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Noncollinear nature of the magnetic ground states in an fcc [Fe7|Cu7]n superlattice

Xinzhe He ,1 Cunxu Gao,2 and Lei Wang 1,*

1Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials,
Xi’an Jiaotong University, No. 28 Xianning West Road Xi’an, Shaanxi 710049, China

2Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China

(Received 4 January 2023; accepted 9 August 2023; published 18 August 2023)

Due to its complex magnetic structure, fcc Fe grown on a Cu(100) substrate has been studied for decades.
Many experimental measurements have gradually confirmed that fcc Fe|Cu(100) films have a noncollinear
magnetic configuration. In contrast, current theoretical calculations have found that collinear magnetic con-
figurations are always more stable than noncollinear magnetic configurations. To clarify this discrepancy, we set
up Fe|Cu(100) films and [Fe7|Cu7]n superlattice and carry out first-principles calculations to study the magnetic
ground states therein. We find that the exchange interactions along the normal direction of the thin film exhibit
long-range RKKY-like behavior. Using these exchange interactions, we construct an effective Hamiltonian, with
which the noncollinear magnetic ground states were found. Moreover, Monte Carlo simulations confirm these
noncollinear magnetic ground states to be stable at a finite temperature. Thus, our results catch the physical origin
of the noncollinear magnetic ground states in fcc Fe-based films and reveal that even the collinear exchange
coupling may induce noncollinear magnetic states.

DOI: 10.1103/PhysRevB.108.064424

I. INTRODUCTION

While bulk fcc Fe is known to be a high-temperature phase
above 1200 K, it can be stabilized below room tempera-
ture by epitaxial growth on fcc Cu(100) substrates, which is
promising for broader applications. Thus, a large number of
experiments [1–17] and theoretical calculations [18–32] have
been carried out to study Fe|Cu(100) films, including their
sample preparation, growth mechanism, magnetic properties,
crystal structure, etc. For the crystal/magnetic structures of
Fe|Cu(100) films, the following consensus has gradually been
immersed (there are three kinds of crystal/magnetic structures
as a function of the film thickness) [32]: for the film with less
than four Fe atomic layers (ALs), the magnetic configuration
keeps ferromagnetic (FM); for the film with more than 10 Fe
ALs, the crystal structure of film become bcc type and the
magnetic structure changes to FM with in-plane easy axes.
The most interesting part is the film with the number of Fe
layers between five and nine ALs, where the crystal structure
of the film is fcc type and the magnetic configurations are
richer than expected.

The magnetic configuration of such films was first assumed
to be ferromagnetic at the surface with antiferromagnetic
ordering in between domains [1,2,19]. However, Amemiya
et al. [3] and Qian et al. [4] both believed that the magnetic
texture in Fe|Cu(100) films should be a spin-density wave.
Subsequently, a new magnetic configuration was proposed
using soft-x-ray resonant magnetic scattering measurements
combined with theoretical calculations [5], which is con-
structed by different blocks with internal robust magnetic
configurations, and the magnetic couplings between these
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blocks are so weak that it is easy to form noncollinear mag-
netic configurations. Although there are still disharmonious
opinions regarding the details of the magnetic structure, the
noncollinear nature of these films has been approved by dif-
ferent groups [3–5,14,17].

However, for theoretical calculations of magnetic
configurations of Fe|Cu(100) films, despite the differences
in methods and models used by Asada [20], Spisak et al.
[18], and Zhou et al. [33], these results all show that the
collinear bilayer antiferromagnetic (CBAFM) configuration
tends to be energetically preferred. Furthermore, Yavorsky
et al. [21] and Spisak et al. [23] have proposed that the
magnetic configurations therein should be a spin density
wave; and Sandratskii [22] claimed that the calculated
noncollinear magnetic configurations induced by different
blocks are consistent with the experimental results [5].
However, it should be noticed that all the total energies of
the above noncollinear results are larger than the CBAFM
configurations and they try to attribute the noncollinear
magnetic configurations to the energy disturbance by concrete
defect patterns or lattice distortions in the films.

