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The material realization of the intrinsic chiral topological superconductivity (TSC) is still a big challenge
in modern condensed-matter physics. In this paper, we propose a general scheme to make chiral TSCs from
nontopological superconductivities (SCs) through the newly developed “twistronics” technique. Suppose we
have a Dn-symmetric monolayer carrying nontopological SC with pairing angular momentum L = n/2. Here we
propose that by stacking two such monolayers with the largest twist angle, the interlay Josephson coupling can
drive chiral TSC with the same L in the system. An argument based on the universal Ginzburg-Landau theory
is provided to understand this proposal. One known example which fits our proposal is the d + id chiral TSC in
the 45◦-twisted bilayer cuprates. Here, we demonstrate the application of our proposal to a new example, i.e.,
the f + i f chiral TSC obtained by twisting two properly doped honeycomb-Hubbard-model monolayers by the
angle 30◦. This example is related to the newly synthesized 30◦-twisted bilayer graphene.
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I. INTRODUCTION

The origin and physical properties of topological quan-
tum states is an important research area, which has captured
great interest in recent years [1,2]. Among these topologi-
cal states, the chiral topological superconductivities (TSCs)
[3] are particularly interesting since such quantum states are
characterized by nonzero Chern numbers and resultant Majo-
rana zero modes in the vortex core or on the boundary [4],
which carry non-Abelian statistics [5] and can be used in
the design of fault-tolerant quantum computation [6,7]. The
chiral TSCs on a 2D lattice are usually generated by the
nontrivial rotational symmetries of the lattice. On an n-fold
rotation symmetric 2D lattice, the pairing symmetries can be
classified according to the irreducible representations (IRRPs)
of the point group [8]. In the special case when the leading
pairing symmetry belongs to the 2D IRRP, the two degenerate
pairing gap functions would usually be 1 : ±i mixed to lower
the free energy below the superconducting Tc [9], leading to
the chiral TSC. For example, the square lattice possessing D4

symmetry can host the p + ip-wave TSC with pairing angular
momentum L = 1 [10,11], while the triangle, the honeycomb,
and the Kagome lattices which possess the D6 symmetry can
host p + ip or d + id wave TSC carrying pairing angular
momentum L = 1 [12–14] or L = 2 [15–25].

The material realization of the chiral TSC has long been
a challenging problem. The Sr2RuO4 used to be a promising
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candidate of the p + ip chiral TSC [26] on the square lattice,
but now more and more experimental evidence doesn’t sup-
port such a point of view. The quarter-doped graphene [15–23]
and the properly-doped magic-angle twisted bilayer graphene
[27–32] were proposed to host the d + id chiral TSC, but
unambiguous experiment evidence is still lacking. It’s in-
teresting to ask the question whether we can design chiral
TSC from existing materials through some engineering ap-
proach. Fortunately, the recently emergent “twistronics” gives
us hope. Recently, it was proposed [33–37] that through twist-
ing two cuprate monolayers by the angles near 45◦ [38,39],
one can obtain the d + id chiral TSC through the interlayer
Josephson coupling (IJC). Here the cuprates monolayer with
D4-symmetric square-lattice structure is already supercon-
ducting, which hosts the d-wave SC carrying pairing angular
momentum L = 2. But the d-wave pairing on the square lat-
tice belongs to the 1D B- IRRP with nondegenerate real gap
function, which is nontopological. However, when two such
nontopological superconducting monolayes are stacked with
the proper twist angle, the chiral TSC can be achieved. Note
that the special angle 45◦ here is actually the largest possible
twist angle between the two fourfold symmetric monolayers.
It’s interesting to generalize such a constructive proposal to
more lattices with different symmetries.

