PAM. Then the E-CP interaction is analo-
gous to the form of spin-orbit coupling (SOC) ηLl,s · Sl,s [40]
where η is the coupling strength. To simplify our calculations,
we assume that η is a constant. In the 2D system we studied,
both Lx

l,sS
x
l,s and Ly

l,sS
y
l,s do not exist. Then the Hamiltonian of

the E-CP interaction is written as

He−cp = 2η
∑
l,s

Lz
l,sS

z
l,s

= −
√

2η

N

∑
ν,ν ′,q,q′,s

gν,ν ′
q,q′,sA

ν
qBν ′

−(q−q′ )S
zss
q′ , (2)

where Bν
q = aν

q − aν†
−q and Szss

q = 1√
2

∑
k,σ σc†

k+qsσ cksσ . The
derivation of He−cp is given in Appendix A. The matrix ele-
ment is

gν,ν ′
q,q′,s =

√√√√ων ′
q−q′

ων
q

ξ
†
q−q′,ν ′ (s)

(
0 −i
i 0

)
ξq,ν (s), (3)

where ξq,ν (s) is the polarization vector. It satisfies gν,ν ′
−q,−q′,s =

−gν,ν ′∗
q,q′,s.
Here, we need to clarify that the terminology of the

“chiral phonon” proposed in recent years usually means the
phonon components which carry nonzero angular momen-
tum or phonon modes with circular/elliptical polarizations
(thus leading to a local magnetic moment that can couple
to the electron spin). In contrast, the “normal” or “nonchiral
phonons” means phonon components which do not carry an-
gular momentum or phonon modes with linear polarizations.
Consequently, we use the term E-CP interaction to describe
that the phonon angular momentum can couple to electron
spin. On the contrary, for the conventional E-P interaction, it
is common sense that neither phonon angular momentum nor
electron spins are important.
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FIG. 1. The Feynman diagrams of the E-CP interaction.
(a) Three cases of E-CP interaction for one electron and two phonons.
(b) Two cases of electron pairing by exchanging two phonons.

The Feynman diagrams of the E-CP interaction are shown
in Fig. 1. The operators in Eq. (2) are Aν

qBν ′
−(q−q′ ) which can

be expanded as(−aν
qaν ′†

q−q′ + aν†
−qaν ′

q′−q

) − aν†
−qaν ′†

q−q′ + aν
qaν ′

q′−q. (4)

So there are three kinds of two-phonon processes in Fig. 1(a):
emitting one phonon and absorbing one phonon; emitting
two phonons; and absorbing two phonons. Consequently, the
second orders of the aforementioned two-phonon processes
give rise to two kinds of effective electron-electron interac-
tions as shown in Fig. 1(b). Unlike the BCS theory in which
Cooper pairs are formed through exchanging one phonon, the
E-CP interaction leads to an effective Hubbard U induced
through exchanging two chiral phonons (see Appendix B
for details). We must emphasize that the E-CP interaction
is fundamentally different from the conventional anharmonic
E-P interaction with two-phonon absorption and emission.
The chiral phonons are able to affect spin fluctuation and
magnetic order which cannot be affected by the anharmonic
E-P interaction.

We adopt the widely used Green’s function method to
investigate the effect of the E-CP interaction on high-Tc super-
conductivity. First, we calculate the electron’s normal Green’s
function matrix G(k) according to Eq. (1). The matrix ele-
ments of the irreducible susceptibility are calculated as [39]

χ
a1a4,a2a3
0 (q) = −T

N

∑
k

Ga2a4 (k + q)Ga1a3 (k). (5)

T is the temperature, and a1, a2, a3, a4 = 1, 2. G(k) =
(ipnI − Mk )−1 is the electron’s normal Green’s function
where I is the unit matrix. q = (q, iωn) and k = (k, ipn),
where ωn = 2nπT and pn = (2n − 1)πT are the Matsubara
frequencies with integer n. Within the random phase approx-
imation (RPA), the spin and charge susceptibilities can be
written as [39]

