
PHYSICAL REVIEW B 108, 064420 (2023)

Symmetry analysis of light-induced magnetic interactions via Floquet engineering
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Anisotropic magnetic interactions become the origins of intriguing magnetic structures, such as helical
and skyrmion structures by the Dzyaloshinskii-Moriya interaction. In general, possible anisotropic exchange
interactions are restricted by crystal symmetry. Meanwhile, by lowering the crystal symmetry with light,
additional anisotropic magnetic interactions are expected according to its polarization and frequency. In this
study, we clarify a relation between anisotropic magnetic interactions and symmetry lowering in insulating
magnets irradiated by light. Based on the Floquet formalism, we find that a variety of anisotropic two-spin
and three-spin interactions are induced via spin-dependent electric polarizations activated by light irrespective
of the presence/absence of the space inversion symmetry; we systematically classify them in the hexagonal
point groups, tetragonal point groups, and their subgroups. Our symmetry analyses show that the light-induced
two-spin (three-spin) interactions are due to the reduction of the point group to a chiral point group (black
and white magnetic point group). We also demonstrate the effect of the light-induced magnetic interactions on
the magnetic structures in a triangular unit. Our results will be a symmetry-based reference for the Floquet
engineering of magnetic structures.
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I. INTRODUCTION

Floquet engineering of physical properties has attracted
much attention in various fields of condensed matter physics,
which gives us a framework to understand the time evolution
driven by a time-periodic field within a time-independent
Hamiltonian [1–3]. In magnetic systems, the effect of such
a time-periodic field appears in the modification of magnetic
interactions, which results in a variety of phase transitions and
associated material design. For example, a periodic electric
field to the Mott insulator brings about the change of the
sign and amplitude of exchange interactions [4–10] and the
induction of multiple-spin interactions [11–14] depending on
the intensity, polarization, and frequency of the light. More-
over, combined with the effect of the spin-orbit coupling,
the control of anisotropic exchange interactions by light is
possible, as demonstrated in the noncentrosymmetric magnet
[15] and the Kitaev magnet [16–20].

In general, possible anisotropic exchange interactions
are restricted by the crystal symmetry. For example, the
Dzyaloshinskii-Moriya (DM) interaction [21,22] appears only
when the space inversion symmetry in the lattice structure is
absent. Thus, it is difficult to control the type of anisotropic
exchange interactions once the crystal symmetry is deter-
mined. Meanwhile, by introducing the external field, one can
expect various symmetry lowerings depending on the direc-
tion and polarization of the light, which gives rise to additional
anisotropic exchange interactions that are prohibited in the
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underlying lattice structure. This leads to the possibility of en-
gineering any magnetic structures with desired functionalities,
which will provide a new guideline for Floquet engineering of
the magnetic structures.

This paper gives a symmetry-based understanding of light-
induced anisotropic magnetic interactions. Based on the
Floquet formalism in previous studies [23,24], we show that
a spin-dependent electric polarization activated by light can
be the origin of various types of anisotropic magnetic inter-
actions, such as anisotropic two-site two-spin interactions,
anisotropic two-site three-spin interactions, and anisotropic
three-site three-spin interactions, by performing group-theory
and perturbation analyses. We classify the light-induced mag-
netic interactions for the hexagonal point groups, tetragonal
point groups, and their subgroups in a systematic manner. As
a result, we show a comprehensive correspondence between
the emergent magnetic interactions and symmetry lowering
by light. We also demonstrate that the light-induced magnetic
interactions favor a noncoplanar spin structure with nonzero
spin scalar chirality on a triangular unit even without an
external static magnetic field. Our symmetry analysis of the
light-induced magnetic interactions will be a reference for
controlling magnetic structures by light.

The rest of this paper is organized as follows. We intro-
duce a static model and time-dependent light-driven model
in Secs. II A and II B, respectively. We show that the time-
dependent model is mapped onto effective time-independent
magnetic interactions by using Floquet theory in Sec. II C. We
present symmetry-based understanding of the light-induced
two-site two-spin interaction, two-site three-spin interaction,
and three-site three-spin interaction under crystallographic
point groups in Secs. III A–III C. We apply the result to a
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system consisting of a triangular unit in Sec. IV. We summa-
rize the paper in Sec. V.

II. MODEL

A. Static Hamiltonian

We consider a spin model with a generalized bilinear ex-
change interaction without time dependence, which is given
by

H0 =
∑
i, j

∑
α,β

Jαβ
i j Sα

i Sβ
j , (1)

with

Ji j =

⎛
⎜⎝

F x
i j Ez

i j + Dz
i j Ey

i j − Dy
i j

Ez
i j − Dz

i j F y
i j Ex

i j + Dx
i j

Ey
i j + Dy

i j Ex
i j − Dx

i j F z
i j

⎞
⎟⎠. (2)

Here, Si = (Sx
i , Sy

i , Sz
i ) is the quantum spin operator with ar-

bitrary spin length at site i, the summation is taken over
the bonds in the target lattice structure, and α, β = x, y, z.
The coupling matrix Ji j has nine independent components
in each 〈i, j〉 bond: three antisymmetric off-diagonal com-
ponents Di j = (Dx

i j, Dy
i j, Dz

i j ), three symmetric off-diagonal
components Ei j = (Ex

i j, Ey
i j, Ez

i j ), and three symmetric di-
agonal components Fi j = (F x

i j, F y
i j, F z

i j ). The antisymmetric
(symmetric) components are odd (even) with respect to the
interchange of two sites: Di j = −Dji, Ei j = Eji, and Fi j =
F ji. The exchange interaction with J iso

i j = (F x
i j + F y

i j + F z
i j )/3

is isotropic in spin space, while Dα
i j , Eα

i j , and Fα
i j − J iso

i j
are anisotropic in spin space. The anisotropic exchange

TABLE I. Symmetry analysis of J12, Y x
12, and Y y

12 for the 〈1, 2〉
bond along the x direction on the xy plane under 15 point groups. In
the point group G, the first, second, and third axes are taken along the
x, y, and z directions, respectively. ‖ � (⊥ �) for � = x̂, ŷ, ẑ means that
components parallel (perpendicular) to the � direction are symmetry
allowed, while the others are not allowed. All (0) means that all the
components are symmetry allowed (not allowed).

J12 Y x
12 Y y

12

G D12 E12 F12 Ax
12 Bx

12 Cx
12 Ay

12 By
12 Cy

12

mmm 0 0 All 0 0 0 ‖ ẑ 0 0
2mm 0 0 All 0 0 All ‖ ẑ ‖ ẑ 0
m2m ‖ ẑ 0 All 0 ‖ ẑ 0 ‖ ẑ 0 All
mm2 ‖ ŷ 0 All 0 ‖ ŷ 0 ‖ ẑ ‖ x̂ 0
222 ‖ x̂ 0 All 0 ‖ x̂ 0 ‖ ẑ ‖ ŷ 0
2/m.. 0 ‖ x̂ All ‖ x̂ 0 0 ⊥ x̂ 0 0
.2/m. 0 ‖ ŷ All ‖ ŷ 0 0 ⊥ ŷ 0 0
..2/m 0 ‖ ẑ All ‖ ẑ 0 0 ‖ ẑ 0 0
m.. ⊥ x̂ ‖ x̂ All ‖ x̂ ⊥ x̂ 0 ⊥ x̂ ‖ x̂ All
.m. ‖ ŷ ‖ ŷ All ‖ ŷ ‖ ŷ All ⊥ ŷ ⊥ ŷ 0
..m ‖ ẑ ‖ ẑ All ‖ ẑ ‖ ẑ All ‖ ẑ ‖ ẑ All
2.. ‖ x̂ ‖ x̂ All ‖ x̂ ‖ x̂ All ⊥ x̂ ⊥ x̂ 0
.2. ⊥ ŷ ‖ ŷ All ‖ ŷ ⊥ ŷ 0 ⊥ ŷ ‖ ŷ All
..2 ⊥ ẑ ‖ ẑ All ‖ ẑ ⊥ ẑ 0 ‖ ẑ ⊥ ẑ 0
1̄ 0 All All All 0 0 All 0 0

FIG. 1. Model parameters for (a) the 〈1, 2〉 bond with the point
group m2m: (b) D12 = (0, 0, Dz

12), E12 = 0, and F12 in J12, and (c)
Ax

12 = 0, Bx
12 = (0, 0, Bx;z

12 ), Cx
12 = 0 in Y x

12 and Ay
12 = (0, 0, Ay;z

12 ),
By

12 = 0, and Cy
12 in Y y

12.

interaction originates from the relativistic spin-orbit coupling.
Among them, Di j is called the DM interaction [21,22].

