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Imbalanced spin-wave excitation on the exceptional line induced by anti-PT
symmetry breaking in a ferromagnetic trilayer system
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We investigate the pseudo-Hermitian properties of a ferromagnet|normal-metal|ferromagnet heterojunction,
where the two ferromagnets are subjected to two independently tuned magnetic fields and dissipatively coupled
with one another through the ultrathin normal-metal film. The three-dimensional parameter space constituted
by functions of the Gilbert damping, the enhanced damping, and the effective magnetic fields enables us to
obtain the two-dimensional pseudo-Hermitian regions with different phases and an exceptional line. We find
that the coalescence of two spectra occurs in one of the pseudo-Hermitian phases. Furthermore, the spin-wave
excitation is highly enhanced on the exceptional line via a small circularly polarized microwave driving and
the spin transfer torque induced negative Gilbert damping. Particularly, the intensity of spin-wave excitations in
two subsystems could be imbalanced and adjustable to show a certain ratio through anti-parity-time (anti-PT )
symmetry breaking. Through anti-PT symmetry breaking, additional degrees of freedom will be generated.
The method for imbalanced excitation of particles at exceptional points is also applicable to other dissipatively
coupled physical systems.
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I. INTRODUCTION

In recent years, non-Hermitian physics [1–4] has attracted
considerable attention for its unprecedented phenomena
and applications in optical systems [5–14], superconducting
qubits [15–23], magnon-cavity systems [24–34], molecules
[35–38], and other hybrid systems. Non-Hermitian systems
usually have complex spectra and bi-orthogonal bases, how-
ever, some of them have real spectra when certain parameters
are satisfied. As early as 1966, it was discovered that non-
Hermitian systems have a unique real energy spectrum on
the exceptional points (EPs) [39,40]. In the last two decades,
PT symmetry theories have been proposed to explain the
real spectra in coherent coupled (the off-diagonal coupling
terms are real and positive) non-Hermitian systems [41–43].
Subsequently, more general concepts known as pseudo-
Hermiticity (ηHη−1 = H† in which η is a Hermitian invertible
operator) associated with real eigenvalues and diverse sym-
metries [described as [U, H] = 0 ({U, H} = 0) where U is a
(anti-)unitary operator] have been revealed [44–46] in both
coherent coupled and dissipative coupled [12,24,28–31,47]
(the off-diagonal coupling terms has imaginary parts) non-
Hermitian systems. The EP is included in the concept of
pseudo-Hermiticity as a special situation when the two real
spectra are coalescent. Recent studies have indicated that, in
some particular systems, EPs can even form an exceptional
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line (EL) or an exceptional surface (ES) [33,48] creating an
adequate range of parameter adjustment.

The dynamic exchange coupling of spin waves in the
ferromagnet|normal-metal|ferromagnet (F |N |F ) heterojunc-
tion driven by external fields [49–52] is an important system
in spintronics. Since the wavelength of spin waves is as
low as nanometers [53,54], the properties of the F |N |F
spin-pumping system, such as the synchronicity and the
enhancement of spin-wave excitation at the EPs have the
potential to make it a good candidate for nanoscale quan-
tum devices [55–57]. As the first dissipative coupled system
realized in spintronics [Heinrich, Tserkovnyak, Woltersdorf,
Brataas, Urban, and Bauer (2003); Tserkovnyak, Brataas,
Bauer. (2002)], the system is usually described by the
widely studied coupled Landau-Lifshitz-Gilbert (LLG) equa-
tions [50,58,59]. So far, there has been no investigation
into the theoretical characterization of its pseudo-Hermiticity.
Thus, we propose a scheme for analyzing the non-Hermitian
properties, especially the pseudo-Hermiticity of the system.
The non-Hermitian Hamiltonian of the F |N |F spin-pumping
system is constructed with a complete symmetry analysis
and phase identifications of states in the three-dimensional
(3D) parameter space. The 3D parameter space composed
of Gilbert damping, enhanced damping [58], and effective
fields enables us to obtain the two-dimensional (2D) pseudo-
Hermitian planes containing an EL. In our analysis, the spin
pumping manifests as a dissipative coupling through dynamic
exchange interaction, resulting in the coalescence [34,60–
67] of energy levels in one of the pseudo-Hermitian phase.
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FIG. 1. The schematic picture of the system. The precession
of spins in ferromagnetic films F1 and F2 occurs under the ef-
fective magnetic fields (green arrows). The precessing magnetic
moment (lilac arrows in Fi) of spins from one ferromagnet pumps
a negative damping torque ∝α′

imi × ṁi (short blue arrow in
F1) into the normal metal N which finally redistributed in both
ferromagnets.