χ zz
s (q) = [I − χ0(q)S̃(q)]−1χ0(q),

χ+−
s (q) = [I − χ0(q)Us]

−1χ0(q),

χc(q) = [I + χ0(q)C̃(q)]−1χ0(q), (6)

where χ zz
s (q) and χ+−

s (q) represent the longitudinal and
transverse spin susceptibilities, respectively, and χc(q) is the
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charge susceptibility. The nonzero matrix elements of Us are
U a1a1,a1a1

s = U . In the absence of the E-CP interaction, the
nonzero matrix elements of S̃(q) are S̃a1a1,a2a2 (q) = Uδa1a2 .

This term can be modified as follows when the E-CP inter-
action is considered,

S̃a1a1,a2a2 (q) =Uδa1a2 − η2

N

∑
q1,ν1,ν

′
1

2(N1 − N2)(ω1 − ω2)

(ω1 − ω2)2 + ω2
n

(
g
ν1,ν

′
1

q1,−q,a1
g
ν ′

1,ν1
q1+q,q,a2

+ g
ν ′

1,ν1∗
q1+q,q,a1

g
ν1,ν

′
1∗

q1,−q,a2
+ 2g

ν1,ν
′
1

q1,−q,a1
g
ν1,ν

′
1∗

q1,−q,a2

)

− η2

N

∑
q1,ν1,ν

′
1

2(N1 + N2 + 1)(ω1 + ω2)

(ω1 + ω2)2 + ω2
n

(
g
ν1,ν

′
1

q1,−q,a1
g
ν ′

1,ν1
q1+q,q,a2

+ g
ν ′

1,ν1∗
q1+q,q,a1

g
ν1,ν

′
1∗

q1,−q,a2
− 2g

ν1,ν
′
1

q1,−q,a1
g
ν1,ν

′
1∗

q1,−q,a2

)
, (7)

where ω1 = ων1
q1

, ω2 = ω
ν ′

1
q1+q are the phonon dispersion rela-

tions and N1 = 1
eω1/T −1 , N2 = 1

eω2/T −1 are the Bose distribution
functions.

Finally, the nonzero matrix elements of C̃(q) are

C̃a1a1,a2a2 (q) = Uδa1a2 − 4g̃2
ep

∑
ν

ων
q

ων2
q + ω2

n

. (8)

When temperature is close to Tc, the linearized Eliashberg
equation is [39]

λφa6a5 (k) = − T

N

∑
q

∑
a1,a2,a3,a4

Ga1a2 (k − q)Ga4a3 (q − k)

× φa2a3 (k − q)V a4a5,a1a6 (q), (9)

where φ(k) is the electron’s anomalous self-energy. Tc is
reached when the largest eigenvalue λ in Eq. (9) reaches 1.
The singlet pairing interaction in Eq. (9) is [39]

V (q) = 1
2 S̃(q)χ zz

s (q)S̃(q) + Usχ
+−
s (q)Us

− 1
2C̃(q)χc(q)C̃(q) + 1

2 [S̃(q) + C̃(q)]. (10)

We set U = 2.3t and adjust the chemical potential μ

to ensure the electron filling n f = 0.95 where n f = 1 +
T N−1 ∑

a1

∑
k Ga1a1 (k) [corresponding to μ ≈ −0.485t in

Eq. (1)]. The Fermi surface and band structure are shown
in Figs. 2(a) and 2(b), respectively. The bandwidth is about
6t , therefore this choice of U corresponds to an intermediate
strength of the electron-electron interaction. Since the band
structure has particle-hole symmetry, we consider only the
hole-doped case and the choice of n f corresponds to 5% hole
doping. N = 32 × 32 and 16 384 Matsubara frequencies are
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FIG. 2. (a) The Fermi surface in the first Brillouin zone. (b) The
band structure along high-symmetry directions. The gray dashed
horizontal line in (b) denotes the position of the Fermi level.

