PHYSICAL REVIEW B 108, 064407 (2023)

Paramagnetic spin transport in a one-dimensional model
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We theoretically study paramagnetic spin transport based on atomistic simulations of spin dynamics in a
one-dimensional model in the presence of a magnetic field along the transport direction. As the magnetic field
increases, the spin diffusion length with an antiferromagnetic coupling between neighboring spins presents an

interesting nonmonotonic behavior, which is attributed to the competition between the field-driven ordering
in the low-field region and the reduction in the paramagnon lifetime in the high-field region. The local
increase in magnon temperature in the ordered configuration, although of the same order as or even larger
than the background temperature, is found to play a minor role in the spin diffusion length, suggesting
that the temperature dependence of the paramagnon transport is mainly dominated by the magnon-phonon

scattering.
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I. INTRODUCTION

Spin transport, one of the central focuses of spintronics, has
been extensively studied in both nonmagnetic and magnetic
materials over the past few decades [1-3]. While the flow
of the spin angular momentum in metallic systems is mainly
carried by the conducting electrons, spin transport in mag-
netic insulators relies on the propagation of magnons [4,5].
Magnon-based spin transport has several advantages, such as
the absence of Joule heating, tunable frequencies, and long
propagation distances [6]. Since strong interactions between
localized spins could benefit the formation and propagation
of magnons, most studies on magnon spin transport have been
performed in ferromagnets [7], ferrimagnets [8], and, recently,
antiferromagnets [9—12], where the exchange interactions are
sufficiently strong to order the spins.

Interestingly, it was demonstrated recently that paramag-
netic insulators [13], in which the spin interactions are too
weak to establish a magnetic order, could also host various
spin-related phenomena, such as spin pumping [14], spin
Hall magnetoresistance [15—18], and the spin Seebeck effect
[19-24], implying the existence and good transport proper-
ties of so-called paramagnons [19], i.e., the local excitation
of the short-distance magnetic order. As expected, the spin
diffusion length of paramagnons was found to be rather short,
namely, less than 1 nm in gadolinium gallium garnet (GGG)
according to longitudinal spin Seebeck measurements at room
temperature [25]. However, a recent nonlocal measurement
showed that the spin current in GGG can transport over sev-
eral microns at low temperature [4], comparable to or even
longer than that in typical magnetic ordered systems. Such
a long-distance paramagnetic spin transport was suggested to
result from the extremely high group velocity of the backward
volume magnetostatic waves. The irrelevance of such modes
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in the longitudinal spin Seebeck geometry may explain the
much shorter spin diffusion length in Ref. [25].

In contrast to the complicated scenario of nonlocal ge-
ometry, the spin angular momenta in the longitudinal spin
Seebeck geometry flow along the normal direction of the
interface with nonequilibrium spin density uniformly dis-
tributed within the lateral plane, which in some sense can
be regarded as a one-dimensional transport and can reflect
the bulk transport properties of paramagnons. On the other
hand, it was also suggested that the thermal conductivity
mismatch at the interface might also play a crucial role in
the paramagnetic spin Seebeck signal, which could hinder
the identification of the intrinsic transport properties of para-
magnons [19]. In the present work, we revisit the problem
of paramagnon transport by theoretically simulating the spin
dynamics in a weakly exchange coupled antiferromagnetic
(AFM) spin chain, from which we surprisingly find a non-
monotonic magnetic field dependence of the paramagnon spin
diffusion, rather than a monotonic feature as in the ferro-
magnetic (FM) case. The monotonic behavior is explained
as the competition between the field-driven ordering and the
enhanced magnetic damping due to the field-induced magnon
gap. Moreover, we analyze the properties of the paramagnon
lifetime using different mechanisms and recognize the dom-
inant role of magnon-phonon scattering in the temperature
dependence of paramagnon diffusion for the parameter region
under study.