From the symmetry, the model in Eq. (1) is constructed
once the underlying crystal structure and symmetry of the
bond are given; the form of Ji j is determined by the trans-
formation of the 〈i, j〉 bond. We consider a two-dimensional
system on the xy plane for simplicity, where the bond sym-
metry on the two-dimensional plane is classified into the
orthorhombic point group mmm or its subgroups without
two- and three-dimensional irreducible representations. It is
noted that the following result can be extended to a three-
dimensional case. In Table I, we show the constraints on J12

for various point groups G, where the 〈1, 2〉 bond is taken
along the x direction. The symmetry of the 〈1, 2〉 bond is
classified into 15 point groups shown in Table I except for
the point group G = 1, since point group symmetries leaving
the 〈1, 2〉 bond invariant in the one-dimensional irreducible
representation are given by a set of the space inversion (I),
mirror perpendicular to the α = x, y, z axis (mα), and twofold
rotation around the α axis (Cα2). Here, the point group is de-
noted as κ1κ2κ3 except for 1̄ with only the inversion symmetry,
where κ1, κ2, and κ3 correspond to either of the symmetry m,
2, 2/m, or identity “.” for the x, y, z axes, respectively; for
example, ..2 (2..) means that the system has twofold rotational
symmetry around the z (x) axis. From Table I, one finds that
the bond with the point group m2m has D12 = (0, 0, Dz

12),
E12 = 0, and F12 = (F x

12, F y
12, F z

12) owing to mz, mx, and Cy2

symmetries as an example, as shown in Figs. 1(a) and 1(b).
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The correspondence between G and hexagonal/tetragonal lat-
tice structures is given in Appendix A.

Table I shows that the crystal symmetry imposes con-
straints on D12 and E12 but not on F12. The main difference
between D12 and E12 is that D12 becomes zero but E12 is
symmetry allowed under the inversion symmetry, as shown
in the result for G = 1̄. The directions of D12 and E12 are
determined by rotation and mirror symmetries, as shown in the
results for G = 2.., .2., ..2, m.., .m., and ..m. F12 is symmetry
allowed for all the point groups, since Sα

1 Sα
2 is invariant for

I , mβ , and Cβ2 (β = x, y, z). Among the symmetry rules, the
rules for the DM interaction is called Moriya’s rule [22].

B. Time-dependent Hamiltonian

We take into account effects of an external circularly po-
larized light on the static model. The model H0 in Eq. (1) is
transformed [24] as

H(t) = H0 − E(t) · P − B(t) · S, (3)

where the time-dependent electric field E(t) and mag-
netic field B(t) are coupled with the electric polarization
P and the total spin (magnetization) S = ∑

i Si, respec-
tively. We consider the circularly polarized light along
the z direction as E(t) = E0(δ cos �t,− sin �t, 0) and
B(t) = B0(− sin �t,−δ cos �t, 0), where � is the light fre-
quency and δ = +1(−1) represents the right-circularly (left-
circularly) polarized light.

In contrast to the magnetization, the expression of the elec-
tric polarization depends on the lattice geometry, since it is
related to an even order of the spin product. We consider the
situation that the electric polarization originates from the spin-
dependent electric dipole on the 〈i, j〉 bond (i �= j) [25,26] as

Pα =
∑
i, j

pα
i j =

∑
i, j

∑
β,γ

Y α;βγ
i j Sβ

i Sγ
j . (4)

Here, the polarization in the whole system is the total of the
electric dipole pi j = (px

i j, py
i j, pz

i j ) at each 〈i, j〉 bond, where
the summation with respect to i, j is taken over the bonds. The
α = x, y, z component of the electric dipole is characterized
by the third-rank ME tensor Y α;βγ

i j , which is given by

Y α
i j =

⎛
⎜⎝

Cα;x
i j Bα;z

i j + Aα;z
i j Bα;y

i j − Aα;y
i j

Bα;z
i j − Aα;z

i j Cα;y
i j Bα;x

i j + Aα;x
i j

Bα;y
i j + Aα;y

i j Bα;x
i j − Aα;x

i j Cα;z
i j

⎞
⎟⎠. (5)

The third-rank ME tensor consists of antisymmetric off-
diagonal components Aα

i j = (Aα;x
i j , Aα;y

i j , Aα;z
i j ), symmetric off-

diagonal components Bα
i j = (Bα;x

i j , Bα;y
i j , Bα;z

i j ), and symmetric
diagonal components Cα

i j = (Cα;x
i j ,Cα;y

i j ,Cα;z
i j ), where they sat-

isfy Aα
i j = −Aα

ji, Bα
i j = Bα

ji, and Cα
i j = Cα

ji with respect to the
interchange of two sites. The polarization mechanism for Aα

i j
is an extension of the inverse DM (spin current) mechanism
[27–31], pi j ∝ ei j×(Si×S j ) with the bond vector ei j . Mean-
while, the mechanism based on the symmetric components
Cα

i j includes the exchange striction mechanism described by
Cα;x

i j = Cα;y
i j = Cα;z

i j [32,33]. Similarly to the coupling matrix
Ji j , symmetry-allowed components in Y α

i j are determined by
the symmetry of the bond, as summarized for Y x

12 and Y y
12

under 15 point groups in Table I [34,35]; it is noted that
there is no z-directional polarization, i.e., Y z

12 = 0 owing to
Ez(t ) = 0. In Fig. 1(c), we show the spin-dependent electric
dipoles under the G = m2m symmetry as an example.

The symmetry rules for Y x
12 and Y y

12 are different from those
for J12 owing to the different symmetry in the left-hand side
in Eqs. (1) and (4); H0 corresponds to the scalar belonging
to the totally symmetric irreducible representation and Pα

corresponds to the polar vector belonging to different irre-
ducible representations from H0. As a result, the inversion
symmetry forbids (allows) the antisymmetric components D12

(symmetric ones E12 and F12) in J12 and the symmetric ones
Bα

12 and Cα
12 (antisymmetric one Aα

12) in Y x
12 and Y y

12; see
G = 1̄ as an example. The directions of Aα

12, Bα
12, and Cα

12
are determined by rotation and mirror symmetries. Ay;z

12 exists
for all the point groups, since py

12 and Ay;z
12 (Sx

1Sy
2 − Sy

2Sx
1 ) have

the same symmetry. In other words, Ay;z
12 in the third-rank ME

tensor is the counterpart of F12 in the coupling matrix.

C. Effective time-independent Hamiltonian

We show specific expressions of light-induced anisotropic
magnetic interactions in Eq. (3) based on the Floquet the-
ory and the high-frequency expansion [36,37]. The effective
Hamiltonian up to the lowest order of �−1 is given by

Heff = H0 + 1

�

∑
m>0

[H−m, H+m]

m
. (6)

Here, Hm is the Fourier transform of the time-periodic Hamil-
tonian, H (t) = ∑

m e−im�t Hm with integer m, and [H−m, H+m]
is the commutation relation. Since the light-induced modu-
lation in the second term does not depend on H0 within the
lowest order of �−1, the following results are not affected by
the original static Hamiltonian. The effective Hamiltonian in
Eq. (6) is valid when � is larger than the energy scale of the
static spin Hamiltonian H0; � is in the terahertz regime since
the typical value of the exchange interaction is 0.1–10 meV.

The Fourier transform of the time-periodic Hamiltonian in
Eq. (3) is given by

H+1 = E0

2
(−δ, i, 0) · P + B0

2
(i, δ, 0) · S, (7)

H−1 = E0

2
(−δ,−i, 0) · P + B0

2
(−i, δ, 0) · S, (8)

and Hm �=±1 = 0. It is noted that Bessel functions do not appear
in H±1, since we take into account the light effect as the direct
coupling to the polarization/magnetization in the localized
spin system rather than the Peierls phase of the electron hop-
ping. By substituting H+1 and H−1 into Eq. (6), the effective
Hamiltonian is given by [24]

Heff = H0 + H1spin + H2spin + H3spin, (9)

with

H1spin = − iδB2
0

2�
[Sx, Sy] = δB2

0

2�
Sz, (10)

H2spin = − iδE0B0

2�
([Px, Sx] + [Py, Sy]), (11)

H3spin = − iδE2
0

2�
[Px, Py]. (12)
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H1spin corresponds to an effective magnetic field along the z
direction coupled with Sz and is irrespective of the third-rank
ME tensor; there is no dependence on the crystal structure. It
is noted that we use the quantum spin nature in the second
equation in Eq. (10). Meanwhile, H2spin and H3spin lead to
two-spin and three-spin interactions, respectively, by calculat-
ing the commutation relation, which depend on the third-rank
ME tensor including the information about the crystal struc-
ture. In other words, H2spin and H3spin give rise to a variety of
light-induced magnetic interactions depending on the crystal
symmetry. Indeed, previous studies have shown that the DM
interaction is induced in H2spin via the inverse DM mechanism
[24], a three-spin interaction related to the spin scalar chirality
is induced in H3spin via the exchange striction mechanism
on a honeycomb lattice [23], and a single-ion anisotropy is
induced in H3spin via the d-p hybridization mechanism [38].
In Sec. III, we present a systematic classification of the light-
induced magnetic interactions based on the general third-rank
ME tensor that is applicable to any two-dimensional systems.

