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Disorder-dependent slopes of the upper critical field in nodal and nodeless superconductors
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We study the slopes of the upper critical field S = ∂Hc2/∂T at the superconducting transition temperature Tc

in anisotropic superconductors with transport (nonmagnetic) scattering employing the Ginzburg-Landau theory,
developed for this case by Pokrovsky and Pokrovsky [Phys. Rev. B 54, 13275 (1996)]. We find unexpected
behavior of the slopes for a d-wave superconductor and, in a more general case, of materials with line nodes in
the order parameter. Specifically, the presence of line nodes causes S to decrease with increasing nonmagnetic
scattering parameter P = h̄/2πTc0τ (Tc0 is for the clean limit, τ is the scattering time), unlike the nodeless
case where the slope increases. In a pure d-wave case, the slope changes from decreasing to increasing when the
scattering parameter approaches P ≈ 0.91 Pcrit , where Pcrit ≈ 0.28, at which Tc → 0, which implies the existence
of a “gapless” state in d-wave superconductors with transport scattering in the interval, 0.91 Pcrit < P < Pcrit .
Furthermore, we consider the mixed (s + d )-wave order parameter with four nodes on a cylindrical Fermi
surface when the d part is dominant, or no nodes at all when the s-wave phase dominates. We find that the
presence of nodes causes the slope S(P) to decrease initially with increasing P, whereas in the nodeless state,
S(P) monotonically increases. Therefore relatively straightforward measurements of the disorder dependence of
the slope of Hc2 at Tc can help distinguish between nodal and nodeless order parameters, which is particularly
useful for quickly assessing newly discovered superconductors.
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I. INTRODUCTION

A brief literature survey finds many reports on the upper
critical field slope evaluated at the superconducting transi-
tion temperature Tc as a function of nonmagnetic disorder. A
consistent picture emerges—superconductors with line nodes
exhibit decreasing slope, whereas those without nodes show
increasing ∂Hc2/∂T with increasing disorder scattering. For
example, the increase was experimentally observed in fully
gapped s± iron-based superconductors where nonmagnetic
disorder was introduced by ball-milling [1], irradiation with
2.5-MeV electrons [2], or fast neutrons [3]. On the other hand,
a decrease of the slope concomitant with the decrease of Tc

was found in a nodal pnictide superconductor [4].
The problem of slopes S = ∂Hc2/∂T at Tc can be addressed

with the help of Ginzburg-Landau (GL) theory. To provide
reasonable theoretical guidance, the theory should apply to
various order parameter symmetries and anisotropic Fermi
surfaces. There were a few attempts to develop such a version
of GL, some confirming major features of the experimental
information on the slope’s dependence on disorder for su-
perconductors with nodes and without [5,6]. In this work we
employ a most general version of the GL theory applicable
to anisotropic order parameters in the presence of transport
scattering ascribed to Pokrovsky and Pokrovsky [7].
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Below, we first outline the theory and then we apply it to
the d-wave symmetry of the order parameter and show that, in
fact, the slopes S are indeed suppressed by a relatively weak
disorder but increase when the impurity scattering approaches
the critical value at which Tc = 0. Next we consider the order
parameter, which is a superposition of s and d that allows us
to study slopes S in cases of nodes present or not and shows
that the nodes change S(P) from the node-free increase to
decrease. We end up with a short discussion of existing and
possible experiments.

To simplify the formalism, the effective coupling is com-
monly assumed factorizable [8], V (k, k′) = V0 �(k) �(k′),
where k is the Fermi momentum. One then looks for the order
parameter in the form

�(r, T ; k) = �(r, T ) �(k). (1)

The factor �(k) for the order parameter change along the
Fermi surface is conveniently normalized:

〈�2〉 = 1, (2)

where 〈...〉 stands for the Fermi surface average. This normal-
ization corresponds to the critical temperature Tc0 of a clean
material given by the standard isotropic weak-coupling model
with the effective interaction V0.

