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Field-resilient superconductivity in atomic-layer crystalline materials
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A recent study [S. Yoshizawa et al., Nat. Commun. 12, 1462 (2021)] reported the occurrence of field-resilient
superconductivity, that is, enhancement of the in-plane critical magnetic field H ||

c2 beyond the paramagnetic
limiting field, in atomic-layer crystalline (

√
7 × √

3)-In on a Si(111) substrate. The present article elucidates
the origin of the observed field-resilient noncentrosymmetric superconductivity in this highly crystalline two-
dimensional material. We develop the quasiclassical theory of superconductivity by incorporating the Fermi
surface anisotropy together with an anisotropic spin splitting and texture specific to atomic-layer crystalline
systems. In Si(111)-(

√
7 × √

3)-In, a typical material with a large antisymmetric spin-orbit coupling (ASOC),
we show an example where the combination of the ASOC and disorder effect suppresses the paramagnetic
depairing and can lead to an enhancement of H ||

c2 compared to an isotropic system only when a magnetic field
is applied in a particular direction due to an anisotropic spin texture. We also study the parity-mixing effect
to demonstrate that the enhancement of H ||

c2 is limited in the moderately clean regime because of the fragile
s + p-wave pairing against nonmagnetic scattering in the case of the dominant odd-parity component of a pair
wave function. Furthermore, from analysis of the transition line, we identify the field-resilience factor taking
account of the scattering and suppression of paramagnetic effects and discuss the origin of the field-resilient
superconductivity. Through fitting of the H ||

c2 data, the normal-state electron scattering is discussed with a prime
focus on the role of atomic steps on a Si(111) surface.

DOI: 10.1103/PhysRevB.108.064504

I. INTRODUCTION

Highly crystalline atomic-layer materials are currently at-
tracting significant research interest as a new phase of matter
associated with two-dimensional (2D) systems [1–3]. The
past decade has witnessed rapid progress in microfabrication
technologies and atomic-layer materials research, as well as
the development and integration of measurement techniques
applicable at ultralow temperatures and ultrahigh vacuums.
These advances have integrated superconductivity (SC) re-
search and surface science, enabling the exploration of 2D
SC by measuring the superconducting properties of highly
crystalline atomic-layer materials.

Previous studies into 2D SC have been extensively con-
ducted using ultrathin amorphous or highly disordered metal
films [4–8]. In contrast to these systems, highly crys-
talline metal or alloy atomic-layer systems are fabricated on
the reconstructions of semiconductor surfaces. The single-
atomic-layer SC of Pb and In epitaxially grown on Si(111)
surfaces has been observed by scanning tunneling spec-
troscopy [9]. Furthermore, a robust supercurrent was observed
on a macroscopic scale by electron transport measurements
on a reconstruction of the Si(111) surface with adsorbed In
atoms [Si(111)-(

√
7 × √

3)-In] [10]. Subsequently, the SC of

*y.higashi@aist.go.jp

the single-atomic-layer alloy Si(111)-(
√

3 × √
3)-Tl, Pb was

confirmed by electron transport measurements [11]. Recently,
the diamagnetic response of SC for Si(111)-(

√
7 × √

3)-In
was reported as well [12]. Herein, the

√
7 × √

3 or
√

3 × √
3

indicates the enlarged ratio of the surface superstructure unit
cell to the bulk silicon crystal one.

Because the spatial inversion symmetry is intrinsically
broken on a semiconductor substrate surface, heavy-element
atomic layers on top of substrates accommodate spin-split
energy bands owing to spin-orbit coupling (SOC) [13–16],
which is referred to as antisymmetric SOC (ASOC) in the
context of noncentrosymmetric SC [17]. Hence, the Fermi
surface (FS) is allowed to split into two by lifting the spin
degeneracy, and parity mixing of the pair wave function must
occur, although its realization depends on the material param-
eters [18–20]. Indeed, spin-split metallic energy bands in the
normal state have been observed by angle-resolved photoelec-
tron spectroscopy (ARPES) for Si(111)-(

√
3 × √

3)-Tl,Pb
near the Fermi energy εF, with maximum energy splitting
widths of 250 and 140 meV (∼103|Δ|) for the Σ1 and Σ2

bands, respectively [11,21], where |Δ| denotes the supercon-
ducting gap. Regarding Si(111)-(

√
7 × √

3)-In, while the FS
was observed by ARPES, spin-split energy bands were not
because of the limited momentum resolution [22]. Recently,
spin polarization on the butterfly-shaped FS was confirmed
by spin-resolved ARPES, and the spin texture on the FS
suggests a nonideal Rashba ASOC associated with the lower
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point group symmetry C1h at the surface [23]. The maximum
observed energy splitting at εF is 87 meV (∼102|Δ|), which is
consistent with the results of density functional theory (DFT)
calculations [23,24].

Meanwhile, the magnetic properties of atomic-layer SC
have also been revealed. Suppression of paramagnetic depair-
ing due to the Zeeman-type ASOC in Ising superconductors
such as MoS2 leads to significant enhancement of the in-
plane critical field at zero temperature H ||

c2(T ≈ 0), giving a
maximum value in excess of 50 T [25]. For isotropic Rashba
ASOC [26,27], H ||

c2 is limited to
√

2HP [28], where HP is
the conventional Pauli-limiting field. However, experimen-
tal results suggest H ||

c2 values well above HP for Si(111)-
(
√

7 × √
3)-In [24].

Investigation of the influence of Pauli paramagnetism on
the magnetic properties was pioneered by Maki, who scruti-
nized the role of spin-orbit scattering [29]. Several theoretical
studies have elucidated the T − H phase diagram for isotropic
Rashba SC in the strong SOC regime to demonstrate the
H ||

c2 enhancement upon increasing the density of Born scat-
terers [30–32] or introducing helical and stripe modulations
[33–35]. For an arbitrary SOC strength, the enhancement of
H ||

c2 under a helical modulation is shown in the dirty limit [36].
While most previous theories have been applied to

isotropic systems [19,20,27,30–33,35–41], there are lim-
ited examples of their application to anisotropic systems
such as bulk noncentrosymmetric crystals [42–44], oxide-
heterostructure interfaces [45,46], and highly crystalline
atomic-layer materials [25,47]. Highly crystalline atomic-
layer materials possess anisotropic FSs that have ever been
clearly observed with a spin texture structure. Because
highly disordered alloys and amorphous thin films lack an
anisotropic FS, this is an important feature for understanding
the paramagnetic properties of atomic-layer SC. Furthermore,
spin texture is not incorporated into the equation to determine
H ||

c2 [29,48]. Therefore, the conventional isotropic description
is unsatisfactory for explaining the H ||

c2 enhancement observed
in highly crystalline atomic-layer superconductors.

In this study, by incorporating the anisotropic FS with spin
texture obtained by DFT calculations and the parity-mixing
effect, we develop the quasiclassical theory of SC by extend-
ing it to highly crystalline 2D superconductors. We apply
the developed theory to the SC in Si(111)-(

√
7 × √

3)-In to
demonstrate the enhancement of H ||

c2(T ≈ 0) to above
√

2HP,
that is, the occurrence of magnetic-field resilience. The en-
hancement of H ||

c2(T ≈ 0) compared to an isotropic system
results from the combination of the ASOC and disorder effect.
It is not always present, but depends on the in-plane field
direction due to an anisotropic spin texture. We also compare
the numerical results with the available experimental data for
H ||

c2(T ≈ Tc) in Si(111)-(
√

7 × √
3)-In for vicinal substrates

and discuss the normal-state electron scattering off atomic
steps.

The remainder of this paper is organized as follows. In
Sec. II, we present the anisotropic FSs and spin texture on
the butterfly-shaped FSs obtained by DFT calculations for
Si(111)-(

√
7 × √

3)-In. Section III is devoted to the self-
consistent equations based on the quasiclassical theory in the
strong SOC regime, which is applicable to highly crystalline

FIG. 1. (a) Anisotropic Fermi surface of Si(111)-(
√

7 × √
3)-In,

where the color scale indicates the energy splitting width |ξ II
k − ξ I

k|.
(b) Spin texture (Sx (k), Sy(k)) on the FSs with DOSs an order of
magnitude larger than those for the other FSs. The solid line indicates
the first Brillouin zone.