We estimate a value of the light-induced magnetic interac-
tions by rewriting the coupling between the light and system
as −gμBB0 · S and −λMEE0 · P̃ with the g factor g, the Bohr
magneton μB, the strength of the third-rank ME coupling
λME, and the dimensionless polarization P̃. With respect to
the magnetic-field term, its typical magnitude to the terahertz
laser is B0 = 1–10 T. Then, the energy of the coupling to the
magnetic field is given by εB = gμBB0 = 0.1–1 meV. With
respect to the electric-field term, λME approximately takes a
value of 10−28–10−26 μCm, where we take 100 Å3 as the
volume of the unit cell, since the polarization in multifer-
roic materials is typically given by |P| = 1–100 μC/m2 [39].
Then, the energy of the coupling to the electric field is es-
timated as εE = λMEE0 = 0.01–0.1 meV at the most. Thus,
both εB/J and εE/J range from 0.1–1; the light-induced in-
teractions in Eqs. (10)–(12) are around 0.01–1J2/(2�) at the
most. The previous study [24] showed that the light-induced
H2spin with a strength of 0.01J is sufficient to modulate the
spin texture, and its effects persist for a duration of 400/J .

Let us comment on details of the light-induced mag-
netic interactions [24]. First, the magnetic interactions in
Eqs. (10)–(12) can be induced even though the light is el-
liptically polarized, while their amplitudes become smaller
than those by the circularly polarized light. It is noted that
the magnetic interactions in Eqs. (10)–(12) vanish when lin-
early polarized light, i.e., δ = 0, is considered. Second, the
light-induced magnetic interactions work for a finite time
(Floquet prethermal regime), and then they stop modulating
magnetic structures. Finally, although the magnetic interac-
tions in Eqs. (10)–(12) are obtained based on the quantum
nature of the spin, they can be used to investigate the classical
spin dynamics by solving the Landau-Lifshitz-Gilbert (LLG)
equation for Heff in Eq. (9) with the classical spin [38,40].

In this study, we presume the use of terahertz light in the
order of meV in Eq. (6) in the insulating regime with the band
gap in the order of eV so that we can ignore a photon ab-
sorption and electron excitation. We also presume a negligible
spin-lattice (electron-phonon) coupling; we ignore the heating
effect. Besides, we do not consider the situation where intense
terahertz electric fields (in the order of MV/cm) resonate
with an infrared-active phonon mode and induce nonlinear

TABLE II. Change of point group G. H2spin (H3spin) changes G
into the chiral point group G(C) (black and white magnetic point
group M). H2spin and H3spin change G into chiral black and white
magnetic point groups M(C). The first, second, and third axes are
[100], [010], and [001], respectively.

G G(C) M M(C)

mmm 222 m′m′m 2′2′2
2mm 2.. 2′m′m 2′..
m2m .2. m′2′m .2′.
mm2 ..2 m′m′2 ..2
222 222 2′2′2 2′2′2
2/m.. 2.. 2′/m′.. 2′..
.2/m. .2. .2′/m′. .2′.
..2/m ..2 ..2/m ..2
m.. 1 m′.. 1
.m. 1 .m′. 1
..m 1 ..m 1
2.. 2.. 2′.. 2′..
.2. .2. .2′. .2′.
..2 ..2 ..2 ..2
1̄ 1 1̄ 1

coupling between infrared-active and Raman phonon modes
[41,42], which can result in breaking the crystal symmetry
through the spin-lattice (electron-phonon) coupling.

III. SYMMETRY ANALYSIS VIA FLOQUET THEORY

We systematically derive a variety of light-induced mag-
netic interactions depending on crystal structures: anisotropic
two-site two-spin interactions in Sec. III A, anisotropic two-
site three-spin interactions in Sec. III B, and anisotropic
three-site three-spin interactions in Sec. III C. The former
two-spin interaction arises from H2spin in Eq. (11), while the
latter two types of three-spin interactions arise from H3spin in
Eq. (12). Our symmetry analysis clarifies that the appearance
of the anisotropic two-site two-spin interactions (anisotropic
two-site three-spin and three-site three-spin interactions) is
due to the reduction of the point group G to chiral point group
G(C) (black and white magnetic point group M). We show
such a correspondence in Table II.

A. Anisotropic two-site two-spin interaction

First, we show the general expression of the light-induced
two-site two-spin interaction that originates from the commu-
tation of the electric polarization P and the magnetization S in
Eq. (11). By substituting the third-rank ME tensor in Eq. (5)
into Eq. (11), we obtain the light-induced two-site two-spin
interaction given by

H2spin =
∑
i, j

∑
α,β

J αβ
i j Sα

i Sβ
j , (13)

with

Ji j =

⎛
⎜⎝

F x
i j E z

i j + Dz
i j Ey

i j − Dy
i j

E z
i j − Dz

i j F y
i j Ex

i j + Dx
i j

Ey
i j + Dy

i j Ex
i j − Dx

i j F z
i j

⎞
⎟⎠. (14)
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Here, the summation is taken over the bonds and spin
components; Di j = (Dx

i j,D
y
i j,Dz

i j ) are light-induced DM in-
teractions, E i j = (Ex

i j, E
y
i j, E z

i j ) are light-induced symmetric
off-diagonal interactions, and F i j = (F x

i j,F
y
i j,F z

i j ) are light-
induced symmetric diagonal interactions. The coupling matrix
Ji j is related to the third-rank ME tensor as

2�

δE0B0
Dx

i j = −Ay;z
i j , (15)

2�

δE0B0
Dy

i j = Ax;z
i j , (16)

2�

δE0B0
Dz

i j = −Ax;y
i j + Ay;x

i j , (17)

2�

δE0B0
Ex

i j = −Cx;y
i j + Cx;z

i j + By;z
i j , (18)

2�

δE0B0
Ey

i j = −Cy;z
i j + Cy;x

i j − Bx;z
i j , (19)

2�

δE0B0
E z

i j = Bx;y
i j − By;x

i j , (20)

2�

δE0B0
F x

i j = −2By;y
i j , (21)

2�

δE0B0
F y

i j = 2Bx;x
i j , (22)

2�

δE0B0
F z

i j = −2Bx;x
i j + 2By;y

i j , (23)

where the antisymmetric (symmetric) interactions are induced
by the antisymmetric (symmetric) components in the third-
rank ME tensor since the parity with respect to the interchange
of two sites in H2spin linearly depends on pi j . Equations (15)–
(23) show that all the types of anisotropic two-site two-spin
interactions can be induced by the light depending on the
symmetry of the 〈i, j〉 bond.

To investigate the crystal-structure dependence of the
light-induced anisotropic two-site two-spin interaction,
we calculate the form of J12 for each point group, as
summarized in Table III. These results are obtained
by substituting the symmetry-allowed ME components
shown in Table I into Eqs. (15)–(23). We find two main
characteristics. One is the absence of the light-induced
symmetric interactions under point groups with the inversion
symmetry, mmm, 2/m.., .2/m., ..2/m, and 1̄, since the
symmetric components in the third-rank ME tensor vanish
under the inversion symmetry. The other is the presence of
the light-induced chiral-type DM interaction Dx

12 irrespective
of the point group, since Ay;z

12 is symmetry allowed for
all the point groups. In other words, the light-induced
DM interactions are present irrespective of the inversion
symmetry, where they originate from Ax

12 and Ay
12 unrelated

to the inversion symmetry, as shown in Eqs. (15)–(17) and
Table I. From these observations, one can find the opposite
tendency of the symmetry-allowed interactions between
the light-induced two-site two-spin interaction Ji j and that
of the static one Ji j in Eq. (1); the inversion symmetry
forbids (allows) the static (light-induced) DM interaction,
while the inversion symmetry allows (forbids) the static
(light-induced) symmetric interaction. This means that

TABLE III. Two-site two-spin interactions J12 under point group
G. Components with � mean the light-induced ones via Y x

12 and Y y
12

shown in Table I.

G Dx
12 Dy

12 Dz
12 Ex

12 Ey
12 E z

12 F x
12 F y

12 F z
12

mmm �
2mm � �
m2m � �
mm2 � �
222 � � � �
2/m.. �
.2/m. � �
..2/m � �
m.. � � �
.m. � � � �
..m � � � �
2.. � � � � �
.2. � � � � � �
..2 � � � � � �
1̄ � � �

magnetic structures favored by the static DM interaction in
noncentrosymmetric systems, such as a spiral state
and skyrmion crystal, can be realized in centrosym-
metric systems by applying the circularly polarized
light.

There are two effects of light on the two-site two-spin inter-
actions; modification of the static interaction included in J12

and induction of new types of interactions not included in J12.
By comparing Tables I and III, we find that only the former
effect is observed in G = 222, 2.., .2., and ..2, while only the
latter effect is observed in the other G within the lowest-order
high-frequency expansion in Eq. (6). The latter interactions
result from the symmetry lowering from the original point
group by light. It is a different feature from previous studies
in the light-driven Mott insulators, where the modification
of the static interaction has been focused on [15–20]. As
an example of focusing on the latter interaction, it has been
shown that the chiral-type DM interaction in the order of
�−3 is induced by irradiating a specific polar metal with the
light [43].