The slope of the upper critical field Hc2 = φ0/2πξ 2 at Tc

(φ0 is the flux quantum) is determined by the T dependence
of the coherence length ξ = ξGL/

√
1 − T/Tc:

∂Hc2

∂T

∣∣∣
Tc

= − φ0

2πξ 2
GLTc

. (3)
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FIG. 1. tc = Tc/Tc0 vs scattering parameter P for 〈�〉 = 0.8, 0.5,

0.3, 0 in top-down order. Note that for the d wave 〈�〉 = 0 and Tc

turns zero at the critical scattering Pcrit = 1/2eγ = 0.28.

The length ξGL is of the order of the BCS coherence length
ξ0 = h̄vF /π�(0) but differs from ξ0—actually, it depends on
the coupling, on the impurity scattering, on the order param-
eter symmetry, and the Fermi surface anisotropy. All these
dependencies can, in principle, be found within the micro-
scopic BCS theory. This has been done at early stages of the
theory for the anisotropic order parameter only in the clean
limit by Gor’kov and Melik-Barkhudarov [9],

(
ξ 2

GL

)
ik = 7ζ (3)h̄2

16π2T 2
c

〈�2vivk〉. (4)

The transport scattering was included by Helfand and
Werthamer [10], but only for the isotropic order parameter and
Fermi surface:

ξ 2
GL = h̄2v2

24π3T 2
c P2

[
π2P

4
− ψ

(
1 + P

2

)
+ ψ

(
1

2

)]
. (5)

Here ψ is the di-gamma function, and the scattering parameter

P = h̄/2πTc0τ, (6)

with τ being the scattering time and Tc0 the critical tempera-
ture for the clean sample. It is easy to see that the slope S =
−∂T Hc2|Tc grows, being roughly proportional to P. It is worth
paying attention that the material parameter P does not depend
on actual Tc, unlike the scattering parameter ρ = h̄/2πTcτ

often employed in literature.
The critical temperature of materials with the anisotropic

order parameter is suppressed even by nonmagnetic impuri-
ties. This was established by Openov [11], see also [12]:

− ln
Tc

Tc0
= (1 − 〈�〉2)

[
ψ

(
P/tc + 1

2

)
− ψ

(
1

2

)]
, (7)

where tc = Tc/Tc0. Examples of tc(P) for a few values of �

are given in Fig. 1.
Clearly, Tc = Tc0 for the isotropic order parameter with

� = 1 and arbitrary scattering rate P, as well as for the clean
limit and any anisotropic �. For the d wave 〈�〉 = 0, and

we have the standard Abrikosov-Gor’kov result [13], so that
the transport scattering in the d wave affects Tc as the pair-
breaking scattering in isotropic materials does.

II. LINEARIZED GINZBURG-LANDAU EQUATIONS

Thus according to Eq. (3), the slope of Hc2 at Tc is deter-
mined by the coherence length which enters the linearized GL
equation for the order parameter �,

−(ξ 2)ik�i�k� = �, (8)

with the tensor of squared coherence length (ξ 2)ik ; � =
∇ + 2π iA/φ0, where A is the vector potential and φ0 is the
flux quantum. For arbitrary � and any Fermi surface in the
presence of transport scattering, Pokrovsky and Pokrovsky [7]
evaluated the tensor

(ξ 2)ik = ζik/a. (9)

Here (in our notation)

a = Tc − T

Tc

[
1 + (1 − 〈�〉2)ψ ′

(
P/tc + 1

2

)]
. (10)

The tensor ζ̂ is given by

ζik = h̄2

16π2T 2
c

[
h3,0〈�2vivk〉 + P

tc
h3,1〈�vivk〉〈�〉

+ P2

4t2
c

h3,2〈vivk〉〈�〉2

]
. (11)

The quantities hμ,ν are functions of x = P/2tc, defined as

hμ,ν (x) =
∞∑

n=0

(n + 1/2 + x)−μ(n + 1/2)−ν, (12)

so that

h3,0 = −1

2
ψ ′′

(
1

2
+ x

)
,

h3,1 = 1

x3

[
ψ

(
1

2
+ x

)
− ψ

(
1

2

)
− xψ ′

(
1

2
+ x

)