II. MODEL AND METHOD

Our minimal model is illustrated in Fig. 1(a), a one-
dimensional spin chain consisting of N sites with a spacing
of d between the neighbors. The Hamiltonian can be
written as

H = Hy + Hex + Hppi, (D

©2023 American Physical Society


https://orcid.org/0000-0003-0659-907X
https://orcid.org/0000-0002-0300-335X
https://orcid.org/0000-0002-0842-5711
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.064407&domain=pdf&date_stamp=2023-08-08
https://doi.org/10.1103/PhysRevB.108.064407

WEIDI WANG, LEI QIU, AND KA SHEN

PHYSICAL REVIEW B 108, 064407 (2023)

® 7 M@ smukion G0

¢ Simulation (100 K)
© Simulation (300 K)|
35| = Theory (5 K) :
’ = = Theory (100 K)
Theory (300 K)
Self-consistent

SEii g

M(up/Gd)

FIG. 1. (a) Schematics of a one-dimensional spin chain mag-
netized by a magnetic field along the chain. (b) Simulated
magnetization as a function of the magnetic field at 5 K (green
squares), 100 K (purple diamonds), and 300 K (orange circles).
The dashed curves are the corresponding theoretical values from
the Brillouin function. The red solid curve is from a self-consistent
calculation explained in Appendix A.

where the first term is the Zeeman energy due to the external
magnetic field,

H():—Zmi-B, (2)

with the magnitude of the magnetic moment at each site being
m; = gup/Si(S; + 1). The magnetic field is applied along the
chain in the y direction. The second term corresponds to the
isotropic exchange interaction between all nearest neighbors,

J
Hy = —— m;-m;. 3)
“ (gup)? % !

The third term in Eq. (1) refers to the classical dipole-dipole
interaction (DDI) expressed as

Mo~ |rijPmi - mj = 3(m; 1) (m; - i)

G

Hppr = 5
oy 7
where r;; represents the relative position between the ith and
Jjth spins.

The spatiotemporal dynamics of the spin chain can be
described by the Landau-Lifshitz-Gilbert equation

dm,- e

(1 4+a®) = = —ym; x B = =L, < (m; x B"). (5)
where o and y = gug/h stand for the Gilbert damping and
gyromagnetic ratio, respectively. The effective field B?ff is
given by

B =B — —. (©6)

Here, the thermal fluctuation is introduced as a stochastic field
B/, which follows a normal distribution satisfying [26-28]

(B (1) =0, @)
(Bl 1B} (1)) = ziana 5,8(t —1). (8)

It is noteworthy that, without capturing explicitly the fre-
quency and momentum dependences, the magnon-phonon
interactions are taken into account via two aspects in this
formalism. First, as an insulator, the magnon-phonon interac-
tions are the main origin of Gilbert damping [29], physically
corresponding to the magnon dissipation via phonon emission
processes. Second, the phonon-induced thermal fluctuation
field acting on the magnetization is introduced as a stochastic
field [30], which triggers fluctuation to magnetization, i.e., the
excitation of magnons.

For the numerical calculation below, we adopt the material
parameters of GGG [31-33] with g =2, § =7/2, and the
AFM exchange constant J = 1.477 x 1072* J (corresponding
to a temperature scale of 0.107 K) between the neighboring
magnetic Gd atoms with a distance d &~ 3.781 A. By nu-
merically solving Eq. (5) in the time domain based on the
integration method in Ref. [34], we extract the thermal proper-
ties of the spin dynamics at finite temperatures. The time step
of At =1 fs is used to converge the results with a damping
constant ¢ = 0.001. The simulated equilibrium magnetization
averaging over all sites for a long time is plotted as a func-
tion of the applied magnetic field at different temperatures in
Fig. 1(b), which shows nice agreement with the theoretical
result predicted by the Brillouin function (corresponding to
the dashed curve of the same color), especially for those at
100 and 300 K. The deviation of the simulated curve from
the theoretical one at 5 K reflects the influence of the finite
effective field from the antiferromagnetic exchange, which
can be corrected by a self-consistent calculation explained
in Appendix A [see the red solid curve in Fig. 1(b)]. As the
large magnetic field orders the magnetic moments at low tem-
perature, spin transport in the form of paramagnons becomes
possible.