We find that the appearance of the light-induced two-
site two-spin interactions corresponds to the change of the
point group G under H2spin ∝ i([Px, Sx] + [Py, Sy]). Since P
is space-inversion odd and time-reversal even, while iS is
space-inversion even and time-reversal even, H2spin holds the
time-reversal symmetry but breaks the inversion symmetry I .
Furthermore, the opposite parity for the mirror symmetry of P
and S means the breaking of all the mirror symmetries mx, my,
and mz with keeping all the rotational symmetry Cx2, Cy2, and
Cz2. Accordingly, the point group G changes into the chiral
point group G(C) by H2spin to accommodate the coupling
between the polar electric and axial magnetic fields [44]. We
show such a symmetry lowering in Table II, where G(C) is
obtained by extracting the symmetries {I, mx, my, mz} from
G. We confirm that the appearance of the anisotropic two-
spin interaction by light based on the perturbation argument
is consistent with the reduction to the chiral point groups:
When considering the total coupling matrix J total

12 = J12 + J12,
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FIG. 2. The static and light-induced two-site two-spin interac-
tions, where the point group G = m2m shown in Fig. 1(a) is lowered
to the chiral point group G(C) = .2. by the electric field E(t ) (red)
and the magnetic field B(t ) (blue).

symmetry-allowed components in J total
12 are determined by the

chiral point group G(C).1 For example, the point group m2m
[Fig. 1(a)] is reduced to the chiral point group .2. (Fig. 2).
Then, J total

12 has light-induced Dx
12 and Ey

12 in addition to static
F12 and Dz

12, all of which are allowed by G(C) = .2. (see
Table I).

B. Anisotropic two-site three-spin interaction

The anisotropic two-site three-spin interaction is obtained
from H3spin in Eq. (12) as

HQ = − iδE2
0

2�

∑
i, j

[
px

i j, py
i j

]

=
∑
i, j

∑
α,β,γ

{
O(S)αβγ

i j

(
Qαβ

i Sγ

j + Sγ

i Qαβ
j

)

+O(AS)αβγ
i j

(
Qαβ

i Sγ
j − Sγ

i Qαβ
j

)}
, (24)

where the summation is taken over the bonds and spin compo-
nents; we introduce electric quadrupoles Qαβ

i at site i, which
is defined as

Qβγ
i = 1

2

(
Sβ

i Sγ
i + Sγ

i Sβ
i

)
. (25)

Thus, the two-site three-spin interaction is regarded as a
spin-quadrupole interaction between two sites. As well as
the anisotropic two-site two-spin interaction, the anisotropic
two-site three-spin interaction is divided into even and odd
components with respect to the interchange of two sites:
symmetric ones satisfying O(S)αβγ

i j = O(S)αβγ

ji and antisym-

metric ones satisfying O(AS)αβγ
i j = −O(AS)αβγ

ji . In addition,

O(S)αβγ

i j = O(S)βαγ

i j and O(AS)αβγ

i j = O(AS)βαγ

i j hold due to the
quadrupole nature.

To derive a general expression of the two-site three-spin
interactions in terms of the third-rank ME tensor, we rewrite
vectors of the ME couplings as Ã

α

i j = (Ax;α
i j , Ay;α

i j , 0), B̃
α

i j =
(Bx;α

i j , By;α
i j , 0), C̃

α

i j = (Cx;α
i j ,Cy;α

i j , 0) from Eq. (5), where Ã
α

i j

(B̃
α

i j and C̃
α

i j) is antisymmetric (symmetric) with respect to

1When the point groups do not have symmetries {I, mx, my, mz}
in G, such as 222, 2.., .2., and ..2, no symmetry reduction occurs;
no additional two-spin interaction appears but the static two-spin
interactions are modulated.

the interchange of two sites. Then, the symmetric two-site
three-spin interactions are given by

2�

δE2
0

O(S)ααα
i j = 1

2

∑
β,γ

εαβγ

(
Ã

β

i j × Ã
γ

i j − B̃
β

i j × B̃
γ

i j

)z
, (26)

2�

δE2
0

O(S)ααβ
i j = −

∑
γ

εαβγ

(
C̃

α

i j × B̃
β

i j

)z
, (27)

2�

δE2
0

O(S)αβγ

i j = εαβγ

(
C̃

α

i j × C̃
β

i j

)z

+ δαγ

∑
η

εγβη

(
B̃

η

i j × B̃
γ

i j

+ Ã
η

i j × Ã
γ

i j + C̃
β

i j × B̃
β

i j

)z

+ δβγ

∑
η

εγαη

(
B̃

η

i j × B̃
γ

i j

+ Ã
η

i j × Ã
γ

i j + C̃
α

i j × B̃
α

i j

)z
, (28)

where εαβγ is the Levi-Civita symbol and the z components of
the outer product of the vectors originate from [px

i j, py
i j]. There

is no contribution from Ã
α

i j×B̃
β

i j and Ã
α

i j×C̃
β

i j , since such prod-
ucts are antisymmetric with respect to the interchange of two
sites. By substituting the symmetry-allowed ME components
shown in Table I into the general expression, we calculate
the symmetric two-site three-spin interactions induced in each
point group, as summarized in Table IV.

The product of symmetric and antisymmetric ME com-
ponents gives rise to the antisymmetric two-site three-spin
interactions as

2�

δE2
0

O(AS)ααα
i j = 1

2

∑
β,γ

|εαβγ |(Ã
β

i j × B̃
γ

i j + Ã
γ

i j × B̃
β

i j

)z
, (29)

2�

δE2
0

O(AS)ααβ
i j = (1 − δαβ )

(
C̃

α

i j × Ã
β

i j

)z
, (30)

2�

δE2
0

O(AS)αβγ
i j = 2|εαβγ |(B̃

γ

i j × Ã
γ

i j

)z

+ δαγ

∑
η

|εγβη|
(
B̃

η

i j × Ã
γ

i j

+ Ã
η

i j × B̃
γ

i j − C̃
β

i j × Ã
β

i j

)z

+ δβγ

∑
η

|εγαη|
(
B̃

η

i j × Ã
γ

i j

+ Ã
η

i j × B̃
γ

i j − C̃
α

i j × Ã
α

i j

)z
. (31)

These general expressions mean that the antisymmetric two-
site three-spin interactions vanish on the inversion-symmetric
bond, where all the symmetric ME components are zero, as
discussed in Sec. II A. The antisymmetric two-site three-spin
interactions induced in each point group are shown in Table V.

2When the point groups do not have symmetries {mx, my,C2x,C2y}
in G, such as ..2/m, ..m, ..2, and 1̄, no symmetry reduction to the
black and white magnetic point group occurs; the three-spin interac-
tions appear through the breaking of the time-reversal symmetry.
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TABLE IV. Symmetric two-site three-spin interactions O(S)
12 under point group G. Components listed here are induced by the light through

(Y x
12,Y y

12) shown in Table I.

G O(S)αβx
12 O(S)αβy

12 O(S)αβz
12

mmm

2mm O(S)zxx
12 O(S)yzy

12 O(S)xxz
12 , O(S)yyz

12

m2m O(S)zxx
12 O(S)yzy

12 O(S)xxz
12 , O(S)yyz

12

mm2 O(S)zxx
12 O(S)yzy

12 O(S)zzz
12

222 O(S)zxx
12 O(S)yzy

12 O(S)zzz
12

2/m.. O(S)xyx
12 ,O(S)zxx

12 O(S)yyy
12 , O(S)yzy

12 O(S)zzz
12 , O(S)yzz

12

.2/m. O(S)xxx
12 , O(S)zxx

12 O(S)yzy
12 , O(S)xyy

12 O(S)zzz
12 , O(S)zxz

12

..2/m

m.. O(S)xyx
12 ,O(S)zxx

12 O(S)xxy
12 , O(S)zzy

12 O(S)yyy
12 , O(S)yzy

12 O(S)xxz
12 , O(S)yyz

12 , O(S)zzz
12 , O(S)yzz

12

.m. O(S)xxx
12 , O(S)yyx

12 , O(S)zzx
12 , O(S)zxx

12 O(S)yzy
12 , O(S)xyy

12 O(S)xxz
12 , O(S)yyz

12 , O(S)zzz
12 , O(S)zxz

12

..m O(S)yzx
12 , O(S)zxx

12 O(S)yzy
12 , O(S)zxy

12 O(S)xxz
12 , O(S)yyz

12 , O(S)xyz
12

2.. O(S)xyx
12 ,O(S)zxx

12 O(S)xxy
12 , O(S)zzy

12 O(S)yyy
12 , O(S)yzy

12 O(S)xxz
12 , O(S)yyz

12 , O(S)zzz
12 , O(S)yzz

12

.2. O(S)xxx
12 , O(S)yyx

12 , O(S)zzx
12 , O(S)zxx

12 O(S)yzy
12 , O(S)xyy

12 O(S)xxz
12 , O(S)yyz

12 , O(S)zzz
12 , O(S)zxz

12

..2 O(S)zxx
12 O(S)yzy

12 O(S)zzz
12

1̄ O(S)xxx
12 ,O(S)xyx

12 ,O(S)zxx
12 O(S)yyy

12 , O(S)xyy
12 ,O(S)yzy

12 O(S)zzz
12 ,O(S)yzz

12 ,O(S)zxz
12

To understand the light-induced two-site three-spin in-
teractions based on the crystal symmetry, we investigate
symmetry reduction from the point group G under H3spin.
As shown in Eq. (12), H3spin is proportional to i[Px, Py],
which has the same symmetry with the magnetization along
the z direction. The z magnetization breaks the point group
symmetries {mx, my,C2x,C2y} but holds these point group
symmetries combined with the time-reversal symmetry de-
noted as {m′

x, m′
y,C′

2x,C′
2y}. Thus, H3spin changes the point

group G into the black and white magnetic point group M
[45], as shown in Table II; M and G in Table II are related as
M = (G − Ḡ) + θḠ, where Ḡ = G ∩ {mx, my,C2x,C2y} and
θ is the time-reversal operation.2 We show a symmetry rule
for the two-site three-spin interactions in Table VI and confirm
that the induced interactions in Tables IV and V satisfy the
symmetry rule. For example, the point group m2m [Fig. 1(a)]
is reduced to the black and white magnetic point group m′2′m
(Fig. 3), and O(S)zxx

12 , O(S)yzy
12 , O(S)xxz

12 , O(S)yyz
12 , and O(AS)xyz

12 are

TABLE V. Antisymmetric two-site three-spin interactions O(AS)
12 under point group G. Components listed here are induced by the light

through (Y x
12,Y y

12 ) shown in Table I.