2D atomic-layer materials. In Sec. IV, we examine a parallel
critical field and discuss the origin of the field resilience in
Si(111)-(

√
7 × √

3)-In, and we also compare the numerical
results for H ||

c2 with the experimental data to estimate the
normal-state electron scattering rate. In Sec. V, the possible
orbital effect and normal-state electron scattering are dis-
cussed with a focus on the role of atomic steps. Finally, a brief
summary is provided in Sec. V.

II. ANISOTROPIC SPIN SPLITTING AND SPIN TEXTURE

Figure 1 depicts the energy splitting width and spin tex-
ture on the FS within the Brillouin zone for Si(111)-(

√
7 ×√

3)-In, obtained by DFT calculations with SOC. These calcu-
lations were performed with the Quantum ESPRESSO suite of
codes [49]. We employed the augmented plane wave method,
and used the local density approximation for the exchange
correlation. The crystal structure was modeled by a repeated
slab, and the geometry optimization was performed without
including the SOC. The resulting atomic coordinates show
good agreement with diffraction measurements [50]. Fur-
ther details on the computational conditions can be found in
Refs. [24,50].
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TABLE I. Densities of states (DOSs) at the Fermi level.

Band index DOS (Å−2 eV−1) Proportion (%)

396 5.46 × 10−3 5.92
397 5.35 × 10−3 5.80
398 9.45 × 10−3 10.3
399 7.56 × 10−3 8.20
400 2.33 × 10−2 25.2
401 2.07 × 10−2 22.4
402 6.92 × 10−3 7.51
403 6.14 × 10−3 6.66
404 3.61 × 10−3 3.91
405 3.72 × 10−3 4.04

The spin-split bands due to the SOC are denoted ξ I,II
k , as

described in more detail in Sec. III. As shown in Table I, the
densities of states (DOSs) at εF for bands 400 and 401 are
an order of magnitude larger than those for the other FSs. The
proportions of the DOSs at εF to the total DOSs are 25.2% and
22.4% for bands 400 and 401, respectively. Thus, we focus
on a single pair of the split FSs originating from bands 400
and 401 as shown in Fig. 1(b). This simplification is reason-
able because the selected FSs dominate the superconducting
properties, while the other FSs have an order of magnitude
fewer states per unit energy contributing to the SC. The arrows
on the FSs in Fig. 1(b) indicate the in-plane spin components
(Sx(k), Sy(k)).

Spin-split FSs in Rashba systems shift in an in-plane field,
resulting in phase modulation of the pair wave function in
space in the presence of a DOS difference between the split
FSs (i.e., helical phase). The modulation wave number is
evaluated via q = 2δq0 with q0 = m∗μBH/h̄vF [38] and δ =
(NI − NII )/2N0 ≈ 0.0589 the DOS weighting factor for the
FSs in Fig. 1(b). NI,II are the DOSs at εF for the spin-split
bands and N0 = (NI + NII )/2. Correspondingly, the wave-
length at 1 T is estimated as λ = 2π/q ∼ 867 µm by adopting
m∗ = 1.14me and εF = 6.60 eV in the free electron model,
which gives rise to the material parameters kF = 1.41 Å−1

and vF = 1.43 × 106 m/s obtained by DFT calculations for
Si(111)-(

√
7 × √

3)-In. The estimated λ is several hundred
micrometers at several teslas, which is comparable to the
sample size. Therefore, we neglect the helical modulation and
focus instead on a uniform state in the long-wavelength limit
to evaluate H ||

c2. This uniform state may survive against scat-
terers such as atomic defects in (

√
7 × √

3)-In or the atomic
steps inherent to a Si(111) substrate surface.

III. SELF-CONSISTENT EQUATIONS IN THE STRONG
SPIN-ORBIT COUPLING LIMIT

We start with the normal-state Hamiltonian for 2D Rashba
systems exposed to an in-plane field H ,

Ĥn = ξkσ̂0 + [λk + μBH] · σ̂, (3.1)

where ξk ≡ εk − μ is the electron band energy measured from
the chemical potential μ, λk is the vector characterizing the
ASOC in energy units, μB is the Bohr magneton, and σ̂ =

(σ̂x, σ̂y, σ̂z )� is the vector of the Pauli spin matrices. The spin
quantization axis is parallel to H . The vector potential is disre-
garded because of the quenched orbital motion of electrons in
the present configuration. Throughout the paper, ·̂ denotes the
2 × 2 matrix in spin space. From now on, we set h̄ = kB = 1.

By transforming Eq. (3.1) into the Hamiltonian in the band
basis where Ĥn in the absence of a magnetic field is diagonal,
we obtain the eigenenergy for each band split owing to the
ASOC:

E I,II
k ≈ ξ I,II

k ± μBλ̄k · H, (3.2)

where ξ I,II
k ≡ ξk ± |λk| and λ̄k ≡ λk/|λk|. If we neglect the

off-diagonal components describing the interband scatter-
ing induced by the in-plane field, the model reduces to
the effective two-band model. By diagonalizing Eq. (3.1),
we also obtain the excitation energy [Eq. (3.2)] up to the
first order of |μBH|/|λk|. Herein, we assume |μBH|/|λk| �
1, which is met for the condition of atomic-layer su-
perconductors with a sufficiently large ASOC, |λk| 	 Tc.
The condition |μBH|/|λk| � 1 justifies the incorporation
of the Zeeman field into the quasiclassical theory as a
perturbation [41,51–54].

In the effective two-band model, we phenomenologically
view the vector characterizing the ASOC to be defined for
each band: λk → λl

k with l = I or II denoting the band index.
The ASOC is characterized through λl

k =
√

〈|λl
k|2〉kgl

k by the
antisymmetric orbital vector

gl
k = |
ξ l

k|√〈∣∣
ξ l
k

∣∣2〉
0

Sl
k∣∣Sl
k

∣∣ , (3.3)

which is set to be normalized as 〈(gl
k)2〉0 = 1 in ac-

cordance with an isotropic Rashba system. In Eq. (3.3),
|
ξ l

k|/
√

〈|
ξ l
k|2〉0 represents the anisotropy of the spin-

split energy relative to the typical energy scale of
the ASOC. Here, 〈· · · 〉0 denotes an average over the
FS in the absence of the ASOC and H: 〈· · · 〉0 ≡∫

dSl
F0(k)|vl

F0(k)|−1 · · · / ∫
dSl

F0(k)|vl
F0(k)|−1 with dSl

F0(k)
and vl

F0(k) the infinitesimal line element of the 2D FS and
the Fermi velocity in the absence of the ASOC and H , re-
spectively. |
ξ l

k| ≡ |ξ I
k − ξ II

k | is the energy splitting width.
The maximum spin-split energy is |
ξ 400| ≈ 84 meV and
|
ξ 401| ≈ 80 meV for the bands 400 and 401, respectively.
By adopting experimental value of the transition tempera-
ture T vicinal

c (0) ≈ 3.05 K at zero field for (
√

7 × √
3)-In on a

vicinal Si(111) surface, the maximum value of ASOC is esti-
mated as |
ξ 400|/T vicinal

c (0) ≈ 320 and |
ξ 401|/T vicinal
c (0) ≈

302 for the bands 400 and 401, respectively. The momentum-
dependent spin polarization vector is obtained as in Fig. 1(b)
through Sl

k = (1/2)〈� l
k|σ̂|� l

k〉 from the DFT calculations,
where |� l

k〉 is the eigenstate of Eq. (3.1) at H = 0.
The parity-mixed superconducting order parameters are

determined via the self-consistent equations (B30) and (B31),
which are suitable for equivalent FSs (i.e., infinitesimally
split FSs) in the weak-ASOC limit as proposed in Ref. [40].
However, in the strong-ASOC limit, the significantly split FSs
are no longer equivalent. Consequently, the average on the
FS should be taken for each FS. Thus, Eqs. (B30) and (B31)
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FIG. 2. Temperature dependence of an in-plane critical magnetic field oriented parallel to the (a) x and (b) y axes for s-wave pairing upon
varying the normal-state scattering rate Γn. The filled and open symbols represent the data for the FS of Si(111)-(