To characterize the spin transport properties of param-
agnons, we introduce a nonequilibrium distribution locally in
the simulation by constructing a temperature step with ny sites
on the left end of the chain of a much higher local temperature
Ty. The higher-temperature sites then have a large local den-
sity of thermal paramagnons, which can diffuse to the other
sites of the chain with a lower temperature 7' due to the spin
interactions. Starting from an arbitrary spin configuration, the
spin chain in our simulation reaches steady state within 10 ns
of initialization, after which we analyze the characteristics of
the transport properties from the spatial distribution of the
paramagnons. Specifically, we collect all data in a period of
2 ns after the initialization and calculate the equal-time and
space correlation function [28]

Si = (m; x m;), )

which is proportional to the measurable spin pumping effi-
ciency at the interface between the magnetic system and a
heavy metal [35,36]. Here, (-) corresponds to the time aver-
age. The nonequilibrium paramagnon density is then given by
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FIG. 2. The spatial distribution of the nonequilibrium para-
magnon density from the calculation with different types of
interactions. The dots are the calculated data, and the solid lines
are the fitting curves. The red dashed line shows the location of
the temperature step in the simulation. In this calculation, we take
B=35TandT =5K.

AS; = S8; — 8°, where the equilibrium density S°¢ is calcu-
lated from the same simulation but without local heating. In
the configuration shown in Fig. 1(a), we have S ~ §F < S,
indicating that the angular momentum of the paramagnons
is along the direction of the magnetic field. For a diffusive
transport, the nonequilibrium quantities follow an exponential
decay, i.e.,

AS! o eV, (10)

from which we extract the diffusion length 1. The details of
data processing are shown in Appendix B.

III. DIFFUSION LENGTH OF PARAMAGNONS

In this section, we analyze the role of different interac-
tions in the paramagnon transport. The length of the chain
is set to N = 200, which, as shown below, is sufficiently
long compared to the diffusion length. The results from ex-
plicit simulations with parameters B=3.5T, T =5 K, and
Tp =500 K are plotted in Fig. 2, where the spins in the
diffusion region are well magnetized according to Fig. 1(b).
Note that the value of Tj is actually not crucial because, as
we will show below, the diffusion properties are extracted
from the spins in the diffusion region where the magnon
effective temperature is only slightly higher than 7. As can
be seen, the spin diffusion length from a full calculation can
reach as far as 15 nm, despite the fact that both DDI and the
exchange interaction are rather weak compared to those of
typical ferromagnetic magnetic materials. It is worth noting
that although this diffusion length does not reflect the exact
spin diffusion in GGG, where the magnetic atoms do not align
in a straight chain in real space, it provides a reasonable esti-
mation of the scale and also allows qualitative analysis later of
the dependences on parameters such as the magnetic field and
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FIG. 3. Paramagnon diffusion length as a function of the mag-
netic field from calculations (a) with both DDI and AFM exchange
interaction, (b) with AFM exchange interaction but without DDI,
(c) with DDI (amplified five times for numerical reasons) but without
exchange interaction, and (d) without DDI but with FM exchange
interaction. The error bars represent the 95% confidence level.

the temperature. Figure 2 also shows that the diffusion length
from the calculation without exchange interaction or DDI be-
comes considerably shorter than that from the full calculation,
indicating their relevance in paramagnon transport.

A. Magnetic field dependence on the paramagnon diffusion

Next, we study explicitly the dependences of the param-
agnon diffusion length on magnetic field. The results from
the full calculation at different temperatures are plotted in
Fig. 3(a), where the diffusion length first increases and then
decreases with increasing magnetic field, displaying an in-
teresting nonmonotonic behavior with a maximal diffusion
length achieved around 3 and 5T for 1 and 5 K, respectively.
One might notice that a similar nonmonotonic behavior was
reported in the nonlocal measurement of paramagnon trans-
port in GGG [4], which, however, we would like to point out
is not sufficient to conclude the same dependence of the para-
magnon diffusion length because the nonlocal signal relies
on not only the spatial decay but also the thermally injected
density of the paramagnons. The latter might also contribute
to the observed magnetic field dependence.