G O(AS)αβx
12 O(AS)αβy

12 O(AS)αβz
12

mmm

2mm O(AS)zxx
12 O(AS)yzy

12 O(AS)xxz
12 , O(AS)yyz

12

m2m O(AS)xyz
12

mm2 O(AS)xxx
12 O(AS)xyy

12 O(AS)zxz
12

222 O(AS)xyx
12 O(AS)yyy

12 O(AS)yzz
12

2/m..

.2/m.

..2/m

m.. O(AS)xxx
12 , O(AS)yyx

12 , O(AS)zzx
12 , O(AS)yzx

12 O(AS)xyy
12 , O(AS)xyz

12 , O(AS)zxz
12

.m. O(AS)xxx
12 , O(AS)yyx

12 , O(AS)zzx
12 , O(AS)zxx

12 O(AS)xyy
12 , O(AS)yzy

12 O(AS)xxz
12 , O(AS)yyz

12 , O(AS)zzz
12 , O(AS)zxz

12

..m O(AS)zxx
12 O(AS)yzy

12 O(AS)xxz
12 , O(AS)yyz

12 , O(AS)xyz
12

2.. O(AS)xyx
12 , O(AS)zxx

12 O(AS)xxy
12 , O(AS)yyy

12 , O(AS)zzy
12 , O(AS)yzy

12 O(AS)xxz
12 , O(AS)yyz

12 , O(AS)zzz
12 , O(AS)yzz

12

.2. O(AS)xyx
12 ,O(AS)yzx

12 O(AS)xxy
12 , O(AS)yyy

12 ,O(AS)zzy
12 ,O(AS)zxy

12 O(AS)xyz
12 , O(AS)yzz

12

..2 O(AS)xxx
12 O(AS)xyx

12 O(AS)yyy
12 , O(AS)xyy

12 O(AS)yzz
12 , O(AS)zxz

12

1̄
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TABLE VI. Symmetry rules of the two-site three-spin interactions: {O(S/AS)xxx
12 } = {O(S/AS)xxx

12 ,O(S/AS)yyx
12 ,O(S/AS)zzx

12 ,O(S/AS)xyy
12 ,O(S/AS)zxz

12 },
{O(S/AS)yyy

12 } = {O(S/AS)xyx
12 ,O(S/AS)xxy

12 ,O(S/AS)yyy
12 ,O(S/AS)zzy

12 ,O(S/AS)yzz
12 }, {O(S/AS)zzz

12 } = {O(S/AS)zxx
12 ,O(S/AS)yzy

12 ,O(S/AS)xxz
12 ,O(S/AS)yyz

12 ,O(S/AS)zzz
12 },

and {O(S/AS)xyz
12 } = {O(S/AS)yzx

12 ,O(S/AS)zxy
12 ,O(S/AS)xyz

12 }. All (0) means that all the components in {· · · } are symmetry allowed (not allowed).

M
{
O(S)xxx

12

} {
O(S)yyy

12

} {
O(S)zzz

12

} {
O(S)xyz

12

} {
O(AS)xxx

12

} {
O(AS)yyy

12

} {
O(AS)zzz

12

} {
O(AS)xyz

12

}
m′m′m 0 0 All 0 0 0 0 0
2′m′m 0 0 All 0 0 0 All 0
m′2′m 0 0 All 0 0 0 0 All
m′m′2 0 0 All 0 All 0 0 0
2′2′2 0 0 All 0 0 All 0 0
2′/m′.. 0 All All 0 0 0 0 0
.2′/m′. All 0 All 0 0 0 0 0
..2/m 0 0 All All 0 0 0 0
m′.. 0 All All 0 All 0 0 All
.m′. All 0 All 0 All 0 All 0
..m 0 0 All All 0 0 All All
2′.. 0 All All 0 0 All All 0
.2′. All 0 All 0 0 All 0 All
..2 0 0 All All All All 0 0
1̄ All All All All 0 0 0 0

induced, where the symmetry-allowed O(S)zzz
12 is not induced

in the present perturbation process.
Although the above results can be applied to spin systems

with any spin length, it is noted in the case of a spin-
half system; the electric quadrupole in Eq. (25) is given by
Qαβ

i = δαβ/4. Then, the interaction in Eq. (24) becomes

HQ = 1

4

∑
〈i, j〉

∑
α,γ

{
O(S)ααγ

i j

(
Sγ

j + Sγ
i

) + O(AS)ααγ
i j

(
Sγ

j − Sγ
i

)}
,

(32)

where the first (second) term corresponds to a uniform
(staggered) magnetic field for two spins.

C. Anisotropic three-site three-spin interaction

The three-site three-spin interaction is obtained from the
commutation relation between the electric dipoles at different

FIG. 3. The light-induced two-site three-spin interactions, where
the reduction from the point group G = m2m shown in Fig. 1(a) to
the black and white magnetic point group M = m′2′m occurs by the
electric field E(t).

sites in H3spin in Eq. (12) as

H3site = − iδE2
0

2�

∑
j

∑
i �=k

([
px

i j, py
jk

] + [
px

jk, py
i j

])

= δE2
0

2�

∑
j

∑
i �=k

∑
α,β,γ ,ζ ,η

εβγ η

× (
Y x;αβ

i j Y y;γ ζ

jk − Y y;αβ

i j Y x;γ ζ

jk

)
Sα

i Sη
j Sζ

k . (33)

Similarly to the anisotropic two-site two-spin and two-site
three-spin interactions, the form of the three-site three-spin
interaction is determined by the crystal symmetry via the
third-rank ME tensor. Meanwhile, the symmetry conditions
between them are different from each other: The anisotropic
two-site two-spin and two-site three-spin interactions depend
on the symmetry of the bond, while the three-site three-spin
interactions depend on the symmetry of the plaquette consist-
ing of the sites i, j, and k. Thus, the presence of the three-site
three-spin interactions depends on the relative positions of
the sites i, j, and k, which indicates that they are not simply
classified by the point groups in Table I. From the symmetry
viewpoint, the emergence of the three-site three-spin inter-
actions is explained by the change of the symmetry of the
plaquette into the black and white magnetic point group, as
shown in Sec. IV B 4.

IV. APPLICATION TO A TRIANGULAR UNIT

We apply the above results to a triangular unit with
the point group m26̄ shown in Fig. 4. By starting from a
static Hamiltonian in Sec. IV A, we show the light-induced
one-spin, anisotropic two-site two-spin, anisotropic two-site
three-spin, anisotropic three-site three-spin interactions in
Secs. IV B 1–IV B 4, respectively. In each case, we discuss
the modulation of a spin structure under the light-induced
anisotropic interactions by taking the classical spin limit for
simplicity.
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FIG. 4. (a) Triangular unit under the point group m26̄. (b) Local
Cartesian spin coordinates (x, y, z) for the 〈1, 2〉 bond, (x′, y′, z′) for
the 〈2, 3〉 bond, and (x′′, y′′, z′′) for the 〈3, 1〉 bond.

A. Static Hamiltonian

We start from the static Hamiltonian in Eq. (1) in the m26̄
triangular unit, which is given by

H0 =
∑
α,β

(
Jαβ

12 Sα
1 Sβ

2 + Jαβ

23 Sα
2 Sβ

3 + Jαβ

31 Sα
3 Sβ

1

)

=
∑
α,β

Jαβ

12

(
Sα

1 Sβ

2 + Sα′
2 Sβ ′

3 + Sα′′
3 Sβ ′′

1

)
. (34)

The Hamiltonian in the first line is written in the global Carte-
sian spin coordinate S = (Sx, Sy, Sz ). We fix the spin length
|Si| = 1 in each site for simplicity. The coupling matrices Jαβ

23 ,
and Jαβ

31 are related to Jαβ

12 due to the threefold rotation around
the z axis. By using the local Cartesian spin coordinates S
for the 〈1, 2〉 bond, S′ = (Sx′

, Sy′
, Sz′

) for the 〈2, 3〉 bond, and
S′′ = (Sx′′

, Sy′′
, Sz′′

) for the 〈3, 1〉 bond shown in Fig. 4(b),
the Hamiltonian is represented by the second line. Thus, the
Hamiltonian is characterized by J12, which is given by

J12 =
⎛
⎝ F x Dz 0

−Dz F y 0
0 0 F z

⎞
⎠. (35)

The form of J12 is determined by the point group m2m of the
〈1, 2〉 bond (see also Table I). Jαβ

23 and Jαβ

31 written in the global
Cartesian spin coordinate are shown in Appendix B.