To clarify these discrepancies between experimental and
theoretical works, in this paper, we report on the first-principle
study of the magnetic ground states of fcc Fe-based films.
As the [Fe|Cu]n superlattice has been recently proven to be
reliable in experiments with high quality [34], it becomes a
promising object to study the corresponding interface effect
between Cu and Fe without introducing surface defects
and reconstruction. Thus, we mainly set up an [Fe7|Cu7]n

superlattice to calculate the exchange interactions based on
first-principle calculations, where the subscript “7” stands
for 7 ALs in a repetitive structure and “n” represents the
infinite repeating units with periodic boundary conditions.
And to demonstrate the interface is crucial rather than the
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FIG. 1. (a) A sketch of the [Fe7|Cu7]n superlattice. (b) The cor-
responding ball-stick models of the smallest unit cell with a 45◦

in-plane rotation to make one effective atom in one layer. Ji js are
the Heisenberg exchange constants between the ith and jth layers,
accordingly. (c) The noncollinear spin texture of the [Fe7|Cu7]n

superlattice

periodic boundary condition from the superlattice, an Fe7|Cu7

bilayer is also used to calculate the exchange interactions for
comparison.

Our results show that the Ruderman-Kittel-Kasuya-Yosida
(RKKY)-like [35–38] exchange interaction is observed along
the normal direction of both [Fe7|Cu7]n superlattice and
Fe7|Cu7 bilayer, which is demonstrated to come from the
intervention of the electrons from Cu around the interfaces.
Accordingly, the next-nearest-neighbor coupling dominates,
indicating a strong antiferromagnetic coupling therein. More-
over, we construct an effective Hamiltonian using these
exchange interactions as well as the magnetic anisotropy
energy (MAE) and obtain a series of noncollinear mag-
netic configurations, which are notably more stable than the
CBAFM configuration. To confirm the physical existence of
these noncollinear states, Monte Carlo (MC) simulations are
carried out at low temperatures. The results reveal that these
noncollinear states all converge to a group of similar textures,
as shown in Fig. 1(c), where the angles between every two
spins are fixed and the texture can be freely rotated. Moreover,
the influence of the number of Fe ALs is discussed, where
similar noncollinear magnetic ground states are founded with
odd Fe ALs while the collinear magnetic ground states are
founded with even Fe ALs.

II. MODEL AND METHOD

The model used in this paper is shown in Figs. 1(a) and
1(b), where the corresponding lattice constants are set to
3.612 Å, and the Fe atoms in the same AL of the superlattice
are marked as Fei,i∈{1∼7}, with i representing the layer index.
The corresponding effective Hamiltonian of a unit cell can be
expressed as H = −∑

i, j Ji j �Si · �S j , where i and j represent
the index of Fe atoms, Ji j describes the Heisenberg exchange
constants between the ith atom and jth atom, and the magnetic
vector |�S| = 1 for generality. In a typical case, to obtain the
Heisenberg exchange constants between two different atoms
(Fek and Fel ), a four-state method [39] is used, in which the
total energy can be rewritten as

Etot = E0 − NJkl �Sk · �Sl − �Ak · �Sk − �Al · �Sl (1)

where E0 contains the energies of the nonmagnetic part and
the coupling independent of Fek and Fel , N is the number of

neighboring atoms, and �Ak = ∑
j �=l Jk j �S j , �Al = ∑

j �=k Jl j �S j ,
representing the effective field on Fek and Fel , respectively.
Then, if we have the energies of four different magnetic states
between Fek and Fel (a : ↑↑, b : ↑↓, c : ↓↑, d : ↓↓), then the
corresponding Heisenberg exchange constant will be Jkl =
(Eb + Ec − Ea − Ed )/4N , with Ea,b,··· being the energies of
different magnetic configurations. Notably, all calculations
are independent of the spin texture of the other Fe atoms
except Fek and Fel , and we set them all parallel to the +z axis
for simplicity. Moreover, there is a spatial inverse symmetry
in the [Fe7|Cu7]n superlattice; thus, the Heisenberg exchange
constants follow the relationship of Ji, j = J8−i,8− j , which can
simplify our calculations.