√
7 × √

3)-In and an isotropic
system, respectively. The difference in the DOSs between the two split FSs is set to δ = 0.

are recast as

ψs = πT

2

[nc(T )]∑
n=−[nc(T )]−1

[
λs{(1 + δ)〈 fI〉I + (1 − δ)〈 fII〉II} + λm

{
(1 + δ)

〈∣∣gI
k̃

∣∣ fI
〉
I − (1 − δ)

〈∣∣gII
k̃

∣∣ fII
〉
II

}]
, (3.4)

dt = πT

2

[nc(T )]∑
n=−[nc(T )]−1

[
λm{(1 + δ)〈 fI〉I + (1 − δ)〈 fII〉II} + λt

{
(1 + δ)

〈∣∣gI
k̃

∣∣ fI
〉
I − (1 − δ)

〈∣∣gII
k̃

∣∣ fII
〉
II

}]
, (3.5)

where [nc(T )] indicates the integer part of nc(T ) = (ωc/πT − 1)/2 with the cutoff frequency set to ωc = 7πTc0 for the numerical
calculations throughout the paper. Here, Tc0 ≡ (2ωceγ /π )e−1/λ, where γ = 0.577 . . . is the Euler constant and is determined via
1
λ

≡ ∑[nc(Tc0 )]
n=0 1/(n + 1/2). The quasiclassical Green’s functions gl and fl (l = I, II) are given in Appendix A. In the limit of

T → Tc, the coupling constants for the spin singlet and triplet attraction force channels are determined from the linearized gap
equation at H = 0 in the clean limit through

λs = 2λν − λm
{
(1 + δ)ν

〈∣∣gI
k̃

∣∣〉
I − (1 − δ)ν

〈∣∣gII
k̃

∣∣〉
II + (1 + δ)

〈∣∣gI
k̃

∣∣2〉
I + (1 − δ)

〈∣∣gII
k̃

∣∣2〉
II

}
2ν + (1 + δ)

〈∣∣gI
k̃

∣∣〉
I − (1 − δ)〈|gII

k̃
|〉II

, (3.6)

λt = 2λ − λm
{
2ν + (1 + δ)

〈∣∣gI
k̃

∣∣〉
I − (1 − δ)

〈∣∣gII
k̃

∣∣〉
II

}
(1 + δ)ν

〈∣∣gI
k̃

∣∣〉
I − (1 − δ)ν

〈∣∣gII
k̃

∣∣〉
II + (1 + δ)

〈∣∣gI
k̃

∣∣2〉
I + (1 − δ)

〈∣∣gII
k̃

∣∣2〉
II

, (3.7)

respectively, where λm is the coupling constant for the mixing
channel, ν = ψs/dt|T →Tc−0 is the parity-mixing ratio, and

1

λ
≈ ln

(
T

Tc0

)
+

[nc(T )]∑
n=0

2

2n + 1
. (3.8)

IV. NUMERICAL RESULTS

A. Transition line

We numerically solve Eqs. (B30) and (B31) [or Eqs. (3.4)
and (3.5)] for an isotropic [or Si(111)-(

√
7 × √

3)-In] FS
in an iterative manner to achieve self-consistency, 
Q <

1 × 10−6. Here, 
Q ≡ maxiωn [|Qnew(iωn) − Qold(iωn)|] with
Q(iωn) being ψs, dt , σg(iωn), or σf (iωn). We use the bisection
method for Re[ψs(dt )(T, H )] − ε = 0 to obtain the numerical
solutions of H ||

c2(T ) for 0.05Tc0 � T � 1.2Tc0. The numer-
ical solution at low temperature (T < 0.05Tc0) is regarded
as H ||

c2(0). The constant energy shift used in the bisection

method is always set to ε/Tc0 = 1 × 10−4. The DOS dif-
ference between the split FSs is set to δ = 0 in accordance
with a uniform state. In the presence of the DOS difference,
the contribution of the outer FS I originating from the band
400 with a larger DOS at εF becomes more prominent, and
therefore the spin structure on the outer FS I is more influential
for H ||

c2.
Figures 2(a) and 2(b) show the temperature dependence

of an in-plane critical magnetic field H ||
c2(T ) in the case of

an s-wave pairing for H || x̃ and H || ỹ, respectively. Here,
x̃ (ỹ) denotes the unit vector in the direction of the x (y)
axis, taken to be parallel to the kx (ky) direction in Fig. 1.
For both the Si(111)-(

√
7 × √

3)-In and isotropic FSs, H ||
c2

is enhanced with increasing Γn irrespective of the field di-
rection, in accordance with the results reported by Dimitrova
and Feigel’man for an s-wave pairing on an isotropic FS
[31]. No change in the superconducting transition tempera-
ture at zero field Tc(0) against nonmagnetic scattering reflects
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FIG. 3. Temperature dependence of an in-plane critical magnetic field oriented parallel to the x axis for the s + p-wave pairing upon
varying the normal-state scattering rate Γn. The filled and open symbols represent the data for the FS of Si(111)-(

√
7 × √

3)-In and an
isotropic system, respectively. The difference in the DOSs between the two split FSs is set to δ = 0. The parity-mixing ratio and the coupling
constant for the mixing channel are ν = 0.5 and λm = 0.1, respectively. The temperature and magnetic field are normalized by (a) Tc0 and (b)
Tc(0), respectively.

Anderson’s first theorem [55,56]. For 2D superconductors
such as ultrathin amorphous films, as the film thickness is
reduced, the disorder and quantum fluctuations of the su-
perconducting phase increase, forming localized unpaired
electrons, which lead to the suppression of Tc [4–6,57]. Here,
for the sake of simplicity, we disregarded such effects because
disorder is weak in a highly crystalline atomic layer judging
from the small value of the normal-state sheet resistance, and a
sharp transition to SC was observed by electron transport mea-
surements [24]. As shown in Fig. 2(a), for H || x̃, H ||

c2(T ) was
larger for the isotropic FS than for the Si(111)-(

√
7 × √

3)-In
FS. By contrast, as shown in Fig. 2(b), for H || ỹ, H ||

c2(T ) was
larger for the Si(111)-(

√
7 × √

3)-In FS than for the isotropic
FS over the entire temperature range. Thus, in the case of the
anisotropic FS, H ||

c2 is not always enhanced. The enhancement
depends on the relation between the field direction and the
spin structure on the FS.

Figures 3(a) and 3(b) present plots of H ||
c2(T ) normalized

by Tc0 and Tc(0), respectively, in the case of s + p-wave pair-
ing for H || x̃. Note that H ||

c2(T ) for ψs and dt show almost the
same profile, but the amplitudes of ψs and dt vary depending
on the parity-mixing parameters ν and λm. Here, they are set to
ν = 0.5 (i.e., dominant p-wave component dt) and λm = 0.1,
respectively. The variation of the transition line upon changing
ν and λm is discussed in Appendix C. As shown in Fig. 3(a),
nonmagnetic scattering is detrimental to Tc because of the
dominance of dt over ψs. More specifically, by examining the
linearized gap equation in the case of parity mixing, we notice
that the scale factors of the following quantities are different
as long as ν is finite:

1 + σg

ωn
= 1 + Γn

|ωn| ≡ η(ωn), (4.1)

1 + σf

ψs
= η(ωn)

(
1 + δ

ν

)
− δ

ν
. (4.2)

Therefore, the scale factors of Eqs. (4.1) and (4.2) in
the anomalous Green’s function do not cancel out, and
thus the nonmagnetic scattering affects Tc. Figure 3(b) shows

that the enhancement of μBH ||
c2/Tc(0) with increasing Γn re-

mains, but it is rather weak in the case of the dominant
p-wave pairing compared with the pure s-wave pairing [31]
[see Fig. 2(a)].