We find that the endpoints of the level coalescence (the re-
gion with collective dynamics) are EPs which form an EL in
the pseudo-Hermitian phase plane with enhanced spin-wave
excitations when negative Gilbert damping is induced. Partic-
ularly, the spin-wave excitation of two ferromagnets can be
regulated unequally by enhanced damping-induced anti-PT
symmetry breaking, while in previous times, people usually
paid attention to the dynamic properties of states with unrec-
ognized anti-PT symmetry. The pseudo-Hermitian analysis
allows us to see the full picture of dynamics of the F |N |F
spin-pumping system. Our analysis may also gain insight
into relevant experiments [24,50,56,68,69] through the non-
Hermitian analysis.

II. MODELING

We study the F |N |F structure in which two ferromagnetic
films are driven by two magnetic fields, respectively, and

coupled through a middle normal-metal layer. The schematic
picture of the system is depicted in Fig. 1. Here, we focus
on purely dissipative coupling in a collinear magnetic equi-
librium configuration with small-angle excitations. On the
typical timescales for electron transfer over the spacer, the
magnetization dynamics are slow [50,59] due to the rela-
tively thin N layer. The thickness for Fi represented by di

should be thicker than transverse-spin coherence length λsc

but thinner than A/J in which A is the magnetic bulk exchange
stiffness and J is the Heisenberg coupling constant. Thus,
Fi can completely absorb transverse spin currents [50,59].
The thickness for N should be thinner than the electron
mean-free path to guarantee the ballistic electron motion,
but thick enough to suppress the Ruderman-Kittel-Kasuya-
Yosida (RKKY), pin-hole, and Néel-type magnetostatic
interactions [50,54].

We start from the dynamic equations of the magnetization
directions mi described by coupled LLG equations [50]:

dmi

dt
= −γimi ×

(
Heff,i + Jm j

Ms,idi

)
+ αimi × dmi

dt

+ α′
i

(
mi × dmi

dt
− m j × dm j

dt

)
,

i, j = 1, 2, i �= j, (1)

with spin-orbit interaction induced Gilbert damping for a
single ferromagnet given by αi [59] and enhanced damping
[58,59,70] given by α′

i characterizing the intensity of dy-
namic exchange interactions between two ferromagnets. α′

i =
γi h̄g↑↓/(8πμi ) [59], where g↑↓ is the dimensionless mixing
conductance of the F/N interfaces, μi is the total magnetic
moment of Fi which scales linearly with the volume of Fi. We
take Heff,i as magnetic-anisotropy-dependent effective driving
fields acting on Fi. The static coupling term Jm j/Ms,idi to-
gether with Heff,i determines effective fields experienced by
the ferromagnets. The saturated magnetization for Fi is Ms,i,
and the gyromagnetic ratios are γi.

Setting mi � ẑ + mi⊥e−iwt , where mi⊥e−iwt denotes small
deviations with precession frequency ω of the magnetization
direction from its equilibrium value ẑ, the linearized dynamic
equations read

�

(
m1⊥
m2⊥

)
= 0, � =

(
ω1 + ν1 + iα1ω + iα′

1ω − ω −ν1 − iα′
1ω

−ν2 − iα′
2ω ω2 + ν2 + iα2ω + iα′

2ω − ω

)
, (2)

in which −ωiẑ = γiHeff,i, νi = γiJ/Ms,idi.
We consider a general case when αi are positive or

negative [the negative damping can be achieved by elec-
trically [71–73] or thermally [74,75] induced spin transfer
torque (STT)], while α′

i are positive, |αi|, |α′
i| 	 1, ω1ω2 > 0,

|ω1 − ω2|/|ω1| < 10−1. Based on the above assumptions, we
construct the Hamiltonian of the system as