It is efficient and convenient to calculate the above total
energies Ea,b,··· by density functional theory, which can be
realized by the Vienna ab initio simulation package (VASP)
[40,41]. Here, all calculations are carried out with the gen-
eralized gradient approximation (GGA) and a plane-wave
basis set within the framework of the projector augmented
wave (PAW) method [42,43]. The cutoff energy for the ba-
sis is 500 eV, and the convergence criterion for the electron
density self-consistency cycles is 10−6 eV. In the Brillouin
zone, we sample (13 × 13 × 3) k-point grids using the Monk-
horst-Pack scheme [44] to ensure that the results converge.
Additionally, for perpendicular magnetic anisotropy, spin-
orbit coupling is included.

III. RESULTS AND ANALYSIS

We first focus on the in-plane Heisenberg exchange con-
stants Jii,i∈[1,7], which can be calculated by expanding a
10 × 1 × 1 supercell of the [Fe7|Cu7]n superlattice, and the
results are J11 = J77 = 40.44 meV, J22 = J66 = 28.87 meV,
J33 = J55 = 29.46 meV, and J44 = 30.50 meV for the nearest-
neighbor atoms. Meanwhile, for the next-nearest-neighbor
atoms, the in-plane Heisenberg exchange constants decay
very fast to about −1.52 meV, −0.0116 meV, 1.16 meV,
1.40 meV, 1.16 meV, −0.0116 meV, and −1.52 meV for i =
1 . . . 7, respectively. It is apparent that the in-plane Heisenberg
exchange constants are dominated by the nearest-neighbor
atoms and all favor the ferromagnetic states, indicating that
the superlattice is a layered spin texture, which can be also
demonstrated by the MC simulations as discussed in Fig. 5
below. Therefore, with this information, we now focus on
interlayer coupling in the following. The corresponding inter-
layer Heisenberg exchange constants as a function of distance
are plotted in Fig. 2, where the red circles represent J1i,i∈[2,7]

and blue squares represent the other Heisenberg exchange
constants away from the Fe|Cu interfaces. In addition, we
estimate the Heisenberg exchange constants by the total ener-
gies of different magnetic configurations from a 5-ALs sample
in Ref. [20], and the results are also plotted in Fig. 2 by
green triangles for comparison. The calculated J1is agree well
with the results from Ref. [20], supporting the reliability of
our calculations. Moreover, to rule out the influence of the
periodical boundary condition in the superlattice, the Fe7|Cu7

bilayer is constructed with a similar crystal structure, and
the corresponding results are plotted in Fig. 2 by magenta
circles. It can be seen that the Heisenberg exchange constants
of Fe7|Cu7 bilayer are quite close to that of [Fe7|Cu7]n su-
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FIG. 2. The interlayer Heisenberg exchange constants Ji j,i �= j vs
the corresponding distance ri j for [Fe7|Cu7]n superlattice (red cir-
cles for J1i, i ∈ [2, 7]; blue squares for Ji j, i, j �= 1, 7) and Fe7|Cu7

bilayer (magenta circles for J1i, i ∈ [2, 7]), respectively. The green
triangles are estimated from the total energies in Ref. [20] for com-
parison. The red solid line represents the fitting results using the
RKKY-like equation (2). The inset shows the calculated electron
local density for the (100) and ( 1

2 00) planes of the [Fe7|Cu7]n su-
perlattice and bulk fcc Fe, respectively.

perlattice, indicating that the calculated Heisenberg exchange
constants are mainly from a single Fe layer in the superlat-
tice and insensitive to the interaction between Fe layers that
separated by Cu layers.

It is notable that the largest Heisenberg exchange constant
appears at a distance of ri j = 3.612 Å for the next-nearest-
neighbor atoms instead of the nearest-neighbor atoms with
ri j = 2.554 Å. Moreover, the corresponding sign change be-
tween the nearest- and next-nearest-neighbor Heisenberg
exchange constants introduces competition in the formation of
the magnetic ground states, which may result in complicated
spin textures in the [Fe7|Cu7]n superlattice. Furthermore, the
oscillated J1i reminds us of the RKKY interaction, which
obeys the rule [35–37]

J (r) = J0

(
cos(2kF r)

r3
− sin(2kF r)

r4

)
(2)

with kF being the wave vector at the Fermi energy. Therefore,
we try to fit our results by the above equation, which is shown
by the red solid line in Fig. 2, representing J (r) 	 417.90 ×
( cos(2.46r)/r3 − sin(2.46r)/r4). It should be noted that the
exchange constant between the nearest-neighbor atoms is
dominant by the direct Heisenberg exchange interaction [45]
and thus, the first point with ri j = 2.554 Å is neglected in the
fitting. Here, kF 	 1.23 Å−1, which is in the same order of
the rare earth materials, such as ErB4, DyB4, kF 	 1.7 Å−1