In order to disclose the origin of the nonmonotonic be-
havior in the field dependence of the paramagnon diffusion
length, we simulate the cases with the AFM exchange in-
teraction and DDI considered separately and plot the results
in Figs. 3(b) and 3(c). While the nonmonotonic feature still
survives in the calculation without DDI, the diffusion length
with DDI (the magnitude is amplified five times for a reason-
able fitting in the low-field region) but without AFM exchange
interaction shows only a decrease with increasing magnetic
field. As a comparison, we also perform a calculation in a
ferromagnetic chain (changing the sign of the exchange pa-
rameter) with DDI excluded. As shown in Fig. 3(d), again, the
nonmonotonic feature is absent. Thus, we conclude that the
AFM exchange interaction is the key for the nonmonotonic
magnetic field dependence of the paramagnon diffusion length
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FIG. 4. The dispersion relations of the AFM and FM chains with-
out DDI under a periodic boundary condition for different magnetic
fields at 7 =1 K. The dashed curves are analytical results from
Eq. (11).

in Fig. 3(a). The reason might be related to the fact that
the AFM exchange field prefers antiparallel alignment of the
adjacent spins, while both the FM exchange interaction and
the dipole field in the present configuration pull all spins in
the same direction.

1. Low magnetic field behavior

To further explore the underlying physics behind the
anomalous low-field increase of the paramagnon diffusion in
an AFM chain, we calculate the dispersion relations of the
paramagnon in AFM and FM chains by Fourier transforming
the spatiotemporal evolution of the transverse magnetization
components under a periodic boundary condition. The results
at T =1 K are plotted in Fig. 4 with different values of
the magnetic field. Assuming that the magnetic field is large
enough to overcome the exchange one (~0.63 T at zero tem-
perature) and establish a stable magnetic order, the dispersion
relation is given by

wr = V[B — 2B (1 — coskd)], (11

where the effective field from the exchange interaction is
defined as Bex(T) = 2Jm] (T)/(gup)*, with m(T) being the
long-time average value of the longitudinal component along

the magnetic field with thermal magnon excitation taken into
account [37]. The dispersion relations from Eq. (11) are plot-
ted as red dashed curves in Fig. 4, which show nice agreement
with the simulated ones. As seen in Fig. 4(a), for the AFM
chain at 1 T, the dispersion curve has a negative frequency re-
gion with very large broadening, indicating that the magnetic
moments are not well ordered. Because the external mag-
netic field exerted on magnetic sites is compensated by the
exchange interaction according to Eq. (11), the net magnetic
field Bnet = |B — 2Bex| ~ 0.26 T is smaller than the random
field from the thermal fluctuation (1.46 T at T = 1 K). For the
FM chain, the negative value of Bex leads to a sufficient By
for a stable magnetic order at the same value of external field
[see Fig. 4(e)]. As the negative frequency is pushed away by
a magnetic field around 2 T, the broadening of the dispersion
curve in Fig. 4(b), however, remains very large. This reflects
a very short paramagnon lifetime and can be understood to
be a consequence of the frequent scattering processes among
the large number of thermal paramagnons, as well as their
interactions with phonons.

As the magnetic field increases further, the thermal
generation of paramagnons is suppressed by the enlarged
magnon gap, which, on the one hand, leads to a decrease in
the magnon-magnon and/or magnon-phonon scatterings and
shrinks the linewidth and, on the other hand, modifies the
paramagnon dispersion with a slightly larger group velocity,
as shown in Fig. 4(c). For a qualitative analysis of the cal-
culated paramagnon diffusion length, we employ a simple
expression averaged over all states:

> Uk ()
YNy

where 7} is the paramagnon lifetime, vy is the group velocity,
and N(wy) is the Bose-Einstein distribution function. Equa-
tion (12) thus suggests that the increase in the diffusion length
in Fig. 3(b) below 4 T should result from the combination of
the extended lifetime and the enlarged group velocity.

Acff = (12)

2. High magnetic field behavior

In the high magnetic field region, the shape of the disper-
sion curve and hence the group velocity become insensitive to
the further increase of the magnetic field, which suggests that
the decrease of diffusion length in Fig. 3(b) must originate
from the magnetic dependence of the paramagnon lifetime.
To extract the paramagnon lifetime directly, we fit the Fourier
spectrum at any given wave vector by the Lorentz function

A
(f —o)* + 1/Qrr)?