The clean-limit data for the isotropic FS (open squares)
in Fig. 3(b), μBH ||

c2(T ≈ 0)/Tc(0), show the Pauli-limiting
field for an isotropic Rashba system, which is estimated via√

2HP ≈ 1.77Tc(0)/μB with HP = √
2ψs/gμB as the con-

ventional Pauli-limiting field. We use the weak-coupling
Bardeen-Cooper-Schrieffer (BCS) ratio and the electronic g
factor, g = 2. Thus, H ||

c2(T ≈ 0) clearly exceeds
√

2HP. It
turns out that the H ||

c2(T ≈ 0) enhancement appears also in
the dominant p-wave case. The enhancement of H ||

c2(T ≈
0) is a result from both the anisotropic spin texture and
disorder effect.

In the case of H || ỹ (Fig. 4), μBH ||
c2/Tc(0) is also enhanced

with increasing Γn, but in the case of the anisotropic FS this
enhancement is suppressed, in contrast to the case of H || x̃.
The H ||

c2 enhancement is dependent on the in-plane field di-
rection, demonstrating that the anisotropic spin texture does
not always increase H ||

c2.
A slight upturn of H ||

c2 at low temperatures is observed in
Figs. 2–4 for Si(111)-(

√
7 × √

3)-In in the clean limit. Be-
cause this behavior is absent in the isotropic Rashba system, it
is ascribed to the anisotropic spin splitting and spin texture
as illustrated in Fig. 1. With increasing Γn, the anisotropic
feature is considered to be washed out, resulting in no upturn
of H ||

c2 as observed in the data for Γn = 0 in Figs. 2–4. An
upturn of H ||

c2 in the absence of helical modulation was also
reported in Ref. [46], although it was attributed to the orbital
degrees of freedom together with the Rashba SOC.

B. Magnetic-field resilience

The first equation for determining Hc2(T ) in superconduc-
tors with Pauli paramagnetism was derived by incorporating
the SOC only through the spin-orbit scattering time [29,48].
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FIG. 4. Temperature dependence of an in-plane critical magnetic field oriented parallel to the y axis for the s + p-wave pairing upon
varying the normal-state scattering rate Γn. The filled and open symbols represent the data for the FS of Si(111)-(

√
7 × √

3)-In and an
isotropic system, respectively. The difference in the DOSs between the two split FSs is set to δ = 0. The parity-mixing ratio and the coupling
constant for the mixing channel are ν = 0.5 and λm = 0.1, respectively. The temperature and magnetic field are normalized by (a) Tc0 and (b)
Tc(0), respectively.

Later, in the clean limit, an equation for Hc2(T ) with the
textured spin structure being explicitly incorporated was ob-
tained [20,37,58], thereby allowing the suppression of the
paramagnetic depairing by the SOC to be discussed. The
H ||

c2(T ) line was computed for the 2D Rashba model taking

account of the contribution that is not incorporated into the
impurity self-energy [31]. Below, we present the analytic
expression for H ||

c2(T ≈ Tc(0)) in the case of parity mixing,
taking account of both the impurity scattering and suppression
of paramagnetic depairing:

Tc(0) − Tc

Tc(0)
= ζ (3, 1/2 + γn)

4π2

μ2
B〈(ḡk̃ · H )2〉k̃

T 2
c (0)

+ λs − (1 + δ)[λs(1 + 〈|gk̃|〉/ν) + λm(〈|gk̃|〉 + 1/ν)]

λs(1 + δ)(λs + λm )(1 + 1/ν)
, (4.3)

where γn ≡ Γn/2πTc(0) and ζ (z, a) = ∑∞
n=0 1/(a + n)z (z ∈

C, a: constant) is the Hurwitz zeta function. Note that
Eq. (4.3) is derived by assuming that the FS is infinitesimally
split and |ḡk̃ · μBH/πTc| � 1. In Eq. (4.3), Tc(0) should be
read as the zero-field transition temperature without the parity
mixing and the DOS difference. For generic cases character-
ized by the antisymmetric orbital vector gk̃, the effective field
is Heff ≡ Hμ/Rμ with

Rμ ≡
[
ζ (3, 1/2 + γn)

7ζ (3)
〈g2

μ(k̃)〉k̃

]−1/2

(4.4)

for H || μ̃. Consequently, the Pauli-limiting field (|| μ̃) is de-
termined via Heff = HP as

HP
μ = RμHP. (4.5)

The physical meaning of Rμ is interpreted as the magnetic-
field resilience of SC for Hμ. The H ||

c2 enhancement from√
2HP is roughly judged from the condition that 〈g2

μ(k̃)〉k̃ <

1/2. The dependence of Rμ on Γn is plotted in Fig. 5. When
evaluating Eq. (4.4), we phenomenologically replace the av-
erage on the infinitesimally split FS 〈· · · 〉k̃ with that on the
significantly split FSs I and II 〈· · · 〉I,II to apply Rμ to the FS of
Si(111)-(

√
7 × √

3)-In (In/Si). Rμ increases monotonically
with respect to Γn, in accordance with the H ||

c2 enhancement
with increasing Γn. For H || x̃, the Rx values for both of the
In/Si FSs I and II are larger than Rμ for the isotropic Rashba

system. However, in the case of H || ỹ, the magnitude of Ry for
In/Si relative to that for the isotopic Rashba system depends
on the details of the FS and the spin texture, as reflected in
〈g2

y(k̃)〉I = 0.455 < 1/2 and 〈g2
y(k̃)〉II = 0.646 > 1/2.

In the absence of parity mixing (λm = 0 and ν → ∞)
and the DOS difference between the split FSs (δ = 0),
Eq. (4.3) for an isotropic 2D Rashba superconductor [ḡk̃ =
(− sin φk, cos φk, 0)] in the clean limit (γn = 0) reduces to the

FIG. 5. Dependence of the field-resilience factor Rμ on Γn for the
isotropic Rashba system and Si(111)-(

√
7 × √

3)-In (In/Si).
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FIG. 6. Comparison of the theoretically evaluated in-plane crit-
ical magnetic field for the s-wave pairing with the experimental
data for the (

√
7 × √

3)-In sample on a vicinal Si(111) surface. The
magnetic field is parallel to the y axis. The difference in the DOSs
between the two split FSs is δ = 0.0589.

result reported by Barzykin and Gor’kov [37]:

Tc(0) − Tc

Tc(0)
= 7ζ (3)

4π2

μ2
B(H/

√
2)2

T 2
c (0)

. (4.6)

Here,
√〈(ḡk̃ · H )2〉k̃ = H/

√
2 can be viewed as an effective

field for the isotropic Rashba SC. Thus, the enhancement of
the Pauli-limiting field is limited to

√
2HP.

C. Comparison with experimental H ||
c2(T ) data

In Fig. 6, the experimental H ||
c2(T ) data for Si(111)-(

√
7 ×√

3)-In are compared with the numerical data for an s-wave
pairing. The field direction is set to H || ỹ in accordance
with the experimental setup. For the pair of split FSs with
DOSs an order of magnitude larger than the others [see
Fig. 1(b)], the DOS difference is evaluated as δ = 0.0589 by
DFT calculations. By subtracting a perpendicular field com-
ponent [H⊥

c2(T ) ∝ Tc(0) − T ] from the experimental H ||
c2(T ≈

Tc(0)) data, we may compare the numerical calculation results
with the contribution from the in-plane field responsible for
paramagnetic depairing in the experimental data. The experi-
mental data of the parallel field contribution (dashed line in
Fig. 6) are in good agreement with the numerical data for
Γn/Tc(0) ≈ 5.8 in the case of an s-wave pairing. Assuming
the parabolic dependence T/Tc(0) = 1 − c[μBH/Tc(0)]2, we
identify the quadratic coefficients cexp and cnum for the exper-
imental and numerical H ||

c2(T ) data, respectively. Regarding
cnum for each Γn, we obtain cnum(Γn) by polynomial fitting.
By solving cnum(Γn) = cexp, we obtain the more precise value
of Γn/Tc(0) ≈ 5.9, which is consistent with the previous study
[31]. From the low-field data of H ||

c2(T ), one can quantitatively
estimate the normal-state scattering rate.