used. The summation over momentum and frequency are both
done by fast Fourier transformation. gν,ν ′

q,q′,s is calculated by
given values of m1 and m2 which are the masses of two atoms,
respectively. When m1 = m2 = 1, we rescale the phonon’s
dispersion so the maximal ων

q ≈ 0.097t . In this case, the
phonon’s dispersion can be seen in Fig. 3. The exact calcula-
tion of the E-CP coupling strength η is not easy. We speculate
that the E-CP interaction is similar to SOC by simply con-
sidering an ion rotating around an electron [40]. Then η must
decrease with increasing temperature because of the enlarged
distance between the electron and ion. Therefore, we assume
a simple exponential decay of η as follows,

η = η0e−T/T ∗
. (11)

Here, we set η0 = 4.6574 × 10−4t and T ∗ = 0.02t .

III. RESULTS AND DISCUSSIONS

Starting from n f = 0.95, we calculate the largest eigen-
value of χ0(q, iωn = 0)S̃(q, iωn = 0) over all q and denote it
as αzz

s . Its value has to be less than 1 to prevent the formation
of static magnetic order. We further denote α+−

s and αc as
the largest eigenvalues of χ0(q, iωn = 0)Us and −χ0(q, iωn =
0)C̃(q, iωn = 0), respectively. Similarly, they have to be less
than 1 to stay away from static magnetic and charge ordering.

In the absence of E-CP and E-P couplings, i.e., η = g̃ep =
0, we show the evolution of αzz

s , α+−
s , and αc with temperature

in solid curves in Fig. 4(a). It is obvious that αzz
s = α+−

s .
Through the temperature range we investigated, αzz

s , α+−
s ,

and αc are always less than 1. Figure 4(b) shows the largest
eigenvalue of Eq. (9), λ, as a function of T . λ increases with

0.00

0.02

0.04

0.06

0.08

0.10

ω
qν

Γ M K Γ

FIG. 3. The phonon’s dispersion at m1 = m2 = 1.
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FIG. 4. (a) The evolution of αzz
s , α+−

s , and αc with temperature
when η = g̃ep = 0 (solid curves) and η = 0, g̃ep = 0.15t (dotted
curves). (b) λ as a function of T at η = g̃ep = 0 (solid curve) and
η = 0, g̃ep = 0.15t (dotted curves). (c) The evolution of αzz

s and
(d) the evaluation of λ with temperature when η is set according to
Eq. (11) and g̃ep = 0. The vertical dashed lines in (b) and (d) denote
the value of T when λ = 1. U = 2.3t is used in all the calculations.

decreasing T and reaches 1 at T ≈ 0.0025t , suggesting that
Tc ≈ 0.0025t when there is neither an E-CP nor E-P interac-
tion. If the E-P coupling is present, for example, η = 0 and
g̃ep = 0.15t , the dotted curves in Figs. 4(a) and 4(b) show that
αc and Tc increase to 0.5 and 0.0035t , respectively. The spin
susceptibility related αzz

s and α+−
s are unaffected by the E-P

interaction.
In the presence of the E-CP interaction (but no E-P interac-

tion), the evolution of αzz
s and λ with temperature are shown

in Figs. 4(c) and 4(d), respectively. Both αzz
s and λ increase

with decreasing temperature, suggesting the trend to have a
magnetic phase transition and superconductivity phase tran-
sition. However, since when T decreases, λ reaches 1 before
αzz

s does, thus the superconductivity phase transition actually
occurs and the corresponding Tc ≈ 0.0155t as indicated by the
vertical dashed line in Fig. 4(d). Therefore, the E-CP coupling
can greatly enhance Tc. Moreover, α+−

s and αc are not shown
because only the z component is considered in Eq. (2), so then
both of them stay unchanged as shown in Fig. 4(a). Our nu-
merical calculations further confirm that the E-P interaction,
by setting g̃ep = 0.15t in this case, hardly changes the value
of Tc. This proves that the great enhancement of Tc is indeed
resulting from the E-CP interaction.