+x2

2
ψ ′′

(
1

2
+ x

)]
,

h3,2 = 1

2x4

{
π2x − 6

[
ψ

(
1

2
+ x

)
− ψ

(
1

2

)]

+4xψ ′
(

1

2
+ x

)
− x2ψ ′′

(
1

2
+ x

)}
. (13)

It is straightforward to see that for the isotropic order
parameter with � = 1 on the Fermi sphere these formulas
reduce to the BCS form,

ξ 2 = 7ζ (3)

48π2T 2
c δt

χ (P), δt = 1 − T

Tc
, (14)

with the Gor’kov function

χ (P) = 1

7ζ (3)

∞∑
n=0

1

(n + 1/2 + P)(n + 1/2)2
. (15)

064502-2



DISORDER-DEPENDENT SLOPES OF THE UPPER … PHYSICAL REVIEW B 108, 064502 (2023)

This limit can also be checked by comparison with Hc2 slopes
at Tc given by Helfand and Werthamer [10].

It is worth noting that for the clean limit x=P/2tc → 0,
whereas h3,0 → 7ζ (3), h3,1 → π4/6, and h3,2 → 31ζ (5).
Hence in this limit only the first term on the right-hand side
of Eq. (11) survives, in agreement with [8]. In the opposite
limit x = P/2tc 
 1, the last term in Eq. (11) dominates [7],

as is seen in Fig. 2 (however, this limit does not apply for the
d wave since both the second and third terms in Eq. (11) are
zeroes due to 〈�〉 = 0).

A. General order parameter

In the general case we obtain for the slope of Hc2 along the
c axis of a uniaxial material

∂Hc2

∂T

∣∣∣
Tc

= −8πφ0Tc0

h̄2

tc
[
1 + (1 − 〈�〉2)ψ ′( 1+P/tc

2

)]
h3,0〈�2v2

a〉 + 2(P/2tc)h3,1〈�〉〈�v2
a〉 + (P/2tc)2h3,2〈�〉2〈v2

a〉
. (16)

Here all coefficients hμ,ν (x) are taken at x = P/2tc.
Since the Fermi velocity is not a constant at anisotropic Fermi surfaces, we normalize velocities on some value v0 for which

we choose [14]

v3
0 = 2E2

F

/
π2h̄3N (0), (17)

where EF is the Fermi energy and N (0) is the total density of states at the Fermi level per spin. One easily verifies that v0 = vF

for the isotropic case.
The slope expression (16) remains the same except for a changed prefactor:

−8πφ0Tc0

h̄2 → −8πφ0Tc0

h̄2v2
0

, (18)

and the velocity va is now dimensionless (although we leave
for it the same notation).

B. d wave

The case of the d-wave symmetry of the order parameter
with 〈�〉 = 0 is relatively simple. We have the coherence
length relevant for Hc2 along the c axis of a uniaxial crystal:

ξ 2
aa = ζaa

a
= h̄2

〈
�2v2

a

〉
h3,0

16π2T 2
c [1 + ψ ′(P/2tc + 1/2)]δt

. (19)

For a Fermi cylinder, with � = √
2 cos 2ϕ, the average

〈�2v2
a〉 = v2/2. Hence,

ξ 2
aa = − h̄2v2 ψ ′′(P/2tc + 1/2)

64π2T 2
c [1 + ψ ′(P/2tc + 1/2)]δt

, (20)

and we obtain

dHc2,c

dT

∣∣∣
Tc

= 32πφ0Tc0

h̄2v2
tc

1 + ψ ′(P/2tc + 1/2)

ψ ′′(P/2tc + 1/2)
. (21)

For numerical work it is convenient to use the reduced
slope,

s = −dhc2

dt

∣∣∣
tc

= − h̄2v2

8πφ0Tc

dHc2

dT

∣∣∣
Tc

. (22)

While the actual slope ∂Hc2/∂T |Tc is negative, we are inter-
ested in its magnitude and use a positive quantity, as given by
Eq. (22).