[45], TmB4, kF 	 1.38 Å−1 [46,47], Pr2Ir2O7, kF 	 0.50 Å−1

[48], RbEuFe4As4, kF 	 0.60 Å−1 [49], etc. We also notice
that the kF in our system is quite close to the free electron
model of Cu (kF 	 1.36 Å−1), therefore, it could be reason-
able to relate the origin of the RKKY interaction to the charge
transfer around Fe|Cu interface, which is different from the
conventional RKKY interaction in rare-earth materials.

[deg]

FIG. 3. (a) Normalized total energy vs the direction of magne-
tization, where α/β stands for the angle between the direction of
magnetization and the y/x axis. The inset shows the global axis in the
[Fe7|Cu7]n superlattice with the definition of α and β. (b) The layer-
resolved magnetic anisotropy energy (MAE) from the four-state
methods [39] (green circles), and the dashed violet line represents
the MAE calculated from the total energies in (a).

On top of the above consideration, the corresponding elec-
tron localization function (ELF) [50] is calculated by the
equation ELF = (1 + (D/D0)2)−1, where D = ∑

i |∇ϕi|2 −
(∇ρ)2/(4ρ), D0 = 3

5 (6π2)
2
3 ρ

5
3 , ϕi represents the orbital wave

function and ρ stands for the density matrix. The possible
values of the ELF are limited in the range of [0 ∼ 1], with
the upper limit 1 corresponding to a totally localized state.
The calculated results for the [Fe7|Cu7]n superlattice and
bulk fcc Fe are shown in the inset of Fig. 2, respectively.
Typically, for simplicity, we only show the ELFs on the
(100) and ( 1

2 00) planes for comparison. The ELFs of the
[Fe7|Cu7]n superlattice around the interfaces are significantly
smaller than those of the bulk fcc Fe. According to the rule of
the RKKY interaction [35–37], the itinerant electrons (small
ELF) will contribute to the indirect coupling between Fe
atoms with longer distances, and the RKKY-like interaction in
the [Fe7|Cu7]n superlattice should come from the intervention
of the 4s electrons of the fcc Cu at the interfaces.

Moreover, to obtain the magnetic ground states of
[Fe7|Cu7]n, the MAE is also needed, even though the corre-
sponding spin-orbit coupling may be weak. Figure 3(a) plots
the angular dependence of the total energy of the [Fe7|Cu7]n

superlattice, where the energy does not change with changing
β inside the x-y plane but shows a cos-like curve as a func-
tion of α, indicating a typical uniaxial magnetic anisotropy
along the normal direction (z) of the film. In addition, if we
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FIG. 4. (a) Evolution of the magnetic configurations obtained from the interior-point algorithm. [(b)–(d)] Details of the first 1000 steps for
the corresponding metastable ( 1©), unstable ( 2©), and stable state ( 3©) under MC simulations. Here, all calculations are calculated by the Monte
Carlo method at 1 K, and the energies are normalized by the energy of the collinear phase, as shown by the dashed horizontal line in (a). The
insets illustrate the change of the states from “A” to “B” in the numerical magnetic configurations with a finite temperature.

divide the MAE into every Fe atom equally, then the atomic
magnetic anisotropy energy (aMAE) is estimated as Ki =
0.214 meV/atom. To check the reliability of this assumption,
we use a similar four-state method [39] to calculate the aMAE
for all Fe atoms in the [Fe7|Cu7]n superlattice, and the results
are plotted in Fig. 3(b), with the dashed line representing the
aMAE from the total energies. Here, we note that the calcu-
lated aMAEs are all around the dashed line; thus, we set Ki =
0.214 meV/atom in the following calculations for simplicity.