On the basis of Eq. (4.3), in the absence of parity mix-
ing (ν → ∞ and λm = 0) and the DOS difference (δ = 0),
the quadratic coefficient for an isotropic Rashba system is

obtained as

c(Γn) = ζ (3, 1/2 + γn)

8π2
. (4.7)

By solving c(Γn) = cexp, we obtain Γn/Tc(0) ≈ 1.5. Thus,
Eq. (4.3) somewhat underestimates Γn compared with the
numerically estimated value. This is because Eq. (4.3) is de-
rived by assuming infinitesimally split FSs, and thus strictly
speaking it is not directly applicable to a system in the large-
ASOC regime.

V. DISCUSSION

In the evaluation of H ||
c2 with the developed quasiclassical

theory in the strong-ASOC limit, we assume some addi-
tional approximations that ignore the following phenomena:
(a) phase modulation in the helical state, (b) localized un-
paired electrons due to disorders and quantum fluctuations in
2D systems, (c) scattering off atomic steps and interatomic-
terrace orbital motion. In the following, we first discuss
(c) and lastly give a physical picture of how the spin tex-
ture on the FS and the disorder support the field-resilient
superconductivity.

A. Interatomic-terrace orbital effect

The SC of Si(111)-(
√

7 × √
3)-In can be affected by pos-

sible orbital effects in an in-plane field in the case of high
atomic step density. For a vicinal substrate, the atomic step
density may be as high as approximately 20/500 nm [24].
Thus, the total atomic step height may reach several microm-
eters (∼100ξ ) over the sample size by assuming the same
height of approximately 0.3 nm [59] for all of the atomic
steps. For a vicinal substrate, we herein estimate the effective
coherence length as ξ ∼ 40 nm via 1/ξ = 1/ξBCS + 1/vFτel

using the following adopted parameters: Δ = 0.39 meV [60],
vF = 1.43 × 106 m/s (see Sec. II), and τel ∼ 30 fs [24], with
ξBCS = vF/πΔ denoting the BCS coherence length and τel

representing the elastic scattering time. Under these circum-
stances, the orbital motion of electrons may be allowed owing
to the sufficient thickness of the atomic terraces. An indium
atomic bilayer itself is considered not to be responsible for the
orbital motion under an in-plane field. How an in-plane critical
field depends on interatomic-terrace orbital effects currently
remains unresolved.

In the theoretical model, we assume a Si(111) substrate
with a low atomic step density, that is, an atomically flat plane
on a terrace that is as large as ξ . We also assume that the
field direction is parallel to the long dimension of the atomic
terraces to avoid possible interatomic terrace orbital effects,
although in reality there are several thousand atomic steps
over the sample size even when the field is parallel to the long
dimension of the atomic terraces because of the inevitable
error in the cutout angle of a Si(111) substrate. In this study,
for simplicity, we neglect the interatomic-terrace orbital effect
in the theoretical model to show the enhancement of H ||

c2,
suggesting that, from a theoretical perspective, the electron
scattering off atomic steps inherent to a Si(111) substrate
surface is not primarily responsible for the H ||

c2 enhancement.
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The scattering from disorder within the flat atomic terrace
plane may be more important for H ||

c2 enhancement.

B. Scattering rate via fitting analysis and electron transport

For a flat Si(111) substrate, there are three crystallographic
orientations in the

√
7 × √

3 structures [24], while for a vic-
inal substrate cut from bulk Si(111) with a misangle from
a certain direction, the crystallographic orientation of the
(
√

7 × √
3)-In is aligned in the same direction. The atomic

step density is higher on the vicinal surface than on the flat
surface, meaning that the density of electron scatterers is also
higher. Indeed, the rate of elastic electron scattering events in
the normal state, Γn, for (

√
7 × √

3)-In samples on the vicinal
substrate exhibits larger values. From the inelastic scattering
time evaluated by electron transport measurements for three
different samples [24], Γn falls in the range of Γn/Tc(0) =
17–27 for the flat substrate. By contrast, for the vicinal sub-
strate, Γn/Tc(0) = 32–45. The values of Γn estimated via the
normal-state sheet resistance are an order of magnitude larger
than the value of Γn/Tc(0) ≈ 5.9 obtained from the fitting
analysis of the low-field H ||

c2 data for the (
√

7 × √
3)-In sam-

ple on a vicinal Si(111) surface.
Electron transport measurements over the sample size in-

clude the contribution from the scattering off atomic steps on
the Si(111) surface. However, the theoretical model does not
explicitly incorporate atomic steps as a scattering source, and
instead disordered regions are assumed to be weak scatterers
and randomly distributed in the system. Thus, the value of
Γn evaluated via the electron transport measurements may
be overestimated as an indicator of the effects of disorder
on the SC of atomic-layer crystalline (

√
7 × √

3)-In. Within
atomically flat terraces, highly crystalline (

√
7 × √

3)-In may
be effectively much cleaner than observed from the electron
transport. Indeed, H ||

c2 in the case of the vicinal substrate is
not substantially different from the value for a flat substrate,
although the H ||

c2 enhancement is expected for the vicinal
substrate because of the increased number of scattering events
due to the higher atomic step density. This fact possibly sup-
ports the theoretical consideration regarding the effectively
small Γn within atomic terraces. In the present analysis, we
adopted Born-type scatterers to model weak disorder within
atomic terraces. At the atomic steps, we speculate that the
electron scattering is not simple forward scattering in the Born
limit. Instead, scattering with an arbitrary scattering phase
including backward scattering in the unitary limit may occur.
The influence of such a scattering process on H ||

c2 remains
unknown.

C. Physical picture of field-resilient superconductivity

We discuss the physics of the field-resilient SC. For sim-
plicity, we consider an s-wave paring on each split isotropic
FS without the DOS difference. In the limit of large SOC, the
split isotropic FSs are regarded as equivalent, and therefore
the average on each split FS can be merged. The impurity
self-energies are evaluated via the Green’s functions at the
zero field in the clean limit as σg ≈ Γn (ωn > 0) and σf ≈
(Γn/ωn)ψs. Keeping σf in the numerator of the anomalous

Green’s function fI,II, the linearized gap equation reads

1

λs
= 2πTc

∑
ωn>0

〈
1

ωn

1

1 + [ḡk̃ · μBH/(ωn + Γn)]2

〉
k̃

. (5.1)

We observe the complete suppression of the paramagnetic de-
pairing for ḡk̃ · μBH = 0, but even when ḡk̃ · μBH = 0, with
increasing Γn the influence of the magnetic field effectively
gets smaller to suppress the paramagnetic depairing. As de-
scribed in Refs. [24,45,61], this can be interpreted as follows.
Due to intraband nonmagnetic impurity scattering, the spin
quantization axis of electrons traveling in the k direction is
not fixed in the ḡk direction, but it is forced to rotate in the ḡk′

direction to partially escape from the paramagnetic depairing.
In the Rashba SC with the large ASOC under an in-plane
field, the intraband states (k, σ̂ · ḡk) and (−k, σ̂ · ḡ−k) pair up
with a finite energy difference to form the zero center-of-mass
momentum superconducting state. In the energy domain, due
to the impurity scattering the energy bands near the Fermi
energy have an energy broadening, allowing the states with
smaller energy differences to be paired up with the zero
center-of-mass momentum to higher magnetic fields. In this
way, the Rashba SC acquires the field resilience.