In this paper, we propose a general scheme to realize
chiral TSCs through the “twistronics.” Suppose we have a
Dn-symmetric monolayer superconductor, which carries non-
topological SC with pairing angular momentum L = n/2,
e.g., the d-wave SC for square lattice or f -wave one for the
triangle, honeycomb, or Kagome lattice. Here we propose
that we can obtain chiral TSC with the same pairing angular
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momentum, i.e., the d + id or f + i f TSC, by stacking two
such monolayers with the largest twist angle π/n between
them, dubbed as the twist-bilayer QC (TB-QC) here. The
chiral TSC in the TB-QC is driven by the interlay Joseph-
son coupling (IJC) between the pairing order parameters
(ODPs) of the two layers. An argument based on the univer-
sal Ginzburg-Landau (G-L) theory is provided to understand
this proposal. Then based on the microscopic framework de-
veloped previously to treat with the electron-electron (e-e)
interactions in the TB-QC, we demonstrate the application of
our proposal with a new example different from the known
one, i.e., the f + i f chiral TSC obtained by twisting two
properly-doped honeycomb-Hubbard-model monolayers by
the angle 30◦. This example is related to the newly synthesized
30◦-twisted bilayer graphene [40–44].

The remaining part of the paper is organized as follow. In
Sec. II, we provide the G-L theory based analysis, which con-
siders what pairing state would be obtained in a TB-QC when
each of its monolayers hosts a pairing state with the largest
pairing angular momentum for the lattice. In Sec. III, we
provide an example to demonstrate the conclusion achieved in
Sec. II, i.e., a TB-QC with each of its monolayers described
by a Hubbard model on the honeycomb lattice. In Sec. IV, a
conclusion is arrived after some discussions.

II. THE G-L THEORY

We start from the classification of pairing symmetries on
a 2D lattice according to the IRRPs of its Dn (n is even
hereafter) point group [33]. The Dn point group has four 1D
IRRPs, and ( n

2 − 1) 2D ones [labeled as EL (L ∈ [1, n
2 − 1])].

For each 2D IRRP EL, the two degenerate basis gap functions
would generally be mixed as 1 : ±i to lower the free energy.
The resultant gap function �

(±)
L (k) transforms as �

(±)
L (k) →

e∓iL�φ�
(±)
L (k) under a �φ = 2π/n rotation, corresponding

to a TSC with pairing angular momentum L � n
2 − 1, and

pairing chirality “+” or “−.” The four 1D IRRPs correspond
to the nontopological A1,2 pairing symmetry with L = 0 and
B1,2 one with L = n

2 . Here the label L denotes the pairing
angular momentum. Clearly, for a Dn-symmetric lattice, the
largest L is n

2 , and the pairing with this L is nontopolog-
ical. While for n = 4 the largest L = 2 corresponds to the
d-wave pairing, for n = 6 the largest L = 3 corresponds to the
f -wave one.

Let’s take two Dn-symmetric monolayers and stack them
by the twist angle π

n to form a TB-QC, as shown in Fig. 1
for n = 6. Obviously, the point group is Dnd , isomorphic to
D2n. There is an additional symmetry generator in the TB-QC
absent its monolayer, i.e., the C1

2n rotation accompanied by a
succeeding layer exchange, renamed as C̃1

2n here.
Suppose that driven by some pairing mechanism, the

monolayer μ = t/b (top/bottom) can host a pairing state with
the largest pairing angular momentum L = n/2. The pairing
gap function in the μ layer is

�(μ)(k) = ψμ�(μ)(k). (1)

Here �(μ)(k) is the normalized real form factor, and ψμ is
the “complex pairing amplitude.” Prominently, the �(μ)(k)
for L = n/2 changes sign with every C1

n rotation due to the

FIG. 1. Schematic illustration of the SC induced by IJC in a
TB-QC formed by two Dn-symmetric monolayers carrying SC with
pairing angular momentum L = n

2 . We take n = 6 for example. The
color denotes the gap sign on the Fermi surfaces.

following relation:

eiL�φ = eiπ = −1. (2)

The geometry shown in Fig. 1 dictates

�(b)(k) = P̂π
n
�(t)(k), P̂2π

n
�(μ)(k) = −�(μ)(k). (3)

Here P̂φ indicates the rotation by the angle φ. As the interlayer
coupling in the TB-QC is weak [33,45–47], we can only
consider the dominant intralayer pairing. However, the two
intralayer pairing ODPs can couple through the IJC describing
the combined hopping of a Cooper pair between the two layers
[34–37]. We shall investigate the ground state induced by this
IJC, based on a G-L theory analysis.