H =
(

ω1 + i(α1 + α′
1)ω1 −iα′

1ω2

−iα′
2ω1 ω2 + i(α2 + α′

2)ω2

)
,

H − I ⊗ ω � �|νi→0, (3)

where we take into account νi = 0 due to the short-range
nature of static coupling compared with dynamic exchange
interaction when the thickness of N spacers is thick enough to
weaken the static coupling but still thinner than the electron
mean-free path [50,59] (the electron mean-free path of Ag,
Cu, Au, Al is 53.3, 39.9, 37.7, 18.9 nm, respectively [76]),
see the Supplemental Material [77] for the situation when
the thickness of N spacers is thin enough so that the static
coupling is sizable. The spectral matching of Eqs. (1) and (3)
is also provided in the Supplemental Material [77]. By set-
ting 
 = (ω1 − ω2)/2, χ = [(α1 + α′

1)ω1 − (α2 + α′
2)ω2]/2,

ε = −α′
1α

′
2ω1ω2 (in our system, ε < 0 because of ω1ω2 > 0,
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FIG. 2. Simulation of the real and imaginary part of energy levels as a function of α2, ω2/ω1 with different α1 and α′
i according to Eq. (5).

Level coalescence occurs when (α1 + α′
1)ω1 − (α2 + α′

2)ω2 = 0 (i.e., χ = 0). The coalescent length conforms to λc � 4
√

α′
1α

′
2.

α′
i > 0), Eq. (3) reduces to

H = H0 + I ⊗ [(ω1 + ω2)/2 + iA],

H0 =
(


 + iχ −iα′
1ω2

−iα′
2ω1 −
 − iχ

)
, (4)

with A = [(α1 + α′
1)ω1 + (α2 + α′

2)ω2]/2 being the global
damping of the overall system, I is the 2 × 2 identity matrix.
The eigenvalues of H read

ω = ±
√


2 − χ2 + ε + 2i
χ + (ω1 + ω2)/2 + iA. (5)

III. LEVEL ATTRACTION, COALESCENT LENGTH,
PSEUDO-HERMITICITY, AND SYMMETRIES

We first recall the dynamic collective behavior in the sys-
tem by focusing on the effects of αi and α′

i on spectrum
attraction. From Eq. (4), the coupling terms −iα′

1ω2 and
−iα′

2ω1 are imaginary, leading to a purely dissipative cou-
pling between Fi. We depict the real (imaginary) component
Re(ω)/ω1 (Im(ω)/ω1) of the spectrum as a function of α2,
ω2/ω1 with distinct α1, α′

i in Fig. 2. From Eq. (5), the level
coalescence (for the real part of spectrum) occurs when


χ = 0, (6)


2 − χ2 + ε � 0, (7)

which results in Re(ω) = (ω1 + ω2)/2, Im(ω) =
±(−
2 + χ2 − ε)1/2 + [(α1 + α′

1)ω1 + (α2 + α′
2)ω2]/2.

The coalescence of energy levels discussed in this
section refers to the same real part and different imaginary
part, except for exceptional points which has the same
real part and imaginary part, as indicated in Fig. 2(a).
By comparing the subplots, when χ = 0, namely,
(α1 + α′

1)ω1 − (α2 + α′
2)ω2 = 0, the level attraction is most

obvious; while 
 = 0 (ω1 = ω2) has no level coalescence on
the degree of ω2/ω1. The coalescent length (the length of the
section where the real parts of energy levels are equal, i.e.,
the distance between the two EPs in the subplots) of spectrum
follows the rule (see Supplemental Material [77] for detailed
derivations)

λc � 4
√

α′
1α

′
2, (8)

as indicated in Fig. 2 by the coalescent part of the yellow lines.
The synchronization efficiency of the system can be controlled
by adjusting α′

i .
Ignoring the scalar matrix part, the essence of H depends

on the pseudo-Hermiticity and symmetry of H0. The eigen-
value of H0 reads

ω0 = ±
√


2 − χ2 + ε + 2i
χ. (9)

As a 2D non-Hermitian Hamiltonian with discrete spectra
and a complete bi-orthogonal system of eigenbases, H0 is
pseudo-Hermitian if and only if its spectrum is either real or
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TABLE I. (Anti-)Pseudo-Hermiticities, symmetries, and EL of H0 in the pseudo-Hermitian regions. η+, η− represent pseudo-Hermitian
and anti-pseudo-Hermitian metrics, respectively.