The above finding reveals that the E-CP interaction leads
to an unambiguous increase of αzz

s . This is because the last
two terms in Eq. (7) are positive when a1 = a2 and negligibly
small when a1 �= a2. Therefore the phonon can effectively
increase the value of U for the longitudinal spin susceptibility,
leading to an increased αzz

s , which means an increased

FIG. 5. The calculated (a) real part Re �11(k, iπT ) and (b) imag-
inary part Im �11(k, iπT ) of pairing function �11(k, iπT ) in the
Brillouin zone when η = g̃ep = 0 and T = 0.002t . (c) and (d) are
similar to (a) and (b), respectively, but at η �= 0, g̃ep = 0, and T =
0.015t .

longitudinal spin fluctuation. It enhances the term
1
2 S̃(q)χ zz

s (q)S̃(q) in Eq. (10), leading to an enlarged pairing
interaction, which then results in an enhanced Tc.

We now turn to investigate the pairing symmetry by pro-
jecting φ(k) in Eq. (9) onto each band. We only consider the
pairing function on the lowest band [�11(k)], which crosses
the Fermi level. When η = g̃ep = 0, the superconductivity
pairing results solely from the electron-electron interaction.
In this case, at T (0.002t) slightly below Tc (0.0025t), we
show the real and imaginary parts of �11(k, iπT ) in Figs. 5(a)
and 5(b), respectively. One can see that Re �11(k, iπT ) and
Im �11(k, iπT ) differ only in magnitude, but have the same
structure in momentum space. Therefore the phase factor be-
tween the real and imaginary parts is global and �11(k, iπT )
can be taken as real, i.e., no time-reversal symmetry breaking.
Furthermore, there exist sign changes in �11(k, iπT ), indicat-
ing that the pairing symmetry is unconventional (not isotropic
s wave). When η �= 0 and g̃ep = 0, the pairing function at
0.015t < Tc = 0.0155t shown in Figs. 5(c) and 5(d) remains
qualitatively the same as that for η = 0. The pairing still does
not break the time-reversal symmetry and is unconventional as
well. We found that the last two terms in Eq. (7) are slightly
q dependent, therefore the E-CP coupling will not vary the
pairing symmetry significantly as compared to the η = 0 case.
We have also verified that, in the above two cases, including
the E-P interaction at g̃ep = 0.15t does not change the pairing
function qualitatively.

Thus, by introducing the E-CP interaction, high-
temperature and unconventional superconductivity can be
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FIG. 6. The isotope effect of Tc. The calculated values of Tc vs
m2 when m1 = m2 = m (red) and m1 = 1 (black). Here, g̃ep = 0.

induced in systems with a relatively weak electron-electron
interaction. For the present system, taking t = 1 eV, the

calculated Tc can be boosted from 2.5 meV (29 K) to
15.5 meV (180 K). Furthermore, if the phonon couples to Sx

and Sy components of electrons, Tc may be further enhanced
since the factor is 1 in the Usχ

+−
s (q)Us term in Eq. (10),

instead of 1
2 in the S̃(q)χ zz

s (q)S̃(q) term.
The anomalous isotope effect has been found in many

superconductors [41–44]. The E-CP interaction provides an
alternative explanation of such isotope effect. First, we con-
sider the case with m1 = m2 = m. Figure 6 shows that Tc

increases with increasing m. Such an inverse isotope effect
is opposite to the conventional E-P coupling in BCS theory
where Tc decreases with increasing m, because the most sig-
nificant term, the ωn = 0 component in Eq. (7), can be written
as

S̃a1a1,a2a2 (q, iωn = 0, m, T )

= √
mS̃a1a1,a2a2 (q, iωn = 0, 1,

√
mT ), (12)

when the phonon dispersion ∼1/
√

m and U = 0. The matrix
elements of S̃(q) are enhanced as m increases, leading to an
inverse isotope effect. The derivation of Eq. (12) is as follows.
At U = 0 and ωn = 0, we have

S̃a1a1,a2a2 (q) = − η2

N

∑
q1,ν1,ν

′
1

2(N1 − N2)