The symmetry-allowed free energy F as function of ψt/b

can be decomposed into the monolayers F0(|ψμ|2) term and
the IJC FJ term as [34–37]

F (ψt, ψb) = F0(|ψt|2) + F0(|ψb|2) + FJ (ψt, ψb). (4)

Up to the first-order IJC, the FJ term should take the following
U(1)-gauge symmetry allowed form:

F (1)
J (ψt, ψb) = −A(eiθψtψ

∗
b + c.c.). (5)

The invariance of the free energy F under the time-reversal
(TR) operation ψt/b → ψ∗

t/b dictates θ = 0, leading to

F (1)
J (ψt, ψb) = −A(ψtψ

∗
b + c.c.). (6)

Note that the TB-QC possesses an additional symmetry
absent in each of its monolayers, i.e., the C̃1

2n symme-
try. Under the C̃1

2n operation, the gap function on the
μ layer changes from �(μ)(k) = ψμ�(μ)(k) to �̃(μ)(k) =
ψμ̄P̂π

n
�(μ̄)(k) which, under Eq. (3), can be rewritten as

ψ̃μ�(μ)(k) with

ψ̃b = ψt, ψ̃t = −ψb. (7)

The invariance of F under C̃1
2n requires A = 0, indicating that

the first-order IJC should vanish in the TB-QC.
Therefore, the following U(1)-gauge and TR symmetries

allowed second-order IJC should be considered:

FJ (ψt, ψb) = A0
(
ψ2

t ψ2∗
b + c.c.

) + O(ψ6). (8)

Equation (8) is minimized at ψb = ±iψt for A0 > 0 or ψb =
±ψt for A0 < 0. The form case is usually energetically fa-
vored as a π/2 phase difference develops (i.e., 1 : i mixing)
between the ODPs of the two layers leading to complex
gap function which is fully gapped. In such a case, under
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the C̃1
2n, the pairing gap function (ψb, ψt ) would be changed

to (ψ̃b, ψ̃t ) = (ψt ,−ψb) = ∓i(ψb, ψt ) = e∓i 2πL
2n with L = n

2 ,
suggesting a chiral TSC belonging to the En/2 IRRP of the
Dnd or D2n point group.

To summarize, taking a TB-QC formed by two Dn-
symmetric monolayers, when each monolayer hosts a non-
topological pairing state with pairing angular momentum L =
n/2, the TB-QC would most probably host a chiral TSC with
the same L, driven by the IJC.

It is worth noting that there are three degenerate spin-
triplet pairing channels without spin-orbit coupling (SOC);
their degeneracy is protected by spin SU (2) symmetry. For
convenience, we characterize the spin-triplet state by a com-
plex number. In Appendix A, we supplement the G-L analysis
using a three-component complex vector d to characterize the
spin-triplet state, which shows that the vector directions of the
two layers in the ground state are always parallel, to justify
that the simplified is reasonable.

While the sign of the above coefficient A0 of the second-
order IJC cannot be determined by the G-L theory itself, it
should be determined by the microscopic calculations. Previ-
ous microscopic calculations favor A0 > 0 for the 45◦-twisted
bilayer cuprates [33,34]. In the next section, we shall do a mi-
croscopic calculation to determine the sign of the coefficient
A0 for a TB-QC made from two monolayers described by the
honeycomb lattice Hubbard model which hosts the f -wave
SC. It would be shown that the f + i f chiral TSC would be
obtained for this TB-QC.

III. MICROSCOPIC CALCULATIONS

In this section, we provide an example to demonstrate the
universal conclusion obtained on the above, which is different
from the known one, i.e., the 45◦-twisted bilayer cuprates.
Here we choose the honeycomb lattice as an example for
n = 6, and study the Hubbard model. We shall first study
the pairing symmetry on a monolayer by the random-phase-
approximation (RPA) approach. It will be seen that in the
phase diagram obtained, there exists a doping regime in which
the f -wave SC is the leading pairing symmetry. Then we
study the 30◦-twisted bilayer system of the lattice. Through
the microscopic framework developed previously [33], we
shall obtain the band structure of this TB-QC. Using the
RPA approach, we shall further study the pairing state of the
bilayer for a typical doping point at which the monolayer
hosts the f -wave pairing symmetry. Consequently, our results
unambiguously yield the f + i f chiral TSC state for this
TB-QC.

A. The f -wave pairing for the monolayer

Let’s consider the following monolayer honeycomb-lattice
Hubbard model with nearest-neighbor (NN) and next-nearest
-neighbor (NNN) hopping terms:

H = −t
∑
〈i,j〉σ

c†
iσ cjσ + H.c. − t ′ ∑

〈〈i,j〉〉σ
c†

iσ cjσ + H.c.