VI. SUMMARY

To study the SC in highly crystalline atomic-layer ma-
terials, we formulated the quasiclassical theory of SC in
the large-ASOC regime with the incorporation of parity
mixing, FS anisotropy, and spin texture. We applied the
developed theory to the atomic-layer crystalline material
Si(111)-(

√
7 × √

3)-In to calculate the in-plane critical mag-
netic field H ||

c2 upon varying the normal-state scattering rate
Γn. For Si(111)-(

√
7 × √

3)-In, we proceeded with the typical
scenario of possible H ||

c2 enhancement. In accordance with the
previous study [31], when Γn is increased, H ||

c2 was enhanced
in combination with the ASOC. We found that this trend holds
also in the case of parity mixing. Furthermore, we demon-
strated that the H ||

c2 enhancement is dependent on the field
direction, meaning that the anisotropic FS and spin texture
do not always enhance H ||

c2. To quantify the H ||
c2 enhancement

relative to the Pauli-limiting field for an isotropic Rashba
SC, we proposed the magnetic-field resilience of SC, which
incorporates impurity scattering and details of the FS and
spin texture. Next, we extracted the value of Γn by numeri-
cally and analytically fitting the experimental H ||

c2 data for a
(
√

7 × √
3)-In sample on a vicinal Si(111) surface. Finally,

the possible interatomic-terrace orbital effect and normal-state
electron scattering were discussed focusing on the role of
atomic steps.
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APPENDIX A: QUASICLASSICAL THEORY IN
THE STRONG SPIN-ORBIT COUPLING LIMIT

In the band basis representation, only the Zeeman field
should be viewed as a perturbation, as opposed to previous
studies on Rashba [62] (resp. multilayered Rashba [41,53])
superconductors, where the ASOC and the impurity self-
energy (resp. the ASOC and Zeeman field) were treated as
perturbations. One may integrate the 4 × 4 Green’s function
in 2 × 2 Nambu space and 2 × 2 spin space Ǧl (iωn, k) =
Ǧl (iωn, k̃, ξ l

k ) with respect to ξ l
k instead of ξk for significantly

split FSs I and II, respectively:

ǧl (iωn, k̃) ≡ τ̌3

∮
dξ l

k

(
Ĝl F̂l
ˆ̄Fl

ˆ̄Gl

)
iωn,k

≡ −iπ

(
ĝl i f̂l

−i ˆ̄fl − ˆ̄gl

)
iωn,k̃

, (A1)

where k̃ is the direction of the relative momentum and
ωn = (2n + 1)πT is the Matsubara frequency for fermions.∮

dξ l
k · · · indicates that the contributions from poles close to

εF for each split FS are taken into account.
The Eilenberger equation for spatially uniform systems,

where ∇ǧl = 0̌, in the strong-ASOC regime is[
iω̃nτ̌3 − ˇ̃Δl (iωn, k̃) ± μB ˇ̄gl

k̃ · H, ǧl (iωn, k̃)
] = 0̌, (A2)

ˇ̃Δl (iωn, k̃) =
(

0 Δ̃l (iωn, k̃)
−Δ̃∗

l (iωn, k̃) 0

)

≡
(

0 Δl (k̃) + σf (iωn)
−(Δ∗

l (k̃) + σ̄f (iωn)) 0

)
,

(A3)

where ω̃n ≡ ωn + σg(iωn), Δl (k̃) = ψs ± dt|gl
k̃
|, and ˇ̄gl

k̃
=

diag(ḡl
k̃
,−ḡl

k̃
) with ḡl

k̃
≡ gl

k̃
/|gl

k̃
|, and + and–correspond to

l = I and II, respectively. Assuming s-wave scattering in the
Born limit, the nonmagnetic impurity scattering is incorpo-
rated through the self-energy [see Eqs. (B14) and (B20)]:

σg(iωn) = Γn

2
[(1 + δ)〈gI(iωn, k̃)〉I + (1 − δ)〈gII(iωn, k̃)〉II],

(A4)

σf (iωn) = Γn

2
[(1 + δ)〈 fI(iωn, k̃)〉I + (1 − δ)〈 fII(iωn, k̃)〉II],

(A5)

with 〈· · · 〉l indicating an average over the FS l . Here, we
used gl + ḡl = 0, which holds for a spatially uniform system
[40]. The solutions of the Eilenberger equation [Eq. (A2)] are
readily obtained with the aid of the normalization condition
g2

l + fl f̄l = 1 as

gl (iωn, k̃) = ±(ω̃n ∓ iμBḡl
k̃ · H )/Λl (iωn, k̃), (A6)

fl (iωn, k̃) = ±Δ̃l (k̃)/Λl (iωn, k̃), (A7)

with Λl (iωn, k̃) ≡
√

(ω̃n ∓ iμBḡl
k̃
· H )2 + |Δ̃l (k̃)|2. To satisfy

the non-negativity of the real part of the retarded Green’s
function, which is directly related to the DOS,

Re[gl (iωn → ∓μBḡl
k̄ · H + iη)] � 0, (A8)

we note that the sign in front of the Green’s function for a
uniform system can be set to coincide with sgn[Re(ω̃n)] (see
also [63]). Here, η > 0 is used for energy smearing.

APPENDIX B: NONMAGNETIC SCATTERING IN
SPATIALLY UNIFORM NONCENTROSYMMETRIC

SUPERCONDUCTORS

1. Eilenberger equation

The quasiclassical Green’s function

ǧ(r, k̃, iωn) = −iπ

(
ĝ i f̂

−i ˆ̄f − ˆ̄g

)
(B1)

follows the Eilenberger equation. In the case of the
isotropic Rashba-type ASOC in the 2D system [gk̃ =
|gk̃|(− sin φ, cos φ)], the equation in the presence of
disorder is

ivF(k̃) · ∇ǧ(r, k̃, iωn)

+ [iωnτ̌3 − Δ̌ − Σ̌ − αǧk̃ · Š, ǧ(r, k̃, iωn)] = 0̌, (B2)

with τ̌3 = diag(σ̂0,−σ̂0), ǧk̃ = diag(gk̃σ̂0, g−k̃σ̂0), Š = diag
(σ̂, σ̂�), σ̂� = −σ̂yσ̂σ̂y,

Δ̌ =
(

0̂ Δ̂(r, k̃)
−Δ̂†(r, k̃) 0̂

)
, (B3)

Δ̂(r, k̃) = [ψs(r)σ̂0 + dk̃(r) · σ̂]iσ̂y, (B4)

dk̃(r) = dt (r)gk̃ (B5)

as the order parameter, and Σ̌ (iωn, r, k̃) ≡ {Σ̂i j}i, j=1,2 as the
impurity self-energy. The Eilenberger equation with respect to
each component in Nambu space is recast as

∂ ĝ0 + iαgk · (σ̂ĝ0 − ĝ0σ̂ ) + iΣ̂0
11ĝ0 − iĝ0Σ̂

0
11

+ (Δ̂0 + Σ̂0
12) ˆ̄f0 − f̂0(Δ̂†

0 − Σ̂0
21) = 0̂, (B6a)

∂ f̂0 + 2ωn f̂0 + iαgk · (σ̂ f̂0 − f̂0σ̂ ) + iΣ̂0
11 f̂0 + i f̂0Σ̂

0
22

+ (Δ̂0 + Σ̂0
12) ˆ̄g0 − ĝ0(Δ̂0 + Σ̂0

12) = 0̂, (B6b)

∂ ˆ̄f0 − 2ωn
ˆ̄f0 + iαgk · (σ̂ ˆ̄f0 − ˆ̄f0σ̂ ) − iΣ̂0

22
ˆ̄f0 − i ˆ̄f0Σ̂

0
11

+ (Δ̂†
0 − Σ̂0

21)ĝ0 − ˆ̄g0(Δ̂†
0 − Σ̂0

21) = 0̂, (B6c)