We discuss the ground-state spin configuration in H0 by
using the irreducible representation � under the point group
m26̄: � = A′

1, A′
2, A′′

1, A′′
2, E ′, and E ′′ shown in Table VII. The

arbitrary spin configuration S
 = (S1, S2, S3) is expressed by

TABLE VII. Irreducible representations and character table for
the point group m26̄.

E mz 2Cz3 2S6 3Cy2 3mx

A′
1 1 1 1 1 1 1

A′
2 1 1 1 1 −1 −1

A′′
1 1 −1 1 −1 1 −1

A′′
2 1 −1 1 −1 −1 1

E ′ 2 2 −1 −1 0 0
E ′′ 2 −2 −1 1 0 0

FIG. 5. Bases for the irreducible representations (a) A′
2, (b) A′′

1,
(c) A′′

2, (d) E ′
z , (e) E ′′

FM, and (f) E ′′
AFM. Top and bottom panels in

two-dimensional representations [(d)–(f)] correspond to the bases
with the same representation matrix as that for x and y, respectively.
The color shows the z spin components, where red, white, and blue
correspond to the positive, zero, and negative ones, respectively.
The spin length at each site is fixed as |Si| = 1 except for (d):
(|S1|, |S2|, |S3|) = (1/

√
2, 1/

√
2,

√
2) for the top panel in (d) and

(|S1|, |S2|, |S3|) = (
√

3/2,
√

3/2, 0) for the bottom panel in (d). The
details of the spin configurations are shown in Appendix C.

bases S(�) for the irreducible representation � as

S
 = mA′
2
S(A′

2) + mA′′
1
S(A′′

1 ) + mA′′
2
S(A′′

2 )

+ mE ′
z
· S(E ′

z ) + mE ′′
FM

· S(E ′′
FM)

+ mE ′′
AFM

· S(E ′′
AFM), (36)

where S(�) is the nine-dimensional vector, whose compo-
nents are given by the spin configurations shown in Fig. 5, and
m� is the order parameter of S(�). We use S(�) = (Sx

�, Sy
� )

and m� = (mx
�, my

� ) for the two-dimensional representations.
By using Eq. (36), the Hamiltonian in Eq. (34) is rewritten as

H0 = 3

2

(
λA′

2
m2

A′
2
+ λA′′

1
m2

A′′
1
+ λA′′

2
m2

A′′
2

+ λE ′
z
m2

E ′
z
+ λE ′′

FM
m2

E ′′
FM

+ λE ′′
AFM

m2
E ′′

AFM

+ λE ′′mE ′′
FM

· mE ′′
AFM

)
, (37)

with

λA′
2
= 2F z, (38)

λA′′
1

= 1

2
(−3F x + F y + 2

√
3Dz ), (39)

λA′′
2

= 1

2
(F x − 3F y + 2

√
3Dz ), (40)

λE ′
z
= −F z, (41)

λE ′′
FM

= F x + F y, (42)

λE ′′
AFM

= 1

2
(−F x − F y − 2

√
3Dz ), (43)

λE ′′ = −F x + F y. (44)

064420-9



RYOTA YAMBE AND SATORU HAYAMI PHYSICAL REVIEW B 108, 064420 (2023)

The ground-state spin configuration in the classical spin limit
is obtained as follows. Due to constraint on the spin length at
each site (|Si| = 1), the order parameters satisfy |mα

�| � 1 and∑
α,� (mα

� )2 = 1. Then, the ground-state spin configuration is
given by S
 with |m�min | = 1 and m� �=�min = 0, where the
state with �min gives the smallest eigenvalue λ�min . Various
spin configurations become the ground state depending on the
model parameters in J12 [46], while all of them are collinear,
S(A′

2), S(E ′
z ), and S(E ′′

FM), or coplanar, S(A′′
1 ), S(A′′

2 ), and
S(E ′′

AFM). This is because the coupling matrix J12 has no
components mixing the z and xy spins, such as Jyz

12 and Jzx
12,

due to the horizontal mirror symmetry mz.

B. Light-induced magnetic interactions

We show the light-induced magnetic interactions in the
triangular unit and discuss a modulation of the spin config-
uration in the classical spin limit. The third-rank ME tensor
on the 〈1, 2〉 bond is given by

Y x
12 =

⎛
⎜⎝

0 Bx;z
12 0

Bx;z
12 0 0

0 0 0

⎞
⎟⎠, (45)

Y y
12 =

⎛
⎜⎝

Cy;x
12 Ay;z

12 0

−Ay;z
12 Cy;y

12 0

0 0 Cy;z
12

⎞
⎟⎠. (46)

Here, symmetry-allowed components are determined by the
point group symmetry m2m of the 〈1, 2〉 bond, as shown in
Table I. The third-rank ME tensors on the other bonds are
given by components in (Y x

12,Y y
12) via the threefold rotation,

as shown in Appendix B.

1. H1spin

The light-induced one-spin term is given by

H1spin = δB2
0

2�

(
Sz

1 + Sz
2 + Sz

3

)

= 3δB2
0

2�
mA′

2
. (47)

Thus, H1spin favors S
 = mA′
2
S(A′

2) with mA′
2
= −1 (mA′

2
=

+1) for the right-circularly (left-circularly) polarized light
with δ = +1 (δ = −1).

2. H2spin

In H2spin, we obtain the light-induced DM interaction
H(1)

2spin with Dx
12 and the light-induced symmetric off-diagonal

interaction H(2)
2spin with Ey

12. Here, Dx
12 and Ey

12 are allowed by
the chiral point group G(C) = .2. of the 〈1, 2〉 bond. Reflecting
the threefold rotation, the symmetry-equivalent interactions
are induced by the light on the 〈2, 3〉 and 〈3, 1〉 bonds.

The light-induced DM interaction is given by

H(1)
2spin = Dx

12(S1 × S2 + S′
2 × S′

3 + S′′
3 × S′′

1 )x

= −3
√

3Dx
12

[
mA′

2
mA′′

2
+ 1√

2

(
mE ′

z
× mE ′′

FM

)z
]
, (48)

where Dx
12 = −δE0B0Ay;z

12 /2�. From the second line, we find
that the DM interaction is represented by a linear combi-
nation of the terms belonging to A′′

1 owing to the breaking
of the mirror symmetries {mx, my, mz} by the light. In other
words, the light-induced DM interaction belongs to the totally
symmetric irreducible representation of the chiral point group
G(C) = .23 of the triangle unit. In the classical spin limit, the
DM interaction favors

S
 = mA′
2
S(A′

2) + mA′′
2
S(A′′

2 ), (49)

with mA′
2
= mA′′

2
= ± 1√

2
for Dx

12 > 0 and mA′
2
= −mA′′

2
=

± 1√
2

for Dx
12 < 0, where the sign of Dx

12 can be changed by
the polarization δ. Thus, the light-induced interaction favors
the spin configuration consisting of the superposition of the
collinear configuration along the z axis and the coplanar con-
figuration on the xy plane, which results in the noncoplanar
spin configuration with nonzero spin scalar chirality χsc =
S1 · S2 × S3. Meanwhile, the sign of χsc is not determined
by Dx

12. It is noted that the same light-induced magnetic in-
teractions are also obtained when directly starting from the
classical spin model instead of the quantum spin model in
Eq. (3) once the Gilbert damping is negligibly small [38,40].

The light-induced symmetric off-diagonal interaction is
given by

H(2)
2spin = Ey

12

[(
Sz

1Sx
2 + Sx

1Sz
2

) + (
Sz′

2 Sx′
3 + Sx′

2 Sz′
3

)
+ (

Sz′′
3 Sx′′

1 + Sx′′
3 Sz′′

1

)]
(50)

= 3Ey
12

[
mA′

2
mA′′

2
+ 1√

2

{
mE ′

z
× (

2mE ′′
AFM

− mE ′′
FM

)}z
]
,

(51)

where Ey
12 = δE0B0(−Cy;z

12 + Cy;x
12 − Bx;z

12 )/2�. This interac-
tion belongs to the irreducible representation A′′

1 in the point
group m26̄ or the totally symmetric irreducible representation
in the chiral point group .23 as well as the light-induced
DM interaction. In the classical spin limit, the symmetric
off-diagonal interaction mixes the colinear and coplanar con-
figurations as

S
 = ±1√
10

[
mx

E ′
z
Sx(E ′

z ) + my
E ′′

AFM
Sy(E ′′

AFM) + my
E ′′

FM
Sy(E ′′

FM)
]

(52)

where the positive and negative Ey
12 favors S
 with

(mx
E ′

z
, my

E ′′
AFM

, my
E ′′

FM
) = (

√
5,−2, 1)/

√
10 and (mx

E ′
z
, my

E ′′
AFM

,

my
E ′′

FM
) = (

√
5, 2,−1)/

√
10, respectively. This spin

configuration accompanies nonzero spin scalar chirality,
while the sign of χsc is not determined.