ω1 − ω2

(
g
ν1,ν

′
1

q1,−q,a1
g
ν ′

1,ν1
q1+q,q,a2

+ g
ν ′

1,ν1∗
q1+q,q,a1

g
ν1,ν

′
1∗

q1,−q,a2
+ 2g

ν1,ν
′
1

q1,−q,a1
g
ν1,ν

′
1∗

q1,−q,a2

)

− η2

N

∑
q1,ν1,ν

′
1

2(N1 + N2 + 1)

ω1 + ω2

(
g
ν1,ν

′
1

q1,−q,a1
g
ν ′

1,ν1
q1+q,q,a2

+ g
ν ′

1,ν1∗
q1+q,q,a1

g
ν1,ν

′
1∗

q1,−q,a2
− 2g

ν1,ν
′
1

q1,−q,a1
g
ν1,ν

′
1∗

q1,−q,a2

)
. (13)

When the masses of the two sublattices are equal (m1 =
m2 = m), and if we define ω1 and ω2 as the phonon dispersion
relations at m = 1, while ω′

1 and ω′
2 are the phonon dispersion

relations at m �= 1, then we will have

ω′
1 = ω1/

√
m,

ω′
2 = ω2/

√
m. (14)

Similarly, if we define N1 and N2 as the Bose distribution
functions at m = 1, while N ′

1 and N ′
2 are the Bose distribution

functions at m �= 1, then we will have

N ′
1(T ) = 1

e
ω′

1
T − 1

= 1

e
ω1√
mT − 1

= N1(
√

mT ),

N ′
2(T ) = N2(

√
mT ). (15)

Finally, if we define S̃a1a1,a2a2 (q, iωn = 0, T ) as the value of
Eq. (13) at m = 1 and S̃′a1a1,a2a2 (q, iωn = 0, T ) at m �= 1, then
we will have

S̃′a1a1,a2a2 (q, iωn = 0, T )

= −η2

N

∑
q1,ν1,ν

′
1

2[N ′
1(T ) − N ′

2(T )]

ω′
1 − ω′

2

(
g
ν1,ν

′
1

q1,−q,a1
g
ν ′

1,ν1
q1+q,q,a2

+ g
ν ′

1,ν1∗
q1+q,q,a1

g
ν1,ν

′
1∗

q1,−q,a2
+ 2g

ν1,ν
′
1

q1,−q,a1
g
ν1,ν

′
1∗

q1,−q,a2

)

− η2

N

∑
q1,ν1,ν

′
1

2[N ′
1(T ) + N ′

2(T ) + 1]

ω′
1 + ω′

2

(
g
ν1,ν

′
1

q1,−q,a1
g
ν ′

1,ν1
q1+q,q,a2

+ g
ν ′

1,ν1∗
q1+q,q,a1

g
ν1,ν

′
1∗

q1,−q,a2
− 2g

ν1,ν
′
1

q1,−q,a1
g
ν1,ν

′
1∗

q1,−q,a2

)
,

= −√
m

η2

N

∑
q1,ν1,ν

′
1

2[N1(
√

mT ) − N2(
√

mT )]

ω1 − ω2

(
g
ν1,ν

′
1

q1,−q,a1
g
ν ′

1,ν1
q1+q,q,a2

+ g
ν ′

1,ν1∗
q1+q,q,a1

g
ν1,ν

′
1∗

q1,−q,a2
+ 2g

ν1,ν
′
1

q1,−q,a1
g
ν1,ν

′
1∗

q1,−q,a2

)

− √
m

η2

N

∑
q1,ν1,ν

′
1

2[N1(
√

mT ) + N2(
√

mT ) + 1]

ω1 + ω2

(
g
ν1,ν

′
1

q1,−q,a1
g
ν ′

1,ν1
q1+q,q,a2

+ g
ν ′

1,ν1∗
q1+q,q,a1

g
ν1,ν

′
1∗

q1,−q,a2
− 2g

ν1,ν
′
1

q1,−q,a1
g
ν1,ν

′
1∗

q1,−q,a2

)
,

= √
mS̃a1a1,a2a2 (q, iωn = 0,

√
mT ). (16)
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Therefore, increasing m will enhance S̃(q), leading to an en-
larged pairing interaction, thus an enlarged Tc.