+U
∑

i

ni↑ni↓. (9)

FIG. 2. Results for the monolayer honeycomb lattice. (a) Band
structure along the high-symmetry lines. (b) FS for δ = 0.17 hole
doping. (c) The λ ∼ δ relations for various leading pairing symme-
tries at U = 0.3t . The dashed line marks the doping level δ = 0.17.
(d) The distribution of the gap function for the f -wave SC on the FS.

The corresponding hopping parameters t, t ′ satisfy t ′ = 0.1t .
For the Hubbard interaction parameter U , we have taken a
typical U = 0.3t friendly for the RPA calculations. The result
for larger U below the critical one for the spin density wave
instability is qualitatively the same.

The band structure of the model in the absence of U is
shown in Fig. 2(a) along the high-symmetry lines, and the
Fermi surface (FS) for a typical hole doping δ = 0.17 is
shown in Fig. 2(b). Obviously, Fig. 2(b) illustrates a sextuple
symmetric FS including two hole pockets centering around
the K points. Using the standard multiorbital RPA approach
[48–51], we obtain the largest pairing eigenvalue λ and the
corresponding pairing eigenvector for each pairing symmetry
for a given doping level. Here λ is related to the Tc via
Tc ∝ e− 1

λ , and therefore the pairing symmetry with the largest
λ is the leading one. The relative pairing gap function of the
leading pairing symmetry is given by the normalized pairing
eigenvector.

The doping δ dependence of the largest pairing eigenvalue
λ for various leading pairing symmetries including the nonde-
generate s wave, the degenerate (px, py ) wave, the degenerate
(dx2−y2 , dxy) wave, and the nondegenerate f wave are shown
in Fig. 2(c). Clearly, the f -wave pairing occupies the doping
regime δ ∈ (0.1, 0.17) to be the leading pairing symmetry,
which is qualitatively consistent with Ref. [22]. The distri-
bution of the gap function for the obtained f -wave pairing
is shown in Fig. 2(d) on the FS. This gap function changes
sign with every 60◦ rotation, and it hosts six nodes along the
Brillouin zone (BZ) diagonal direction.

B. The f + i f -wave pairing for the TB-QC

Then let’s stack two monolayers described by Eq. (9) by
the twist angle 30◦to form a TB-QC. The total Hamiltonian
now reads

H = −
∑
ijσ

tijc
†
iσ cjσ + U

∑
i

ni↑ni↓. (10)
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Here the index i labels all the sites belonging to both layers,
and tij represents the hopping integral between the sites i and
j which can be located in either the same or different layers.
For i and j located within the same layer, the formula of tij
has been given by Eq. (9). The formula of tij for the interlayer
hopping is given as [45]

tij = tijπ

[
1 −

(
Rij · ez

R

)2
]

+ tijσ

(
Rij · ez

R

)2

, (11)

with

tijπ = tπe−(Rij−a)/r0 , tijσ = tσ e−(Rij−d )/r0 .

Here, Rij is the length of the 3D vector Rij pointing from i to j,
and ez is the unit vector perpendicular to the layer. The param-
eters a ≈ 0.142 nm, d ≈ 0.335 nm, r0 ≈ 0.0453 nm, tπ = t ≈
2.7 eV, and tσ ≈ −0.48 eV denote the lattice constant, inter-
layer spacing, normalization distance, in-plane hopping, and
vertical hopping, respectively. For these parameters, we have
adopted the corresponding parameters for the 30◦-twisted bi-
layer graphene [45].

As the QC structure doesn’t possess translation symme-
try, the traditional band-structure theory cannot apply to the
electronic structure of this material. However, due to the
large twist angle, the interlayer hybridization is weak, and the
perturbational-band theory [33,40,41,52,53] is suitable to treat
with the electronic structure. To involve the e-e interaction,
we adopted the following revised perturbational-band theory
[33], developed previously by some of the authors of this
paper.