In addition to the above considerations, the whole Hamil-
tonian of the system can be written as

H = −
∑
i, j

Ji j �Si · �S j −
∑

i

Ki(�Si · �z)2 (3)

where Ki represents the aMAE of the corresponding Fei and
�Si = (sin θi cos φi, sin θi sin φi, cos θi ) represents the direction
of magnetization of Fei, with θi and φi representing the polar
and azimuth angles in the spherical coordinate system, respec-
tively. In this sense, as Ji j and Ki are already known from the
above calculations, there remain 14 undetermined coefficients
(θi and φi with i ∈ {1 · · · 7}) in Eq. (3). Moreover, as the total
energy is insensitive to β, as shown in Fig. 3(a), the whole
spin texture can be rotated freely in the x-y plane. Therefore,
there are only 13 independent parameters, and we fix φ1 = 0
to avoid misleading the results.

To find all possible nontrivial magnetic ground states, the
interior-point (IP) algorithm is used one million times with
random initial directions of every Fe atom to search the

standing points of Eq. (3). After the simulations, we find
97 typical magnetic configurations from the standing points
in total, and the energies of these 97 different magnetic
configurations are all smaller than that of the collinear anti-
ferromagnetic configuration (↑↑↓↓↓↑↑), as shown in Fig. 4.
However, the mathematical solver may generate unphysical
results. Thus, we use these 97 magnetic configurations as
the initial states and carry out Monte Carlo (MC) calcula-
tions at 1 K to check whether these states can exist at finite
temperature. Technically, the MC calculations are realized by
an open source code UppASD [51,52], in which we set up
a 25 × 25 × 1 supercell with the calculated Ji j and Ki from
Fig. 2 and Fig. 3 to construct the Hamiltonian and use the
semi-implicit midpoint solver with a time step of τ = 10−16 s
and a typical damping parameter 0.1 for the time-dependent
evolutions.

As shown in Fig. 4(a), after a sufficient number of it-
erations, all 97 magnetic configurations obtained by the IP
algorithm converge to a similar energy level, indicating that
most of the 97 magnetic configurations are not stable at
a finite temperature. For a clear view of the simulations,
Figs. 4(b)–4(d) show the details of the first 1000 steps of the
MC simulation for three typical states, respectively. Accord-
ingly, Fig. 4(b) displays a metastable magnetic state obtained
from the numerical algorithms, in which the system goes
through a small energy barrier and converges to the ground
state; Fig. 4(c) corresponds to the unstable magnetic state. To
figure out its origin, the energy versus φ3 from Eq. (3) with
fixing all other parameters are plotted in the inset of Fig. 4(c),
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[deg]

FIG. 5. The normalized energies vs the spin textures (blue
squares) of all magnetic configurations obtained from Fig. 4 after
evolution at 1 K. Here, MC represents the direction of the magnetiza-
tion of the central Fe atom in the [Fe7|Cu7]n superlattice, γC stands
for the angle between the MC and z axes, and all relative angles
between every two Fe atoms are fixed. The dashed green line is
from Eq. (4) analytically, and the insets show the spin textures of
the corresponding states.

and the green circle displays the initial state obtained by the IP
algorithm. It can be seen that this state is not stable but varies
inside a small energy window (10−3 meV), which deceives
the IP algorithm; Fig. 4(d) covers most of the results and
represents the magnetic ground state of the system, which is
quite stable and remains unchanged in the MC simulation at
finite temperature.

Moreover, even though the converged energies after MC
simulation in Fig. 4 are close to each other, the detailed values
of θi and φi are very different when we go deep into the di-
rections of the magnetization of the corresponding Fei atoms
from the MC simulations. Furthermore, we also note that the
relative angles between any Fei and Fe j are approximately
the same for all 97 magnetic configurations after the MC
simulations and that the magnetizations are all in the same
plane. Thus, we define the direction of the central Fe atom
(Fe4) as MC, the angle between MC and z axis as γC , and
fix the angles between any two spins inside the [Fe7|Cu7]n

superlattice, as shown in the insets of Fig. 5. Then, we have
the relation between γC and the converged energies from the
final step of Fig. 4 and plot them in Fig. 5 by blue squares.