In contrast, for the E-P coupling,

C̃a1a1,a2a2 (q) = −4g2
ep√
m

∑
ν

ων
q

ων2
q + ω2

n

. (17)

At ωn = 0, we define

4g2
ep√
m

ων
q

ων2
q + ω2

n

= 4g2
ep√
m

1

ων
q

= λν
q, (18)

where λν
q is independent of m since ων

q scales as 1√
m

and it

cancels the
√

m term in the denominator of Eq. (18). Then we
have

C̃a1a1,a2a2 (q) = −4g2
ep√
m

∑
ν

ων
q

ων2
q + ω2

n

= −
∑

ν

4g2
ep√
m

1

ων
q

1

1 +
(

ωn
ων

q

)2

= −
∑

ν

λν
q

1 +
(

2nπT
ων

q

)2 . (19)

It is this relation that produces the normal isotope effect, since
ων

q(m) = 1√
m
ων

q(0), therefore Tc(m) = 1√
m

Tc(0). It should be
pointed out that the above normal isotope effect holds because
λν

q is independent of m, otherwise it will break down, just as
our E-CP case.

Compared to the E-P case, besides scaling the temperature
T to

√
mT , there is an additional

√
m term as seen from

Eq. (16) in the E-CP case. Therefore the isotope effects are
different between the E-P and E-CP cases. The latter has the
inverse isotope effect.

In addition, we also investigate the isotope substitution
effect in Fig. 6 where m1 = 1 and m2 changes from 1 to 1.6.
We find that Tc also increases with increasing m2 although
the increasing rate is smaller than the previous case. This
finding provides a possible explanation of the inverse isotope
effect observed in cuprates with an oxygen isotope substitu-
tion (O16 → O18) [42,45].

IV. CONCLUSIONS

In summary, we introduce the electron-chiral phonon in-
teraction into the current theory of high-Tc superconductivity.
This interaction leads to an interplay of electron, spin, and
charge in superconductors. The numerical calculation results
show a remarkable enhancement of Tc induced by this inter-
action. Moreover, both unconventional pairing and a peculiar
inverse isotope effect are found which are able to explain the
experimental observations. In contrast, our calculation shows
that the influence of a conventional electron-phonon interac-
tion is marginal.
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APPENDIX A: THE E-CP INTERACTION HAMILTONIAN

The ul,s, pl,s, and Sz
l,s can be written in the second quanti-

zation representation

ul,s =
∑
q,ν

√
1

2msNων
q
ξq,ν (s)

(
aν

q + aν†
−q

)
ei q·Rl , (A1)

pl,s =
∑
q,ν

√
msων

q

2N
iξ ∗

q,ν (s)
(
aν†

q − aν
−q

)
e−i q·Rl , (A2)

Sz
l,s =

∑
σ

σc†
l,s,σ cl,s,σ = 1

N

∑
k,k′,σ

σc†
k′,s,σ ck,s,σ ∗ ei (k−k′ )·Rl .

(A3)

The He−cp is

He−cp = 2η
∑
l,s

Lz
l,sS

z
l,s

= 2η
∑
l,s,σ

(
ux

l,s py
l,s − uy

l,s px
l,s

)
σc†

l,s,σ cl,s,σ

= 2η
∑
l,s

uT
l,s

(
0 1

−1 0

)
pl,sσc†

l,s,σ cl,s,σ . (A4)

Substituting Eqs. (A1)–(A3) into Eq. (A4) and taking the
transpose, we obtain

He−cp = −
√

2η

N

∑
q,q′,ν,ν ′,s

gν,ν ′
q,q′,sA

ν
qBν ′

−(q−q′ )S
zss
q′ , (A5)

which is the same as Eq. (2).