We confirm the above analytical results by using numerical
simulation. By starting with a random spin configuration, we
calculate a time evolution of the spin scalar chirality χsc by nu-
merically solving the LLG equation in the classical spin limit
(|Si| = 1). We analyze the Hamiltonian in the LLG equation in
Appendix D including only the light-induced DM interaction
H(1)

2spin or symmetric off-diagonal interaction H(2)
2spin to focus on
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FIG. 6. Time evolutions of the spin scalar chirality χsc by (a)
Dx

12 = 1 and (b) Ey
12 = 1. Right panels show the stable spin configu-

rations in each case. The horizontal axis t is the simulation parameter
in the LLG equation.

their effect. The time evolution of χsc and stable spin config-
urations by Dx

12 = 1 and Ey
12 = 1 are shown in Figs. 6(a) and

6(b), respectively. Here, the time t in the horizontal axis is a
simulation parameter3; the steady state for large t corresponds
to the state realized under the light-induced interaction. These
numerical results are consistent with the analytical results
based on the irreducible representation. Although we obtain
the spin configurations with χsc > 0 (χsc < 0) by Dx

12 (Ey
12),

we also obtain the spin configurations with the opposite χsc

by starting from different random spin configurations. It is
noted that the stable spin configuration in Fig. 6(b) has small
contributions from bases other than Sx(E ′

z ), Sy(E ′′
AFM), and

Sy(E ′′
FM) to satisfy the fixed-spin-length condition at each

site. The results show the tendency of the nonequilibrium
steady state toward noncoplanar spin textures with nonzero
spin scalar chirality. To identify the nonequilibrium steady
state, it is required to solve the LLG equation incorporating
both the static and light-induced interactions, as in Ref. [40].
This previous study showed that the driven system reach the
nonequilibrium steady state after t ∼ 104J−1 (the inverse of
the static exchange interaction J−1 is the picosecond scale).

3. HQ

We obtain four types of the light-induced two-site three-
spin interaction from Tables IV and V as

H(1)
Q = O(AS)xyz

12

[(
Qxy

1 Sz
2 − Sz

1Qxy
2

) + (
Qx′y′

2 Sz′
3 − Sz′

2 Qx′y′
3

)
+(

Qx′′y′′
3 Sz′′

1 − Sz′′
3 Qx′′y′′

1

)]
, (53)

H(2)
Q = O(S)xxz

12

[(
Qxx

1 Sz
2 + Sz

1Qxx
2

) + (
Qx′x′

2 Sz′
3 + Sz′

2 Qx′x′
3

)
+(

Qx′′x′′
3 Sz′′

1 + Sz′′
3 Qx′′x′′

1

)]
, (54)

3The unit of time in the system generally corresponds to J−1 (the
inverse of the static exchange interaction) for the spin Hamiltonian.
Meanwhile, it is noted that determining the unit of time in the present
system without the static exchange interaction is difficult.

H(3)
Q = O(S)yyz

12

[(
Qyy

1 Sz
2 + Sz

1Qyy
2

) + (
Qy′y′

2 Sz′
3 + Sz′

2 Qy′y′
3

)
+(

Qy′′y′′
3 Sz′′

1 + Sz′′
3 Qy′′y′′

1

)]
, (55)

H(4)
Q = O(S)wz

12

[(
Qzx

1 Sx
2 + Sx

1Qzx
2

) + (
Qz′x′

2 Sx′
3 + Sx′

2 Qz′x′
3

)
+(

Qz′′x′′
3 Sx′′

1 + Sx′′
3 Qz′′x′′

1

)]
−O(S)wz

12

[(
Qyz

1 Sy
2 + Sy

1Qzy
2

) + (
Qy′z′

2 Sy′
3 + Sy′

2 Qz′y′
3

)
+(

Qy′′z′′
3 Sy′′

1 + Sy′′
3 Qz′′y′′

1

)]
. (56)

where O(AS)xyz
12 = δE2

0 Bx;z
12 Ay;z

12 /�, O(S)xxz
12 = −δE2

0 Bx;z
12 Cy;x

12 /2
�, O(S)yyz

12 = δE2
0 Bx;z

12 Cy;y
12 /2�, and O(S)wz

12 = O(S)zxx
12 =

−O(S)yzy
12 = δE2

0 Bx;z
12 Cy;z

12 /2�. As shown in Sec. III B, the
light-induced two-site three-spin interaction on the 〈1, 2〉
bond results from the breakings of the twofold rotation Cy2

and mx by light. Meanwhile, the triangle system is invariant
under the threefold rotation around the z axis. Accordingly,
the obtained two-site three-spin interactions belong to the
irreducible representation A′

2 with the odd parity for {Cy2, mx}
and the even parity for Cz3, as shown in Table VII. It is
noted that these interactions on the 〈1, 2〉 bond (the triangle)
belongs to the totally symmetric irreducible representation
of the black and white magnetic point group M = m′2′m
(M = m′2′6̄). These interactions can be expressed in the
ternary of the order parameters, while it is cumbersome to
analytically obtain the stable spin configuration.

We directly investigate stable spin configurations by nu-
merically solving the LLG equation in the same manner in
Sec. IV B 2. The time evolutions of χsc and stable spin con-

figurations by setting O(AS)xyz
12 = 1, O(S)xxz

12 = 1, O(S)yyz
12 = 1,

or O(S)wz
12 = 1 are shown in Figs. 7(a)–7(d), respectively. The

results show that all the two-site three-spin interactions favor
noncoplanar spin configurations with nonzero spin scalar chi-
rality. This is because the spin scalar chirality also belongs
to A′

2 as well as the two-site three-spin interactions. The
mechanism of nonzero χsc is different from the light-induced
two-site two-spin interaction; the two-site two-spin interaction
mixes the z spin and the xy spin as a result of the breaking
of the horizontal mirror symmetry, while the two-site three-
spin interaction is directly coupled to the spin scalar chirality
belonging to the same representation. It is noted that the sign
of χsc is not determined by these interactions.

4. H3site

Next, let us discuss the three-site three-spin interaction
under the point group G = m26̄, where we obtain three types
of the interactions as a consequence of the symmetry reduc-
tion from the point group G = m26̄ to the black and white
magnetic point group M = m′2′6̄. The obtained three-site
three-spin interactions are given by

H(1)
3site = T (1)S1 · S2 × S3, (57)

H(2)
3site = T (2)

[
Sz

1

(
Sx

2Sx
3 + Sy

2Sy
3

) + Sz
2

(
Sx

3Sx
1 + Sy

3Sy
1

)
+ Sz

3

(
Sx

1Sx
2 + Sy

1Sy
2

)]
, (58)

H(3)
3site = T (3)

[
Sz′

1

(
Sx′

2 Sx′
3 − Sy′

2 Sy′
3

) + Sz′
2

(
Sx′′

3 Sx′′
1 − Sy′′

3 Sy′′
1

)
+ Sz

3

(
Sx

1Sx
2 − Sy

2Sy
2

)]
, (59)
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FIG. 7. Time evolutions of the spin scalar chirality χsc by (a)
O(AS)xyz

12 = 1, (b) O(S)xxz
12 = 1, (c) O(S)yyz

12 = 1, and (d) O(S)wz
12 = 1.

Right panels show the stable spin configurations in each case. The
horizontal axis t is the simulation parameter in the LLG equation.

with

2�

δE2
0

T (1) =
√

3

2

(
Ay;z

12

)2 −
√

3

4

(
Bx;z

12

)2 −
√

3

2

(
Cy;u

12

)2

−
√

3Cy;u
12 Cy;z

12 +
√

3

2
Bx;z

12 Cy;v
12 −

√
3

4

(
Cy;v

12

)2
, (60)

2�

δE2
0

T (2) = −3

4

(
Bx;z

12

)2 −
√

3Cy;u
12 Ay;z

12 +
√

3Ay;z
12Cy;z

12

−1

2
Bx;z

12 Cy;v
12 − 3

4

(
Cy;v

12

)2
, (61)

2�

δE2
0

T (3) =
√

3

4
Bx;z

12 Ax;z
12 − 1

4
Bx;z

12 Cy;u
12 − 1

2
Bx;z

12 Cy;z
12

+
√

3

4
Ax;z

12 Cy;v
12 + 3

4
Cy;u

12 Cy;v
12 . (62)

Here, Cy;u
12 = (Cy;x

12 + Cy;y
12 )/2 and Cy;v

12 = (Cy;x
12 − Cy;y

12 )/2.
These interactions are classified into the irreducible
representation A′

2 under the point group G = m26̄, i.e.,
the totally symmetric irreducible representation under the
black and white magnetic point group M = m′2′6̄.

FIG. 8. Time evolutions of the spin scalar chirality χsc by (a)
T (1) = 1, (b) T (2) = 1, and (c) T (3) = 1. Right panels show the
stable spin configurations in each case. The horizontal axis t is the
simulation parameter in the LLG equation.

The stable spin configurations are investigated by nu-
merically solving the LLG equation in the same manner in
Sec. IV B 2. Figures 8(a)–8(c) show the time evolutions of
χsc and stable spin configurations by T (1) = 1, T (2) = 1,
or T (3) = 1, respectively. We find that T (1) and T (3) fa-
vor noncoplanar spin configurations with nonzero spin scalar
chirality, while T (2) favors the collinear spin configura-
tion without the spin scalar chirality but with the uniform
out-of-plane magnetization. Thus, the three-site three-spin
interactions also favor the spin configurations belonging to
A′

2, which is similar to the situation under the two-site three-
spin interactions in Sec. IV B 3. Among T , the mechanism
of nonzero χsc is described by the coupling between these
interactions and the spin scalar chirality, as clearly shown in
H(1)

3site. The sign of χsc is fixed by T (1), while not fixed by T (3).