Condition (Anti-)pseudo-Hermiticity Symmetry Exceptional line Phase 1 Phase 2 (Anti-)PT symmetry condition

Anti-pseudo-Hermiticity Anti-TRS† symmetry Anti-PT symmetry
χ = 0 η−H0η

−1
− = −H †

0 , T−HT
0 T −1

− = −H0, 
2 + ε = 0 
2 + ε > 0 
2 + ε < 0 {PT, H0} = 0, P = σx,

(ε < 0) η− = σx T− = σxT for α′
1ω2 = α′

2ω1

Pseudo-Hermiticity TRS† symmetry

 = 0 η+H0η

−1
+ = H †

0 , T+HT
0 T −1

+ = H0, None None All None

(ε < 0) η+ = σy T+ = σyT

complex-conjugate pairs [46,78–80]. Thus, from Eq. (9), the
conditions for H0 to be pseudo-Hermitian is

2χ
 = 0. (10)

For χ = 0 or 
 = 0, the real part in the square root of Eq. (9)
determines whether ω0 is real (to be called “phase 1” through-
out this work) or complex-conjugate pairs (to be called “phase
2”):


2 − χ2 + ε > 0 ⇒ phase 1,


2 − χ2 + ε < 0 ⇒ phase 2. (11)

The implications of 
 = 0 and χ = 0 in Eq. (1) are as fol-
lows: for 
 = 0, it means −γ1m1 × Heff,1 = −γ2m2 × Heff,2,
indicating the equatability of pressing torques; for χ = 0,
it means (α1 + α′

1)m1 × dm1/dt = (α2 + α′
2)m2 × dm2/dt ,

implying the balance of damping torques in both subsystems
(notice that |mi × dmi/dt | ∝ |dmi/dt | ∝ ωi for small αi, j

and α′
i, j).

For 
 = 0, the Hamiltonian holds TRS† symmetry (see
Table I), and the spectrum is always complex-conjugate pairs
because ε < 0, therefore, there is no phase transition in the

 = 0 plane. For χ = 0, the Hamiltonian holds anti-TRS†

symmetry, and the phase transition is shown in Fig. 3(a),
where the pseudo-Hermitian phase 1 (phase 2) are shown by
yellow (blue), and the red line between them denotes the EL.
We show the real and imaginary components of the spectrum
for χ = 0 in Figs. 3(b) and 3(c).

H0 is η-pseudo-Hermitian when it satisfies Eq. (10), where
the metric η does not have to be unique [81]. In phase 1, H0

satisfies ηH0η
−1 = H†

0 , and one of the expressions of η is

η = (DD†)−1,

D =
(−χ+i
−i

√
τ

α′
2ω1

−χ+i
+i
√

τ

α′
2ω1

1 1

)
,

τ = 
2 − χ2 + 2i
χ − α′
1α

′
2ω1ω2, (12)

with D being the diagonalizing matrix for H0. In phase 2, H0

satisfies η̃H0η̃
−1 = H†

0 , one of the forms of the metric η̃ is

η̃ = (DσxD†)−1. (13)

For simplicity, we use Pauli matrix to describe the
(anti-)pseudo-Hermiticity and the corresponding (anti-)TRS†

symmetry [78] for χ = 0 and 
 = 0, respectively, as shown
in Table I. The (anti-)TRS† symmetry also gives rise to (anti-
)PT symmetry [46,81] (where P = σx,y and T = K0, K0 is
the complex-conjugation operator) with |α′

1ω2| = |α′
2ω1| (it is

α′
1ω2 = α′

2ω1 in our system resulted in anti-PT symmetry)
being a special case.