APPENDIX B: THE EFFECTIVE HAMILTONIAN

As the expanded form of Eq. (A5) is

He−cp = −√
2η

N

∑
νν ′qq′s

gνν ′
qq′s

[(−aν
qaν ′†

q−q′ + aν†
−qaν ′

−(q−q′ )
)

+ (−aν†
−qaν ′†

q−q′ + aν
qaν ′

q′−q

)]
Szss

q′ , (B1)

we can divide the E-CP interaction Hamiltonian into two
parts,

He−cp = He−cp−1+He−cp−2, (B2)

where

He−cp−1 = −√
2η

N

∑
νν ′qq′s

gνν ′
qq′s

(−aν
qaν ′†

q−q′ + aν†
−qaν ′

−(q−q′ )
)
Szss

q′ ,

He−cp−2 = −√
2η

N

∑
νν ′qq′s

gνν ′
qq′s

(−aν†
−qaν ′†

q−q′ + aν
qaν ′

q′−q

)
Szss

q′ .

(B3)

Then, according to the two virtual phonon processes shown
in the Feynman diagrams in Fig. 1(b), we can write the inter-
action matrix elements of electrons by exchanging two chiral
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phonons, ∑
m

〈 f |He−cp|m〉〈m|He−cp|i〉/(Ei − Em) =
∑

m

〈 f |He−cp−1|m〉〈m|He−cp−1|i〉/(Ei − Em)

+
∑

m

〈 f |He−cp−2|m〉〈m|He−cp−2|i〉/(Ei − Em). (B4)

Note that the initial state |i〉 and final state | f 〉 is

|i〉 = ∣∣nksσ , nk′s′σ ′ , nk′−q′,s′,σ ′ , nk+q′sσ ; Nν
±q, Nν ′

±(q−q′ )
〉
, (B5)

| f 〉 = ∣∣nksσ − 1, nk′s′σ ′ − 1, nk′−q′,s′,σ ′ + 1, nk+q′sσ + 1; Nν
±q, Nν ′

±(q−q′ )
〉
, (B6)

where n is the number of electrons, and N is the number of phonons.
Lastly, the total effective Hamiltonian can be written as

Heff = Heff−1 + Heff−2

= − η2

N2

∑
k,k′,σ,σ ′,s,s′

∑
q,q′,ν,ν ′

2σσ ′(Nν
q − Nν ′

q−q′
)(

ων
q − ων ′

q−q′
)

(
Eksσ − Ek+q′sσ

)2 − (
ων

q − ων ′
q−q′

)2 c†
k+q′sσ c†

k′−q′s′σ ′ck′s′σ ′cksσ

× (
gν,ν ′

q,q′,sg
ν ′,ν
(q−q′ ),−q′,s′ + gν,ν ′

−q,−q′,s′g
ν ′,ν
−(q−q′ ),q′,s − gν,ν ′

q,q′,sg
ν,ν ′
−q,−q′,s′ − gν ′,ν

−(q−q′ ),q′sg
ν ′,ν
(q−q′ ),−q′,s′

)
− η2

N2

∑
k,k′,σ,σ ′,s,s′

∑
q,q′,ν,ν ′

2σσ ′(Nν
q + Nν ′

q−q′ + 1
)(

ων
q + ων ′

q−q′
)

(
Eksσ − Ek+q′sσ

)2 − (
ων

q + ων ′
q−q′

)2 c†
k+q′sσ c†

k′−q′s′σ ′ck′s′σ ′cksσ

× (
gν,ν ′

q,q′,sg
ν ′,ν
(q−q′ ),−q′,s′ + gν,ν ′

−q,−q′,s′g
ν ′,ν
−(q−q′ ),q′,s + gν,ν ′

q,q′,sg
ν,ν ′
−q,−q′,s′ + gν ′,ν

−(q−q′ ),q′,sg
ν ′,ν
(q−q′ ),−q′,s′

)
. (B7)

According to our numerical results, the E-CP interaction provides an effective repulsion for electrons, and the non-s-wave
pairing symmetry could be attributed to this kind of repulsive interaction.
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