∂ ˆ̄g0 + iαgk · (σ̂ ˆ̄g0 − ˆ̄g0σ̂ ) − iΣ̂0
22

ˆ̄g0 + i ˆ̄g0Σ̂
0
22

+ (Δ̂†
0 − Σ̂0

21) f̂0 − ˆ̄f0(Δ̂0 + Σ̂0
12) = 0̂, (B6d)

with the normalization conditions

ĝ2
0 + f̂0

ˆ̄f0 = σ̂0, (B7a)

ĝ0 f̂0 + f̂0 ˆ̄g0 = 0̂, (B7b)

ˆ̄f0ĝ0 + ˆ̄g0
ˆ̄f0 = 0̂, (B7c)

ˆ̄f0 f̂0 + ˆ̄g2
0 = σ̂0, (B7d)

where we define ∂ ≡ vF · ∇, ĝ ≡ ĝ0, f̂ ≡ f̂0iσ̂y,
ˆ̄f ≡

−iσ̂y
ˆ̄f0, ˆ̄g ≡ −σ̂y ˆ̄g0σ̂y, Σ̂11 ≡ Σ̂0

11, Σ̂12 ≡ Σ̂0
12iσ̂y, Σ̂21 ≡

−iσ̂yΣ̂
0
21, Σ̂22 ≡ −σ̂yΣ̂

0
22σ̂y, Δ̂ ≡ Δ̂0iσ̂y, and Δ̂† ≡ −iσ̂yΔ̂

†
0.
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FIG. 7. Mixing ratio dependence of the coupling constants for
the singlet and triplet channels evaluated for Si(111)-(

√
7 × √

3)-In.
The DOS difference between the split FSs is set to δ = 0.

2. Impurity self-energy in the Born limit

We next describe the nonmagnetic impurity scattering in a
spatially uniform Rashba system. We assume s-wave scatter-
ing in the Born limit. The self-energy due to the nonmagnetic
impurity scattering for split FSs is given by

Σ̌I,II(iωn) = Γn

π
〈ǧI,II (iωn, k̃)〉I,II, (B8)

where Γn = πnimpNFv
2 is the impurity scattering rate in the

normal state, nimp is the density of impurities, NF = (NI +
NII )/2 is the DOS at the Fermi level in the normal state, and v

is the s-wave scattering potential of an impurity.
We can separate the Green’s functions with respect to each

split band due to the ASOC using the band basis where the
normal-state Hamiltonian is diagonal (see the Appendix of
Ref. [40]), at least in the case of spatially uniform systems [39]
or spatially inhomogeneous systems within the clean limit
(e.g., clean vortex states) [64].

Transformation of the Green’s functions into the orbital
basis (where the spin quantization axis is parallel to an applied
field) then yields [39,40,64]

ĝ = gIσ̂I + gIIσ̂II, (B9a)

f̂ = ( fIσ̂I + fIIσ̂II )iσ̂y, (B9b)

ˆ̄f = −iσ̂y( f̄Iσ̂I + f̄IIσ̂II ), (B9c)

ˆ̄g = −σ̂y(ḡIσ̂I + ḡIIσ̂II )iσ̂y, (B9d)

where σ̂I,II = (σ̂0 ± ḡk̃ · σ̂ )/2 and ḡk̃ ≡ gk̃/|gk̃|. Provided that
the Green’s functions are invariant under the transformation
k̃ → −k̃ [65], we obtain

〈ĝ〉k̃ = 1
2 〈gI + gII〉k̃σ̂0, (B10a)

〈 f̂ 〉k̃ = 1
2 〈 fI + fII〉k̃σ̂0iσ̂y, (B10b)

〈 ˆ̄f 〉k̃ = −iσ̂y
1
2 〈 f̄I + f̄II〉k̃σ̂0, (B10c)

〈 ˆ̄g〉k̃ = −σ̂y
1
2 〈ḡI + ḡII〉k̃σ̂0σ̂y, (B10d)

because ḡ−k̃ = −ḡk̃. Thus,

〈ĝ0〉k̃ = 1
2 〈gI + gII〉k̃σ̂0, (B11a)

〈 f̂0〉k̃ = 1
2 〈 fI + fII〉k̃σ̂0, (B11b)

〈 ˆ̄f0〉k̃ = 1
2 〈 f̄I + f̄II〉k̃σ̂0, (B11c)

〈 ˆ̄g0〉k̃ = 1
2 〈ḡI + ḡII〉k̃σ̂0. (B11d)

Therefore,

Σ̂0
11 = −iΓn〈ĝ0〉k̃ = −iΓn

1
2 〈gI + gII〉k̃σ̂0, (B12a)

Σ̂0
12 = Γn〈 f̂0〉k̃ = Γn

1
2 〈 fI + fII〉k̃σ̂0, (B12b)

Σ̂0
21 = −Γn〈 ˆ̄f0〉k̃ = −Γn

1
2 〈 f̄I + f̄II〉k̃σ̂0, (B12c)

Σ̂0
22 = iΓn〈 ˆ̄g0〉k̃ = iΓn

1
2 〈ḡI + ḡII〉k̃σ̂0. (B12d)

We note that, in the case of a spatially uniform system,
the impurity self-energies Σ̂0

i j are proportional to the unit
matrix σ̂0.

Using Eqs. (B12a)–(B12d), in the Eilenberger equa-
tions (B6a), (B6b), (B6c), and (B6d), respectively, we obtain

iΣ̂0
11ĝ0 − iĝ0Σ̂

0
11 = 0̂, (B13a)

2ωn f̂0 + iΣ̂0
11 f̂0 + i f̂0Σ̂

0
22 = 2(ωn + σg)σ̂0 f̂0, (B13b)

−2ωn
ˆ̄f0 − iΣ̂0

22
ˆ̄f0 − i ˆ̄f0Σ̂

0
11 = −2(ωn + σg)σ̂0

ˆ̄f0,

(B13c)

−iΣ̂0
22

ˆ̄g0 + i ˆ̄g0Σ̂
0
22 = 0̂, (B13d)

where

σg ≡ Γn

2
(1 + δ)

1

2
〈(gI − ḡI )〉k̃ + Γn

2
(1 − δ)

1

2
〈(gII − ḡII )〉k̃

= Γn

2
(1 + δ)〈gI〉k̃ + Γn

2
(1 − δ)〈gII〉k̃. (B14)

In the spatially uniform system, we may use gI.II + ḡI,II = 0
to get Eq. (B14). The parameter δ = (NI − NII )/2NF (−1 <

δ < 1) characterizes the difference in the DOSs between the
split FSs I and II. In the Eilenberger equations (B6a)–(B6d),
the rotation in spin space represented by the unitary matrix Ûk̃
yields

Û †
k̃

iαgk̃ · (σ̂Â0 − Â0σ̂ )Ûk̃ = 2iα|gk̃|
(

0 −Ab

Ac 0

)
, (B15)

Û †
k (Δ̂0 + Σ̂0

12)Ûk̃ =
(

ΔII + σf 0
0 ΔI + σf

)
, (B16)

Û †
k̃

(Δ̂0
† − Σ̂0

21)Ûk̃ =
(

Δ∗
II + σ̄f 0

0 Δ∗
I + σ̄f

)
, (B17)

where Â0 refers to ĝ0, f̂0, ˆ̄f0, or ˆ̄g0 and

Û †
k̃

Â0Ûk̃ ≡
(

Aa Ab

Ac Ad

)
, (B18)

ΔI,II ≡ ψs ± dt|gk̃|, (B19)

σf ≡ Γn(1 + δ) 1
2 〈 fI〉k̃ + Γn(1 − δ) 1

2 〈 fII〉, (B20)

σ̄f ≡ Γn(1 + δ) 1
2 〈 f̄I〉k̃ + Γn(1 − δ) 1

2 〈 f̄II〉. (B21)
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FIG. 8. Temperature dependence of an in-plane critical magnetic field oriented parallel to the x axis for the s + p-wave pairing upon
changing the normal state scattering rate Γn and the parity-mixing ratio ν for (a), (b) λm = 0.1 and (c), (d) λm = 0.2. The filled and open
symbols denote the data for the Fermi surface of a Si(111)-(

√
7 × √

3)-In and an isotropic system, respectively. The difference of the density
of states between the split two FSs is set to δ = 0. Temperature and magnetic field are normalized by (a), (c) Tc0 and (b), (d) Tc(0), respectively.