The curve in Fig. 5 shows a cos-like shape, reminding
us of the MAE term in Eq. (3), which can be rewritten as
�E = −∑

i Ki cos2 θi. Because the angles between the mag-
netization directions of Fei and Fe j are fixed, as discussed
above, we also define a series of constants �γi ≡ θi − γC to
describe the angles between Fei and MC. Thus, we have the
normalized MAE as

�E = −
∑

i

Ki cos2 (γC + �γi ). (4)

FIG. 6. The evolution of the magnetic configurations for
[Fe|Cu]n superlattice with different Fe ALs. Here the energies are all
normalized by the initial energy of [Fe7|Cu7]n and the arrows show
the spin textures of the corresponding magnetic ground states.

By submitting Ki = 0.214 meV/atom, the analytical MAE as
a function of γC can be obtained, and the results are plotted in
Fig. 5 by the green dashed line.

It can be seen that the converged energies of all 97 mag-
netic configurations from MC simulations agree well with
those from Eq. (4). Therefore, we can conclude that the spin
textures are fixed, as shown in the insets of Fig. 5, due to the
strong Heisenberg exchange constants, and the competition
between temperature and MAE makes the energies of the MC
results fluctuate in a small range and the whole spin texture ro-
tate in the x-z plane. Therefore, the two noncollinear magnetic
ground states of the [Fe7|Cu7]n superlattice appear at γC =
90◦ and γC = −90◦. Notably, because the [Fe7|Cu7]n super-
lattice is a uniaxial magnetic anisotropic material and has a
spatial inverse symmetry, the corresponding spin texture of the
magnetic ground states can be rotated freely in the x-y plane
and spatially inverted according to the coordinates of Fe4.

The number of the Fe ALs is also an important issue of the
magnetic ground states of the fcc Fe|Cu films, thus we try to
analyze the magnetic ground state with 5–9 Fe ALs using a
similar method. As shown in Fig. 2, the Heisenberg exchange
constants Ji j are close to each other for the same distance
ri j except for that around the Fe|Cu interfaces (J12 and J67

for [Fe7|Cu7]n). Therefore, it is convenient to construct the
total Hamiltonian with L Fe ALs by fixing the interface
Heisenberg exchange constants (J12 = JL,L−1 	 3.5 meV,
and J11 = JLL 	 40.44 meV) and extending the bulk
Heisenberg exchange constants (Ji,i+1,i �=1 	 1.27 meV,
Ji,i+2 	 −8.83 meV, and Jii,i �=1 	 30.50 meV). Then, after
MC simulation, their magnetic ground states can be obtained
as shown in Fig. 6, together with the corresponding sketch
of the spin textures. It can be seen that similar noncollinear
magnetic ground states are founded with odd Fe ALs while
the collinear magnetic ground states are founded with even
Fe ALs, accordingly. These results can be understood by the
competition of the following two aspects: (1) the strong FM
coupling around the Fe|Cu interface (J12 and JL,L−1) leads to
parallel order of the corresponding magnetizations and (2) the
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AFM coupling for the next nearest-neighbor Fe atoms (Ji,i+2)
favors an antiparallel order in contrary. Thus, for even Fe ALs,
the CBAFM configuration satisfies both of the above two
conditions, but for odd Fe ALs, these two conditions cannot be
satisfied at the same time, and then their competition results in
the noncollinear magnetic ground states, as shown in Fig. 6,
accordingly. Moreover, in the experiments, it is easy to mix
atoms around the interfaces in the thin film growth process.
Therefore, there will be both odd and even Fe ALs in a given
Fe|Cu thin film in the disorder region. Considering that the
CBAFM from even Fe ALs only gives a finite magnetization
background, the mixing of the odd and even Fe ALs in
experiments should mainly show the noncollinear features.

IV. CONCLUSIONS

In summary, we calculate the Heisenberg exchange con-
stants of the [Fe7|Cu7]n superlattice by first-principles cal-
culations. The Heisenberg exchange constants therein show

RKKY-like behavior, which is demonstrated to come from the
intervention of the 4s electrons of fcc Cu at the interfaces.
Moreover, by constructing an effective Hamiltonian based on
the calculated Heisenberg exchange constants and MAE, non-
collinear magnetic ground states are found, which originate
from the competition between the ferromagnetic coupling in
nearest-neighbor atoms and the antiferromagnetic coupling in
the next-nearest-neighbor atoms. In addition, MC calculations
are carried out to confirm the physical meaning of the obser-
vation at a finite temperature.
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