IV. EQUALLY (UNEQUALLY) ENHANCED SPIN-WAVE
EXCITATION ON THE EXCEPTIONAL LINE WITH

ANTI-PT SYMMETRY UNBROKEN (BROKEN)

As indicated in the last section, the EL acts as a dividing
line between the pseudo-Hermitian phase 1 and phase 2. Dis-
crete spectra of an η-pseudo-Hermitian Hamiltonian would
merge into one at EL for both real and imaginary parts. Unlike
the general degenerate points, the eigenstates of the two levels
become one at the EP (EL). Thus, physical properties are
usually more sensitive to the parameter changes at EP (EL)

Phase 2

Phase 1

EL

(a) (c)(b)

EL EL

FIG. 3. (a) Pseudo-Hermitian phase diagram for χ = 0: phase 1 (blue), phase 2 (yellow), EL (red). The (b) real and (c) imaginary parts of
the spectrum for χ = 0
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FIG. 4. The Petermann factor PF+, PF− near EL, evaluated at
|
| = 0.05, |α′

1ω2| ≈ |α′
2ω1|. δ = 
2 + ε denotes the difference be-

tween the calculated state and EL in χ = 0 plane.

[6,82–84]. In our system, the EL reads


2 + ε = 0, χ = 0, (14)

where the detuning equals to the enhanced damping in order
of magnitude, resulting in a full compensation mechanism.
Now, we focus on the physical properties of the pseudo-
Hermitian states near EL.

For χ = 0, H0 becomes

H0|χ=0 =
(


 −iα′
1ω2

−iα′
2ω1 −


)
, (15)

with the bi-orthogonal basis being

|φR
±〉 =

(
i
±i

√

2+ε

α′
2ω1

1

)
,

|φL
±〉 =

(
−i
∓i(

√

2+ε)∗

α′
1ω2

1

)
, (16)

where

〈φL
+|φR

−〉 = 〈φL
−|φR

+〉 = 0,

|φL
+〉〈φR

+|
〈φL+|φR+〉 + |φL

−〉〈φR
−|

〈φL−|φR−〉 = I. (17)

The two eigenstates becomes self-orthogonal on EL:
〈φL

±|φR
±〉 |EL= 0. To characterize the properties near EL,

we calculate the Petermann factor (a measure of non-
orthogonality, which so far has been shown to diverge at
the EPs of optical systems [84,85], and we find that its
mathematical expression is also applicable to non-Hermitian
spin-wave systems), i.e., the excess spontaneous emission fac-
tor [84,86,87] of the system

PF± = 〈φL
±|φL

±〉〈φR
±|φR

±〉
|〈φL±|φR±〉|2 , (18)

as a function of δ = 
2 + ε, where δ describes the “distance”
of the state from EL in the χ = 0 plane. The result is shown
in Fig. 4, where PF± diverges at EL (the δ = 0 point). The
divergence of Petermann factor is usually associated with the
enhanced excitations of particles [84,85,88]. Upon discover-
ing the EL, we regress the analysis of pseudo-Hermiticity
and symmetries of H0 to the entire dynamics of the system.
Thus, we calculate mi⊥ as a function of precession frequency
ω by introducing a small circularly polarized resonance field
hie−iωt into Fi. The effective magnetic fields becomes Heff,i +
hie−iωt , and the dynamic equations becomes

�

(
m1⊥
m2⊥

)
=

(−γ1h1

−γ2h2

)
. (19)

We plot the corresponding resonance in Fig. 5, for states at
EP, phase 1 and phase 2, respectively, by slightly different
ω1 = 1.08, 1.1, 1.12, when other parameters are identical.