Hence, the impurity effect in the spatially uniform state ap-
pears only in the replacement of the Matsubara frequency and
the order parameter:

ωn → ω̃n ≡ ωn + σg, (B22)

ΔI,II → Δ̃I,II ≡ ΔI,II + σf , (B23)

Δ∗
I,II → Δ̃∗

I,II ≡ ΔI,II + σ̄f . (B24)

3. Gap equation

In the same manner as Ref. [40], we obtain the following
Eilenberger equations in the band basis in the presence of
impurities for the suffix a:

Δ̃II f̄a − Δ̃∗
II fa = 0, (B25a)

2ω̃n fa + Δ̃IIḡa − Δ̃IIga = 0, (B25b)

2ω̃n f̄a − Δ̃∗
IIga + Δ̃∗

IIḡa = 0, (B25c)

Δ̃∗
II fa − Δ̃II f̄a = 0. (B25d)

For the suffix b, we obtain

−2iα|gk̃|gb + Δ̃II f̄b − Δ̃∗
I fb = 0, (B26a)

2ω̃n fb − 2iα|gk̃| fb + Δ̃IIḡb − Δ̃Igb = 0, (B26b)

2ω̃n f̄b + 2iα|gk̃| f̄b − Δ̃∗
IIgb + Δ̃∗

I ḡb = 0, (B26c)

−2iα|gk̃|ḡb + Δ̃∗
II fb − Δ̃I f̄b = 0. (B26d)

For the suffix c, we obtain

2iα|gk̃|gc + Δ̃I f̄c − Δ̃∗
II fc = 0, (B27a)

2ω̃n fc + 2iα|gk̃| fc + Δ̃Iḡc − Δ̃IIgc = 0, (B27b)

2ω̃n f̄c − 2iα|gk̃| f̄c − Δ̃∗
I gc + Δ̃∗

IIḡc = 0, (B27c)

2iα|gk̃|ḡc + Δ̃∗
I fc − Δ̃II f̄c = 0. (B27d)
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FIG. 9. Temperature dependence of an in-plane critical magnetic field oriented parallel to the y axis for the s + p-wave pairing upon
changing the normal state scattering rate Γn and the parity-mixing ratio ν for (a), (b) λm = 0.1 and (c), (d) λm = 0.2. The filled and open
symbols denote the data for the Fermi surface of a Si(111)-(

√
7 × √

3)-In and an isotropic system, respectively. The difference of the density
of states between the split two FSs is set to δ = 0. Temperature and magnetic field are normalized by (a), (c) Tc0 and (b), (d) Tc(0), respectively.

Finally, for the suffix d, we obtain

Δ̃I f̄d − Δ̃∗
I fd = 0, (B28a)

2ω̃n fd + Δ̃Iḡd − Δ̃Igd = 0, (B28b)

2ω̃n f̄d − Δ̃∗
I gd + Δ̃∗

I ḡd = 0, (B28c)

Δ̃∗
I fd − Δ̃I f̄d = 0. (B28d)

As discussed in Ref. [40], we note that gb,c = fb,c = f̄b,c =
ḡb,c = 0 for α|gk̃| = 0. However, as opposed to the clean-limit
case, this result is valid only for spatially uniform systems.
By transforming the normalization condition (B7b) or (B7c)
into that in the band basis, we obtain ga,d = −ḡa,d for spa-
tially uniform systems. From this relation, the normalization

condition (B7a), and the Eilenberger equations (B25) and
(B28), we obtain the following Green’s functions for spatially
uniform systems:

gd,a ≡ gI,II(iωn, k̃) = ωn + σg(iωn)

ΛI,II(iωn, k̃)
, (B29a)

fd,a ≡ fI,II(iωn, k̃) = ΔI,II(k̃) + σf (iωn)

ΛI,II(iωn, k̃)
, (B29b)

f̄d,a ≡ f̄I,II(iωn, k̃) = Δ∗
I,II(k̃) + σ̄f (iωn)

ΛI,II(iωn, k̃)
, (B29c)

ḡd,a ≡ ḡI,II(iωn, k̃) = −ωn − σg(iωn)

ΛI,II(iωn, k̃)
, (B29d)
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where ΛI,II(iωn, k̃) =
√

ω̃2
n + |Δ̃I,II|2. The corresponding gap

equations are

ψs = πT
∑

|ωn|<ωc

[λs{〈 f+〉0 + δ〈 f−〉0}

+ λm{〈|gk̃| f−〉0 + δ〈|gk̃| f+〉0}], (B30)

dt = πT
∑

|ωn|<ωc

[λt{〈|gk̃| f−〉0 + δ〈|gk̃| f+〉0}

+ λm{〈 f+〉0 + δ〈 f−〉0}], (B31)

where f± ≡ ( fI + fII )/2 and ωc is the cutoff frequency. In the
clean limit and in the limit of T → Tc, the coupling constants
are determined as follows [40]:

λs = λν − λm(1 + δν〈|gk̃|〉0)

ν + δ〈|gk̃|〉0
, (B32)

λt = λ − λm(ν + δ〈|gk̃|〉0)

1 + δν〈|gk̃|〉0
. (B33)

Here, ν, λ, and nc(T ) are defined in the main text.

APPENDIX C: H ||
c2(T ) VARIATION WITH PARITY MIXING

To study the variation of H ||
c2(T ) when ν changes over a

wide range, it turned out that the coupling constant for the
mixing channel is limited to λm � 1. This is because the self-
consistent solutions of the order parameter can be obtained
only when −0.2 � λs, λt � 0.3 (see Fig. 7), suggesting that
the variation range of ν narrows as λm increases. Therefore,

we will limit ourselves to λm = 0.1 and 0.2. Figure 7 shows
the dependence of the coupling constants λs and λt on ν

evaluated by Eqs. (3.6) and (3.7) for Si(111)-(
√

7 × √
3)-In.

The coupling constants are controlled by the input param-
eters λm and ν. At the equal-mixing ratio (ν = 1), λs ≈ λt

for λm = 0.1 and 0.2, respectively. For λm = 0.1, the self-
consistent solution of the order parameter was not obtained
for ν = 0.1 and 10, while for λm = 0.2, it was not obtained
for ν � 0.3 or ν � 3. We consider that the choice of λm = 0.1
and 0.2 is reasonable, since these values correspond to the
weak-coupling regime.

In Figs. 8 and 9, we show the H ||
c2(T ) oriented parallel to

the x and y axes, respectively, in the case of the s + p-wave
paring to check the stability of the results in Figs. 3 and 4,
respectively, upon changing ν and λm. The physical quantities
are rescaled by Tc(0) in Figs. 8(b), 8(d), 9(b), and 9(d). The
green and red shaded areas in Figs. 8 and 9 depict the varia-
tion range of the transition line when ν varies in the case of
Γn/Tc0 = 0 and 0.8, respectively, for Si(111)-(

√
7 × √

3)-In.
For an isotropic FS, the variation range of H ||

c2 is shown by the
area between open symbols. For λm = 0.1 (0.2), we varied ν

in the range 0.2 � ν � 5 (0.4 � ν � 2) in any conditions to
show the variation of the transition line such that the variation
of H ||

c2(0) is the largest.
Figure 8 shows the same trend of H ||

c2(T ≈ 0) for Si(111)-
(
√

7 × √
3)-In being larger than that for isotropic systems as

in Fig. 3. Figure 9 also shows the same trend of the suppres-
sion of the H ||

c2(T ≈ 0) enhancement as in Fig. 4, although it
shows some variation depending on ν.
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