The behavior of the slope as a function of P according to
this result is shown in Fig. 3. As is known, the maximum
scattering parameter P for which the d-wave superconductiv-
ity survives is Pcrit = 1/2eγ = 0.28 (double the critical value

for the spin-flip magnetic scattering [13]). Hence, similar to
materials with magnetic scatterers [15], the slope ∂Hc2/∂T at
Tc for the d wave decreases with increasing transport scatter-
ing. It is worth noting that this behavior changes to increase
near P ≈ 0.91 Pcrit = 0.25; this estimate coincides with that
given by Abrikosov and Gor’kov for the low bound of the
gapless state. This suggests that d-wave materials can also
be gapless if the transport scattering parameter lays in the
interval 0.25 < P < 0.28. Thus S(P) dependence might be a
macroscopic manifestation of the gapless superconductivity
in impure d-wave materials, a speculation worthy of further
study.

Figure 4 shows the slopes of Fig. 3 plotted vs the critical
temperature tc(P).

FIG. 2. The coefficients h3,0(x), 2xh3,1(x), and x2h3,2(x) vs x.
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FIG. 3. The slope s = −∂hc2/∂t at tc according to Eq. (22) vs P
for a d-wave material. Inset: The same slopes vs tc = Tc/Tc0.

C. (s + d ) wave

Obviously, the major interest in the community is to deter-
mine whether the easily accessible measurements of the Hc2

slope near Tc may provide some insight into the structure of
the order parameter. Here we examine the simplest case of a
(s + d )-wave state where the order parameter is the isotropic
s wave in one limit and a standard 2D d wave in the other.
Keeping in mind the normalization 〈�2〉 = 1, a convenient
order parameter can be written as

� =
√

1 − r2/2 + r cos(2ϕ). (23)

If r = 0, � = 1 and when r = √
2, � = √

2 cos(2ϕ), which
are the required limits. We choose this order parameter not

FIG. 4. s(P) according to Eqs. (22) and (16) for a set of param-
eters r = 0, 0.75, 1, 1.2, 1.3, 1.35, 1.4 and

√
2. The approach to a

gapless regime is characterized by an upturn starting with P ≈ 0.25
for a d-wave order parameter with r = √

2. The calculations were
performed for a cylindrical Fermi surface.

FIG. 5. Solid lines are the slopes s for the same values of the
scattering parameters P as in Fig. 4 but plotted vs the transition
temperature tc(P). Dashed continuations are for P > 0.28, for which
the pure d wave phase does not exist. In the pure s wave for which
tc = 1, S(P) does not depend on P and is shown by a vertical red line.

because it may describe any particular real material, rather,
we intend to check whether or not there is a connection be-
tween the microscopic anisotropy of the order parameter and
the macroscopic dependence of Hc2 slopes on the degree of
disorder P.

Figure 4 shows s(P) calculated with the help of Eqs. (16)
and (22), plotted for a few coefficients r of the � function,
Eq. (23). At r = 0 the order parameter is the isotropic s wave,
whereas at r = √

2 it is a two-dimensional d-wave order
parameter. The calculations were performed for a cylindrical
Fermi surface, keeping in mind possible applications to high-
Tc cuprates. Figure 4 shows that the slopes s(P) for purely
d wave are (a) nonmonotonic and decrease with increasing
P up to about P = 0.25, followed by divergence for P →
0.28, as we have seen in Fig. 3. With increasing fraction of
s wave, however, the negative slope of S(P) for small and
intermediate P weakens and turns to a positive, nearly linear
increase of S. To gain further insight, we plot S(P) versus tc in
Fig. 5.

To analyze the overall trend of whether the slope s is
increasing or decreasing with nonmagnetic scattering P, we
utilize a numerical derivative χ , given by χ = [S(P + �P) −
S(P)]/�P. A negative value of χ indicates a decreasing slope,
whereas a positive value indicates the opposite. Based on the
results in Fig. 4, it can be observed that s(P) is nearly linear,
at least up to P = 0.15, within the entire range of 0 � � � 1.
As a result the specific selection of P0 and �P is not critical.
To reflect a realistic degree of disorder, we opted for P0 = 0.1
and �P = 0.01, though other values were tested with no
significant variation in the outcomes.