FIG. 5. The perpendicular component of magnetization direction |mi,⊥| as a function of frequency of the circularly polarized resonance
field ω when resonance occurs. Panels (a)–(c) describe the situations when α′

1ω2/α
′
2ω1 = 1 (anti-PT symmetry unbroken): (a) Resonance at an

EP (ω1 = 1.01). (b) Resonance at phase 1 (ω1 = 1.012). (c) Resonance at phase 2 (ω1 = 1.008), with the same ω2 = 0.99, α′
1 = 0.0101, α′

2 =
0.0099, αi = −0.9α′

i , γihi = 10−5 for panels (a)–(c). Panels (d)–(f) describe the cases when α′
1ω2/α

′
2ω1 = 10 (anti-PT symmetry broken), with

the same ωi, γihi as in panels (a)–(c) but α′
1 = 0.0319, α′

2 = 0.0031, α1 = −0.0309, α2 = −0.0021. The above parameter settings satisfy χ � 0
(pseudo-Hermitian), and a global damping of iA = 0.001 is induced in all six modes. Here, (a), (d) δ = 0; (b), (e) δ = 4.4 × 10−5; (c), (f)
δ = −3.6 × 10−5 determines the different phases of these states, which we mark by purple, dark-green, and blue signs in the pseudo-Hermitian
(χ = 0) phase diagram (g), respectively.
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FIG. 6. The perpendicular components of magnetization di-
rection |m1,⊥| (left) and |m2,⊥| (right) as functions of ω2/ω1

and ω/ω1 when ε = −10−4, γihi/ω1 = 10−5. (a) α′
1ω2/α

′
2ω1 = 1

(anti-PT symmetry unbroken), α′
1 = 0.01/ω2, α′

2 = 0.01/ω1, αi =
−0.9α′

i . (b) α′
1ω2/α

′
2ω1 = 10 (anti-PT symmetry broken), α′

1 =
(0.01/ω2)

√
10, α′

2 = (0.01/ω1)
√

10, α1 = −α′
1 + 0.001/ω2, α2 =

−α′
2 + 0.001/ω1.

A small global damping iA is induced in all cases in order
to conform to actual possible interferences. Here we have
introduce a negative Gilbert damping (αi < 0) to ensure a
small enough iA when χ = 0, which can be realized via
STT. From Figs. 5(a)–5(c), the response is grossly sensitive
to slightly adjustment of ω1, and the spin-wave excitation is
enhanced at EPs. Possible applications of this result are, for
example, high-sensitivity sensors for magnetic-field fluctua-
tion, coherent perfect absorption of spin waves, detection of
weak electromagnetic signals, magnon generators with stable
frequency and extremely narrow linewidths in quantum cir-
cuits, magnetic-field-controlled binary signal switching, etc.

A more intriguing result can be obtained by compar-
ing Figs. 5(a)–5(c) with Figs. 5(d)–5(f): The system holds
anti-PT symmetry for α′

1ω2 = α′
2ω1, |m1,⊥|/|m2,⊥| = 1 as

shown in Figs. 5(a)–5(c), while the anti-PT symmetry is
broken for α′

1ω2 �= α′
2ω1, |m1,⊥|/|m2,⊥| �= 1 as shown in

Figs. 5(d)–5(f). The perpendicular (to Heff,i) component

of magnetization direction |mi,⊥| which characterize the
intensity of the spin-wave excitation follows the rule
that |m1,⊥|/|m2,⊥| = √

α′
1ω2/α

′
2ω1 for small-angle excitations

around EL. By adjusting the ratio of α′
1 and α′

1 properly, the
spin-wave excitation can be imbalanced in the two subsys-
tems, or even occurs only in one of the ferromagnets when
α′

i/α
′
j → ∞.

Figure 6 shows |mi,⊥| as a function of ω2/ω1 and ω/ω1

when the state changes along the doted line in Fig. 5(g), for
anti-PT symmetry unbroken case and the anti-PT symmetry
broken case, respectively. The anti-PT symmetry unbroken
case in Fig. 6(a) and the anti-PT symmetry broken case in
Fig. 6(b) have the same energy level but different excitation
status. This result can be applied to the distribution and am-
plification of monochromatic spin-wave signals.

Although only two EPs are selected for discussions, the EL
can provide a wide range of parameter adjustment in experi-
ments. Experimentally, α′

i can be adjusted through changing
di, the F/N interface area, and the material, to achieve dif-
ferent EPs, where the state only needs to satisfy Eq. (14). A
feasible plan is to first determine α′

i of the system, and then
adjust Heff,i and αi as necessary.