V. SUMMARY

To summarize, we have investigated the relation between
light-induced magnetic interactions and symmetry lower-
ing by light. By adopting Floquet formalism, we have
systematically shown the light-induced two-spin and three-
spin interactions for all the crystallographic point groups in
two-dimensional insulating magnets. In particular, the light-
induced DM interaction ubiquitously appears for all the point
groups, which means the possibility to stabilize helical and
skyrmion states in any crystal structures. Based on the symme-
try argument, we have revealed that the light-induced two-spin
and three-spin interactions are the consequence of the reduc-
tion from the point group to the chiral point group and the
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TABLE VIII. Bond symmetry G for the 〈1, 2〉 bond along the
x direction on the triangular lattice (TL) [square lattice (SL)] in the
hexagonal (tetragonal) point groups. The first, second, and third axes
in G (hexagonal/tetragonal point groups) are [100], [010], and [001]
([001], [100], and [010]), respectively.

G site symmetry of TL site symmetry of SL

mmm 6/mmm 4/mmm
2mm 6̄2m
m2m 6̄m2
mm2 6mm 4mm, 4̄m2
222 622 422, 4̄2m
2/m.. 3̄m1
.2/m. 3̄1m
..2/m 6/m.. 4/m..

m.. 3m1
.m. 31m
..m 6̄..

2.. 321
.2. 312
..2 6.. 4.., 4̄..

1̄ 3̄..

1 3..

black and white magnetic point group, respectively. These re-
sults have uncovered the effect of symmetry lowering by light
on magnetic interactions. We have also shown that the light-
induced magnetic interactions on the m2m triangular unit
favor noncoplanar spin textures with nonzero spin scalar chi-
rality as an example. Our results will give a symmetry-based

understanding of controlling magnetic interactions and enable
systematic Floquet engineering of magnetic structures based
on crystal symmetry.
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APPENDIX A: CORRESPONDENCE
TO TWO-DIMENSIONAL HEXAGONAL

AND TETRAGONAL SYSTEMS

We present the correspondence between the bond symme-
try G for the 〈1, 2〉 bond and the hexagonal/tetragonal point
groups in the lattice systems in Table VIII. For simplicity, we
consider the simple triangular (square) lattices with the primi-
tive translation vectors e1 = (1, 0, 0) and e2 = (1/2,

√
3/2, 0)

[e1 = (1, 0, 0) and e2 = (0, 1, 0)], and take the 〈1, 2〉 bond
along the x direction. Then, the bond symmetry corresponds to
mmm and its subgroups depending on the site (bond) symme-
try at each lattice site. There are sixteen patterns of G for the
hexagonal point groups (including the trigonal point groups)
and five patterns for the tetragonal point groups, as shown in
Table VIII.

APPENDIX B: COUPLING MATRIX AND THIRD-RANK ME TENSOR IN THE GLOBAL CARTESIAN SPIN COORDINATE

We show the coupling matrix and third-rank ME tensor in Sec. IV in the global Cartesian spin coordinate, which are given by

J12 =

⎛
⎜⎝

F x Dz 0

−Dz F y 0

0 0 F z

⎞
⎟⎠, J23 =

⎛
⎜⎜⎝

1
4 (F x + 3F y)

√
3

4 (−F x + F y) + Dz 0
√

3
4 (−F x + F y) − Dz 1

4 (3F x + F y) 0

0 0 F z

⎞
⎟⎟⎠, (B1)

J31 =

⎛
⎜⎜⎝

1
4 (F x + 3F y)

√
3

4 (F x − F y) + Dz 0
√

3
4 (F x − F y) − Dz 1

4 (3F x + F y) 0

0 0 F z

⎞
⎟⎟⎠, Y x

12 =

⎛
⎜⎝

0 Bx;z
12 0

Bx;z
12 0 0

0 0 0

⎞
⎟⎠, Y y

12 =
⎛
⎝ Cy;x

12 Ay;z
12 0

−Ay;z
12 Cy;y

12 0
0 0 Cy;z

12

⎞
⎠, (B2)

Y x
23 =

⎛
⎜⎜⎝

−
√

3
8

(
Cy;x

12 + 3Cy;y
12 + 2Bx;z

12

)
1
8

(
3Cy;x

12 − 3Cy;y
12 + 2Bx;z

12

) −
√

3
2 Ay;z

12 0
1
8

(
3Cy;x

12 − 3Cy;y
12 + 2Bx;z

12

) +
√

3
2 Ay;z

12 −
√

3
8

(
3Cy;x

12 + Cy;y
12 − 2Bx;z

12

)
0

0 0 −
√

3
2 Cy;z

12

⎞
⎟⎟⎠, (B3)

Y y
23 =

⎛
⎜⎜⎝

− 1
8

(
Cy;x

12 + 3Cy;y
12 − 6Bx;z

12

) √
3

8

(
Cy;x

12 − Cy;y
12 − 2Bx;z

12

) − 1
2 Ay;z

12 0
√

3
8

(
Cy;x

12 − Cy;y
12 − 2Bx;z

12

) + 1
2 Ay;z

12 − 1
8

(
3Cy;x

12 + Cy;y
12 + 6Bx;z

12

)
0

0 0 − 1
2Cy;z

12

⎞
⎟⎟⎠, (B4)

Y x
31 =

⎛
⎜⎜⎝

√
3

8

(
Cy;x

12 + 3Cy;y
12 + 2Bx;z

12

)
1
8

(
3Cy;x

12 − 3Cy;y
12 + 2Bx;z

12

) +
√

3
2 Ay;z

12 0
1
8

(
3Cy;x

12 − 3Cy;y
12 + 2Bx;z

12

) −
√

3
2 Ay;z

12

√
3

8

(
3Cy;x

12 + Cy;y
12 − 2Bx;z

12

)
0

0 0
√

3
2 Cy;z

12

⎞
⎟⎟⎠, (B5)
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Y y
31 =

⎛
⎜⎜⎝

− 1
8

(
Cy;x

12 + 3Cy;y
12 − 6Bx;z

12

) −
√

3
8

(
Cy;x

12 − Cy;y
12 − 2Bx;z

12

) − 1
2 Ay;z

12 0

−
√

3
8

(
Cy;x

12 − Cy;y
12 − 2Bx;z

12

) + 1
2 Ay;z

12 − 1
8

(
3Cy;x

12 + Cy;y
12 + 6Bx;z

12

)
0

0 0 − 1
2Cy;z

12

⎞
⎟⎟⎠. (B6)

APPENDIX C: BASES OF IRREDUCIBLE
REPRESENTATION

The eigenbases Sα (�) in Fig. 5 are given by

S(A′
2) = (0, 0, 1, 0, 0, 1, 0, 0, 1), (C1)

S(A′′
1 ) = 1

2
(−

√
3,−1, 0,

√
3,−1, 0, 0, 2, 0), (C2)

S(A′′
2 ) = 1

2
(1,−

√
3, 0, 1,

√
3, 0,−2, 0, 0), (C3)

Sx(E ′
z ) = 1√

2
(0, 0,−1, 0, 0,−1, 0, 0, 2), (C4)

Sy(E ′
z ) =

√
3

2
(0, 0, 1, 0, 0,−1, 0, 0, 0), (C5)

Sx(E ′′
FM) = (0,−1, 0, 0,−1, 0, 0,−1, 0), (C6)

Sy(E ′′
FM) = (1, 0, 0, 1, 0, 0, 1, 0, 0), (C7)

Sx(E ′′
AFM) = 1

2
(
√

3,−1, 0,−
√

3,−1, 0, 0, 2, 0), (C8)

Sy(E ′′
AFM) = 1

2
(−1,−

√
3, 0,−1,

√
3, 0, 2, 0, 0), (C9)

where Sα (�) · Sβ (�′) = 3δ��′δαβ .

APPENDIX D: LANDAU-LIFSHITZ-GILBERT EQUATION

In classical spin Hamiltonians H, the time evolution of the
classical spin (|Si| = 1) at zero temperature is calculated by
the LLG equation, which is given by

dSi

dt
= − γ

1 + α2

[
Si × Heff

i + αSi × (
Si × Heff

i

)]
(D1)

with the gyromagnetic ratio γ , the Gilbert damping constant
α, and the effective magnetic field Heff

i = −∂H/∂Si. The
first term represents the precession of the spin around the
effective magnetic field, while the second term takes into
account the relaxation of the spin to the effective magnetic
field. In the calculation for the effective time-independent
Hamiltonians in Sec. IV, the system evolves in time to a
lower-energy spin state and finally reaches a stable state owing
to the second term. Thus, Figs. 6–8 show the tendency of the
nonequilibrium steady state. We search for the nonequilibrium
steady state by numerically solving the LLG equation by
typically setting γ = 1 and α = 0.01–0.2 and by using an
open software DifferentialEquations.jl [47]. It is noted that
the finally obtained state is independent of an initial spin con-
figuration, although we start simulations from a random spin
configuration.
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