Concretely, we decompose the tight-binding part of the
Hamiltonian into the zeroth-order intralayer hopping term
H0 and perturbational interlayer tunneling term H ′. We first
diagonalize H0 in the k space to obtain its eigen state |kα(t/b)〉
and eigenenergy εt/b

kα . The H ′ can be written as a hybridization
form between top-layer state |kα(t)〉 and bottom-layer state
|qβ (b)〉. Consequently, for a given |kα(t)〉 state from the top
layer, only a few isolated |qβ (b)〉 states from the bottom layer
can couple with it, justifying the perturbational treatment.
Gathering all the |qβ (b)〉 related to |kα(t)〉, we can calculate
the perturbation-corrected eigenstate and eigenenergy brought
about by the H ′ term numerically, which are labeled as |k̃α(t)〉
and ε̃t

kα . Similarly, we get |˜qβ (b)〉 and ε̃
bβ
q . We have checked

that different | ˜kα(μ)〉 thus obtained are almost mutually or-

thogonal, qualifying {| ˜kα(μ)〉} as a good set of single-particle
bases to facilitate the succeeding studies involving e-e inter-
action.

The obtained band structure for the TB-QC is shown in
Fig. 3(a), in comparison with the two uncoupled band struc-
tures from the two separate monolayers, and the FS for the
δ = 0.17 hole doping is shown in Fig. 3(b). The most promi-
nent feature at the low hole-doping regime lies in that the
two uncoupled bands from the two separate layers cross at
the X point (or more generally on the �-X line) and strongly
hybridize there, after which the two bands are split into the
lower band and the higher band. For the hole doping level
δ = 0.17 studied here, only the higher band crosses the Fermi
level, leading to a dodecagonal-symmetric FS, as shown in
Fig. 3(b).

FIG. 3. Results for the 30◦-twisted bilayer honeycomb lattice.
(a) Band structure along the high-symmetry lines: solid (dashed)
lines for the coupled bilayer (two uncoupled monolayers). (b) FSs
for δ = 0.17 hole doping. The colors in (a) and (b) represent layer
components. (c) The λ ∼ U

t relations for various leading pairing
symmetries at δ = 0.17 hole doping. (d) Mixing-phase-angle θ de-
pendence of the energy for the degenerate f -wave pairings for
U = t . KbT ≈ 0.5|�(0)|, where �(0) is the gap function at zero
temperature.

When the Hubbard interaction is considered, we adopt
the standard multiorbital RPA approach by using the above
perturbation-corrected band structure. Considering only intra-
band pairing between opposite momenta, we get the effective
BCS Hamiltonian. Under the mean-field (MF) treatment, we
can obtain the following linearized gap equation near the
superconducting Tc [48]:

− 1

(2π )2

∑
νβ

∮
dq‖

V μν

αβ (k, q)

v
νβ
F (q)

�νβ (q) = λ�μα (k), (12)

where V μν
αβ (k, q) is the effective pairing interaction given in

Ref. [33]. This equation is solved to yield the largest pair-
ing eigenvalue λ and corresponding eigenvector �μα (k). The
former and latter determine the Tc and the gap function,
respectively.

The U/t dependence of the largest pairing eigenvalue λ

for various pairing symmetries are shown in Fig. 3(c). The
doping level is fixed at δ = 0.17 hole doping, at which the
f -wave pairing is the leading pairing symmetry for the mono-
layer. Due to the classification according to the IRRPs of
the D6d point group, there can be nondegenerate s, i, i′, and
i ∗ i′ wave pairing symmetries and two-component (px, py),
(dx2−y2 , dxy), ( fx3−3xy2 , f3x2y−y3 ), (gx4+y4−6x2y2 , gx3y−xy3 ), and
(hx5−10x3y2+5xy4 , h5x4y−10x2y3+y5 ) wave pairing symmetries for
this TB-QC. Here we only show the several leading pairing
symmetries.