Figure 6 shows the numerical derivative χ plotted versus
the coefficient r of the order parameter, Eq. (23). A straight-
forward algebra shows that the order parameter is nodeless
(anisotropic s wave) for r <

√
2/3 ≈ 0.82 and has four line

nodes for r >
√

2/3. Remarkably, Fig. 6 shows that the rate of
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FIG. 6. The rate of change of the slope S(P) defined as χ =
S(0.11) − S(0.01)/0.1, evaluated for different values of the r
coefficient.

slope change χ becomes negative as soon as the nodes appear.
In other words, if one would measure S = −∂Hc2/∂T |Tc as a
function of nonmagnetic disorder, the increasing S would in-
dicate nodeless superconductivity, whereas the slope decrease
can be considered as evidence for the presence of nodes.

III. DISCUSSION

We have applied the GL theory developed by Pokrovsky
and Pokrovsky [7] for anisotropic materials in the presence
of nonmagnetic scattering to evaluate slopes ∂Hc2/∂T |Tc for
d-wave superconductors and for the case of mixed (s + d )-
wave symmetry. For the d wave, we find that for weak and
intermediate scattering rates P = h̄/2πTc0τ , the slopes S =
−∂Hc2/∂T |Tc are suppressed, similar to the situation of the
magnetic pair-breaking disorder and opposite to the transport
scattering enhancement of slopes S(P) for the s wave. One
example of such a behavior is in studies of slopes in YBaCuO
by Antonov et al. [16].

Thinking along these lines, we have examined the
mixed (s + d )-wave order parameter �(r) =

√
1 − r2/2 +

r cos(2ϕ) such that �(0) corresponds to the pure isotropic s
wave and �(

√
2) is the pure d wave. We found a remarkable

one-to-one correspondence between the presence or absence
of nodes and the decrease or increase of the Hc2 slopes at Tc.
Practically, this is a highly useful observation, notwithstand-
ing our oversimplified model.

Unexpectedly, however, if the scattering rate approaches
the critical value Pcrit = 0.28 for which Tc → 0, the slopes
increase starting with P ≈ 0.25 to diverge at Pcrit . The value
0.25 ≈ 0.9 of Pcrit , the fraction found by Abrikosov and

Gor’kov for the low bound of the gapless domain in standard
s-wave materials with magnetic impurities [13]. This analogy
suggests strongly that in a d-wave superconductor with non-
magnetic disorder close to the maximum disorder possible we
are dealing with a kind of “gapless” state. In our view this
speculation deserves careful examination.

The slopes of the upper critical field at Tc are quite
straightforward to measure. It has been done even for nearly-
room-temperature hydride superconductors under extremely
high pressures within diamond pressure cells in situ. If,
indeed, such macroscopic measurement may hint at the mi-
croscopic symmetry of the order parameter, this is worth
doing. One has to examine the rate of change of the slopes
in samples of the same chemical composition but with differ-
ent amounts of nonmagnetic disorder. Such disorder can be
induced by ion implantation [16,17], and electron [2], proton
[18], neutron [3,19], or gamma [20] and even alpha particle
irradiation [21].

Since the upper critical field was measured for most super-
conductors, it is now possible and very important to check
its evolution with disorder. However, one must be sure to
analyze the true Hc2 and not the irreversibility line, while
also avoiding any major disturbance to the electronic band
structure of the material due to introduced disorder. For in-
stance, isovalent doping is preferred over charge doping,
and, as mentioned above, proton or electron irradiations are
even better. It is worth noting that there are only a few suc-
cessful phase-sensitive experiments capable of differentiating
between the same sign and sign-changing order parameter.
These experiments require significant effort and special sam-
ple preparation, making them technically too challenging or
even impossible for most superconductors, for example, due
to cleaving issues. Our theory provides a relatively simple and
straightforward qualitative prediction.

A word of caution. It is quite possible that complex multi-
band materials will not follow our simple scheme based on the
generally accepted factorization of temperature and angular
variations of the order parameter. It is also possible that other
types of order parameters in materials other than uniaxial
and in fields other than parallel to the c axis will not follow
it either. However, our analysis is based on the universal
Ginzburg-Landau theory, and hopefully, our conclusions are
robust.
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