V. CONCLUDING REMARKS

In summary, we have study the pseudo-Hermitian prop-
erties of a two-tone driving F |N |F system. The geometric
property of spectra and the status of spin-wave excitation can
be characterized by pseudo-Hermiticity phase and symmetry
of the Hamiltonian. The EL appears between the two phases
of the pseudo-Hermitian region with divergently enhanced
spin-wave excitation when the negative Gilbert damping is
induced. In particular, anti-PT symmetry unbroken (broken)
of the Hamiltonian can result in equally (unequally) spin-wave
excitation in two ferromagnets. The results possess an innate
physical essence which has the potential to be applied to other
physical systems.
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[69] K. Lenz, T. Toliński, J. Lindner, E. Kosubek, and K.
Baberschke, Evidence of spin-pumping effect in the ferromag-
netic resonance of coupled trilayers, Phys. Rev. B 69, 144422
(2004).

[70] S. Rezende, R. Rodríguez-Suárez, M. Soares, L. Vilela-Leão,
D. Ley Domínguez, and A. Azevedo, Enhanced spin pumping
damping in yttrium iron garnet/Pt bilayers, Appl. Phys. Lett.
102, 012402 (2013).

[71] T. Moriyama, S. Takei, M. Nagata, Y. Yoshimura, N. Matsuzaki,
T. Terashima, Y. Tserkovnyak, and T. Ono, Anti-damping spin
transfer torque through epitaxial nickel oxide, Appl. Phys. Lett.
106, 162406 (2015).

[72] A. Hamadeh, O. d’Allivy Kelly, C. Hahn, H. Meley, R. Bernard,
A. H. Molpeceres, V. V. Naletov, M. Viret, A. Anane, V. Cros,
S. O. Demokritov, J. L. Prieto, M. Munoz, G. de Loubens,
and O. Klein, Full Control of the Spin-Wave Damping in a
Magnetic Insulator Using Spin-Orbit Torque, Phys. Rev. Lett.
113, 197203 (2014).

[73] A. I. Nikitchenko and N. A. Pertsev, Spin-orbit torque control
of spin waves in a ferromagnetic waveguide, Phys. Rev. B 104,
134422 (2021).

[74] J. Xiao, G. E. W. Bauer, K. C. Uchida, E. Saitoh, and S.
Maekawa, Theory of magnon-driven spin Seebeck effect, Phys.
Rev. B 81, 214418 (2010).

[75] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K.
Ando, S. Maekawa, and E. Saitoh, Observation of the spin
Seebeck effect, Nature (London) 455, 778 (2008).

[76] D. Gall, Electron mean free path in elemental metals, J. Appl.
Phys. 119, 085101 (2016).

[77] See Supplemental Material http://link.aps.org/supplemental/10.
1103/PhysRevB.108.064428 for the estimation when the static
coupling is sizable; the spectral matching of the coupled LLG
equations and the Hamiltonian; and a derivation of the coales-
cent length of the spectrum when χ = 0. The Supplemental
Material also contains Refs. [50,52,69].

[78] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symme-
try and Topology in Non-Hermitian Physics, Phys. Rev. X 9,
041015 (2019).

[79] R. Zhang, H. Qin, and J. Xiao, PT -symmetry entails pseudo-
Hermiticity regardless of diagonalizability, J. Math. Phys. 61,
012101 (2020).

[80] F. Kleefeld, Identification of the metric for diagonalizable
(anti-) pseudo-hermitian hamilton operators represented by
two-dimensional matrices, arXiv:2102.08182.

[81] Z. Ahmed, C-, PT - and CPT -invariance of pseudo-Hermitian
Hamiltonians, J. Phys. A: Math. Gen. 36, 9711 (2003).

[82] V. L. Grigoryan and K. Xia, Torque-induced dispersive readout
in a weakly coupled hybrid system, Phys. Rev. B 102, 064426
(2020).

[83] Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, and K. Vahala, Obser-
vation of the exceptional-point-enhanced Sagnac effect, Nature
(London) 576, 65 (2019).
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