From Fig. 3(c), the degenerate ( fx3−3xy2 , f3x2y−y3 ) wave
pairing symmetry is the leading pairing symmetry for all the
U/t values shown. Note that although the leading pairing sym-
metry for the monolayer system and the 30◦-twisted bilayer
one is both the f wave carrying pairing angular momentum
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FIG. 4. Distributions of the obtained pairing gap functions on the
FS of the 30◦-twisted bilayer honeycomb lattice. The distributions of
the gap functions of the obtained fx3−3xy2 and f3x2y−y3 wave pairings
are shown in (a) and (b), respectively. The distributions of the am-
plitude and the phase of the gap function of the f + i f wave pairing
state obtained are shown in (c) and (d), respectively. The hole doping
level is δ = 0.17 and the interaction parameter is U = t .

three, it is nondegenerate for the former case and degenerate
for the latter case. The reason lies in that the point group
has been enlarged from D6 for the former case to D6d (iso-
morphic to D12) for the latter case, and the f wave belongs
to the B2 and E6 IRRPs for the two cases, respectively. The
distributions of the pairing gap functions for the degenerate
fx3−3xy2 and f3x2y−y3 wave pairing symmetries are shown on
the FSs in Figs. 4(a) and 4(b), respectively. While both f wave
pairing gap functions change sign with every 60◦rotation, they
possess different symmetric and antisymmetric axes, as well
as different nodal lines. Clearly, the two gap functions are
mutually related by 30◦ rotation.

The two degenerate pairing components of the f wave
pairing possess the same Tc, and would be mixed below Tc.
We mix them as 1 : eiθ to minimize the free energy. The free
energy is expressed as

F = KbT ln[tr(e−βĤ )]

= E0 − 2KbT
∑
kα

ln(1 + e−βEkα ), (13)

where E0 means the ground states energy and Ekα =√
(εkα − μ)2 + |�kα|2 is the quasiparticle excitation energy,

β = 1/(KbT ). Here we have set U = t instead of U = 0.3t
so that the condensation energy is obviously larger than the
machine accuracy, and KbT ≈ 0.5|�(0)|, where �(0) means
the gap function at zero temperature. Consequently, the E (θ )
function shown in Fig. 3(d) is minimized at θ = ±π/2, lead-
ing to the fx3−3xy2 ± i f3x2y−y3 ( f + i f for abbreviation) wave
pairing state, consistent with the G-L theory. The distributions
of the amplitude and phase of the gap function for the obtained
f + i f wave pairing state are shown in Figs. 4(c) and 4(d),
respectively.

1×10-4

5×10-5

FIG. 5. Topological properties of the obtained f + i f wave chi-
ral TSC on the 30◦-twisted bilayer honeycomb lattice. (a) The
real-space distribution of the squared amplitude of the wave function
of a typical Majorana zero-energy state. (b) The real-space distribu-
tion of the spontaneous super current. The unit of the spontaneous
super current is the hopping parameters t . The doping level and the
interaction parameter are the same as those in Fig. 4.

C. Topological properties

The revised perturbational-band theory based microscopic
framework adopted here possesses clear advantages over the
real-space approaches in the study of the topological proper-
ties of TSCs in the TB-QC. In the weak-pairing limit, which
applies to most superconductors including the TB-QCs stud-
ied here, the Chern number for a fully gapped pairing state
is determined by the winding number of the pairing phase
around the FS [54,55]. As shown in Fig. 4(c), the gap function
of the f + i f wave pairing state is fully gapped, which pro-
vides the condition for the realization of TSC. Furthermore,
Fig. 4(d) shows that the distribution of the pairing phase
repeats three times for each run around the FS, leading to
the winding number three. Consequently, the Chern number
is three. Therefore, we have obtained here the chiral f + i f
wave TSC with nontrivial high Chern number three.

Usually, a chiral TSC is accompanied with Majorana chi-
ral Fermion states and spontaneous chiral super current on
the boundary. To study such topological properties, we take
an open boundary condition which respects the dodecagonal
symmetry of the TB-QC, as shown in Fig. 5. Then, setting
the obtained f + i f wave pairing gap function as the input
of the BCS MF Hamiltonian, we diagonalize the Hamilto-
nian, and obtain the spectrum and wave functions for the
Bogoliubov quasiparticles. Consequently, the real-space dis-
tribution of the squared amplitude of the wave function of
a typical zero-energy Bogoliubov quasiparticle is shown in
Fig. 5(a). Obviously, the Majorana chiral Fermion mainly
distributes on the boundary of the TB-QC. Meanwhile, we cal-
culate the real-space distribution of the current. Consequently,
there exists spontaneous chiral super current which propagates
along the boundary of the TB-QC, as shown in Fig. 5(b). In
Appendix B, we provide the calculation process on solving
the Majorana zero-energy state and spontaneous supercurrent
distribution.

IV. DISCUSSION AND CONCLUSION

In conclusion, we propose a general scheme to realize chi-
ral TSCs from nontopological SCs through the “twistronics.”
Briefly, taking an n-fold symmetric monolayer which hosts
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nontopological SC with pairing angular momentum L = n/2,
the corresponding TB-QC would host chiral TSC with the
same pairing angular momentum. Besides the known example
of acquiring d + id TSC in the 45◦-twisted bilayer cuprates,
here we propose another example in which we can get the
f + i f TSC in a TB-QC made of two D6 symmetric mono-
layers which carry the f wave pairing.

It is worth discussing the emergence of f wave pairing
in monolayer or bilayer graphene. In the case of weak re-
pulsive electron-electron interaction considered here, the SC
is induced by the Kohn-Luttinger mechanism, under which
the electrons exchange spin fluctuations to acquire effective
attraction to form Cooper pairs which condense to form SC.
The propagator of the spin fluctuation is the spin susceptibil-
ity. The characteristic wave vector of the spin fluctuation is
determined by the momentum at which the spin susceptibility
attains its maximum. In cases where the FS hosts good nest-
ing, the nesting vector will be the maximal momentum of the
spin susceptibility, and hence, the characteristic wave vector
of the spin fluctuations. In our study, however, we consider the
hole-doping level 0.17 for the graphene. The FS in this case
is a circular pocket around the � point. There is no nesting
for this FS. Consequently, the spin susceptibility has a weak
maximum at the � point, implying a ferromagneticlike spin
fluctuation. Mediated by such ferromagneticlike spin fluctua-
tions, the triplet SC is formed.

Because of the weak SOC in the material, our Hamilto-
nian does not consider the SOC, and the system satisfies the
spin SU (2) symmetry. Protected by this symmetry, the three
channels of the spin-triplet SC are exactly degenerate. We also
try to add a small Kane-Mele term to consider SOC, and it is
found that SC favors the equal-spin channels, |↑↑〉 or |↓↓〉,
indicating that the chiral f wave admits the half quantum vor-
tex solutions which can host a non-Abelian Majorana mode at
the vortex core.

Note that the TB parameters adopted in our model are the
same as those for the 30◦-twisted bilayer graphene. However,
the largest U/t adopted in Fig. 3(c) is only about one, less
than the real value of about 2 ∼ 3, because the realistic U/t
has gone beyond the range that can be treated in the RPA
approach. In Ref. [22], the functional renormalization group
based study reveal that the f wave pairing can indeed take
place in the low hole-doped graphene with realistic interaction
parameters. Then, from our universal G-L theory, the f + i f
wave chiral TSC would indeed be realized in the low hole-
doped 30◦-twisted bilayer graphene.

Although it is difficult to realize accurate 30◦-twisted qua-
sicrystals in the experiment, the tiny twisted angle deviation
about 30◦is unavoidable. However, as the topological phase,
the f + i f wave chiral TSC we studied is very robust to the
tiny twisted angle deviations, so the tiny twisted angle devia-
tion in material preparation do not affect our conclusions.

In cuprates, it has been predicted [33,34] that the extent
of the topological phase around 45◦ is set by the strength of
the interlayer tunneling. Experimentally, physics related to the
interlayer tunneling has been detected in the cuprates. The
structure we studied here should be similar to cuprate.

Note added. During the preparation of this manuscript,
we became aware of an independent recent work [56]
which reported similar results on chiral f + i f ′ wave

superconductivity in a different context of maximally twisted
double-layer spin-triplet valley-singlet superconductors.
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APPENDIX A: G-L THEORY WITH THREE
SPIN-TRIPLET CHANNELS

In this section, we rederive the G-L theory but consider
three spin-triplet channels. The mean field Hamiltonian with
three spin-triplet channels is expressed as

H = HT B +
∑

kαμσ1σ2

cμ†
kασ1

cμ†
−kασ2

(�σ · �dμ)(iσy)�μ
α (k) + H.c.,

(A1)

where �dμ is the complex three-dimensional vector and μ =
(t,b) is the layer index. The symmetry-allowed free energy F
as function of �dt/b can be decomposed into the monolayers
F0(|�dμ|2) term and the IJC FJ term as [34–37]

F (�dt, �db) = F0(|�dt|2) + F0(|�db|2) + FJ (�dt, �db). (A2)

The spin rotation symmetry requires that only dot products
of the vectors �dt/b exist in the free energy expression. The first-
order FJ term should be written as

F (1)
J (�dt, �db) = −A(�dt · �d∗

b + c.c.). (A3)

Similarly, according to Eq. (7), the invariance of F under
C̃1

2n requires A = 0, indicating that the first-order IJC should
vanish in the TB-QC. Therefore, the second-order IJC should
be considered,

F (2)
J (�dt, �db) = λ1|�dt · �db|2 + λ2|�dt · �d∗

b|2

+ λ3(�d∗
t · �d∗

t )(�db · �db) + c.c.

+ λ4(�d∗
t · �db)(�d∗

t · �db) + c.c. (A4)

Equation (A4) is more complicated than Eq. (8). We not only
need to determine the phase difference between two complex
vectors �dt/b, but also need to determine the relative orientation
of �dt/b. For the phase difference between two complex vectors,
Eq. (A4) is minimized at the phase difference equal to ±π

2
for λ3 + λ4 > 0, or ±π for λ3 + λ4 < 0. For the relative
orientation of the two vectors, (A4) is minimized at �dt ⊥ �db

for λ1 + λ2 + |λ4| > 0, or �dt // �db for λ1 + λ2 + |λ4| < 0. In
the following microscopic calculation, we fixed the phase
difference as π

2 , the relative orientation ψ of the two vectors is
shown in Fig. 6(a), and calculated the free energy as a function
of ψ . As shown in Fig. 6(b), the free energy is minimized
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FIG. 6. (a) The orientation of the two vectors �dt/b. We fixed �dt in
the x axis and �db in the xy plane. (b) The free energy as the function
of the relative orientation ψ for U = t . we fixed the phase difference
as π

2 and KbT ≈ 0.5|�(0)|, where �(0) is the gap function at zero
temperature.

at the two vectors are parallel, which indicates that the G-L
analysis in the text is reasonable.

APPENDIX B: THE CALCULATION DETAIL
OF THE MAJORANA ZERO-ENERGY STATE

AND SPONTANEOUS SUPER CURRENT

Appendix B provides the calculation process on solving
the Majorana zero-energy state and spontaneous supercurrent
distribution. We transform the MF Hamiltonian into real space
and get the BdG Hamilton matrix as

HBdG =
∑

kμα,σ

εμα (k)c†
kμασ ckμασ

+
∑
kμα

(
�μα (k)c†

kμα↑c†
−kμα↓ + H.c.

)
= (c†

i↑ ci↓)

(
−t − μc �̃

�̃† t + μc

)(
ĉi↑
ĉ†

i↓

)
, (B1)

with

�̃i j = 1√
2

∑
k,α

(ξi,kαξ ∗
j,kα�kα + ξ ∗

i,kαξ j,kα�kα ).

Here μc is chemical potential, and ξi,kα denotes the wave
function. We adopt the open boundary condition, and the
eigenstates of Eq. (B1) with the eigenvalues close to zero
are the Majorana zero-energy state. We show a typical zero-
energy topologically protected fermionic mode in Fig. 5(a).

The α component (α = x, y) of the vectorial current oper-
ator Ĵi at the site i is defined as

Ĵiα[A] = −δĤ[A]

δAiα
= −δĤTB[A]

δAiα
, (B2)

where A is the vector potential, which appears in Ĥ[A]
through a modification of the ĤTB into

ĤTB[A] = −
∑
ijσ

tij exp

(
i
∫ j

i
A · dl

)
c†

iσ cjσ . (B3)

For calculating spontaneous superfluid density, the field A
tends to 0. In such a limit, we can approximate Eq. (B3) as

ĤTB[A] ≈ −
∑
ijσ

tij[1 + i(Ai + Aj) · Rij/2

− [(Ai + Aj) · Rij)]
2/8]c†

iσ cjσ . (B4)

Substituting Eq. (B4) to Eq. (B2), we obtain the formula of
the α component of the spontaneous current operator,

lim
A→0

Ĵiα[A] = i

2

∑
lσ

tilRil,αc†
iσ clσ + H.c., (B5)

where Ril,α is the α component of the relative position
Ril ≡ rl − ri.
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