An example of the fitting for the data with B=4 T and
k =0.1(z/d) from Fig. 4(c) is shown in Fig. 5(a). The
obtained paramagnon frequencies and the corresponding life-
times with different values of wave vectors and magnetic
fields are summarized in Fig. 5(b). In general, as the magnetic
field increases, the frequency of the paramagnon shifts to the
higher-frequency region, and in the meantime, the lifetime
becomes shorter and is distributed over a smaller range. The
solid curve illustrates the phenomenological lifetimes,

) = 1/(awy), (14)

C(f)= (13)
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FIG. 5. (a) Lorentz fitting of the Fourier spectrum with a given
wave vector k = 0.1(;r /d) at B=4Tand T = 1 K. (b) The relation
between the paramagnon lifetime t; and the resonant frequency wy
from Lorentz fitting (diamonds) with different values of the magnetic
field at 7 = 1 K and the phenomenological relation 70 = 1/(awy)
(red curve). (c) Comparison of the simulated diffusion length in
Fig. 3(b) and the theoretical values calculated from Eq. (12) with
7 and 7.

which shows excellent agreement with the trend of the sim-
ulated lifetimes. This indicates that the magnetic damping
related to phonon emission dominates the decay of the an-
gular momentum during diffusion and the magnon-magnon
scattering and magnon-phonon scattering due to the thermal
fluctuation field are irrelevant in the high magnetic field re-
gion. That is because of the very low densities of the magnons
and phonons at T = 1 K.

By substituting the above paramagnon lifetimes 7; and 7
separately in Eq. (12), we calculate the effective paramagnon
diffusion lengths and plot them as a function of the magnetic
field in Fig. 5(c), which agrees well with those from direct
simulations [the green dots, which are the same as those in
Fig. 3(b)] in the high magnetic field region.

B. Magnon-magnon scattering vs magnon-phonon scattering

After a close comparison with the lifetimes in Fig. 5(b),
one may notice that the lifetime obtained from the Fourier
spectrum Tty is always smaller than the phenomenological one
70, reflecting the influence of the magnon-magnon scattering
and/or magnon-phonon scattering induced by thermal fluctu-
ation. In this section, we analyze the relative contribution of
these two mechanisms based on their different dependences
on (local) magnon effective temperature and phonon temper-
ature [29,38].

In our transport simulation above for Fig. 3, the local
temperature on the left side of the spin chain is set to be
much higher than the transport region, which forms a nonequi-
librium magnon accumulation around the boundary of the
heat source. To quantitatively evaluate the local nonequilib-
rium intensity of the paramagnons in the transport condition,
we plot the spatial distribution of the temporally averaged
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FIG. 6. (a) Local magnetization with (green squares) and without
(yellow diamonds) local heating at 1 K for the AFM chain (with DDI
excluded) under a magnetic field of 4 T. (b) Spatial distribution of the
rise of the effective paramagnon temperature. The red dashed curve
indicates the boundary of the local heating (with 7, = 500 K). The
inset in (b) shows the method to evaluate the effective paramagnon
temperature from the temperature dependence of the equilibrium
magnetization. (c) The spatial distribution of the nonequilibrium
paramagnon density of the AFM chain.

magnetization (m;) of the AFM chain, instead of AS for
Fig. 2, as the green squares in Fig. 6(a) for B=4Tand T =
1 K, which indeed shows a remarkable reduction from the
equilibrium value (yellow diamonds without a heat source) as
far as tens nanometers from the heating area. To describe the
density of nonequilibrium magnons due to the deviation of the
magnetization from its equilibrium value, we use the language
of the local magnon effective temperature, which is estimated
by reading the effective temperature at the magnetization (m; )
in the temperature dependence of the equilibrium magneti-
zation [see Fig. 1(b)], plotted in the inset in Fig. 6(b). One
can see that the local increase in the paramagnon temperature
near the heating area (AT;™ ~ 10 K) can even be one order of
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FIG. 7. Phonon temperature dependence of the paramagnon dif-
fusion length from the full calculation with the magnetic field at 5 T,
for which we vary T with a constant value of 7j. The error bars
represent the 95% confidence level. The inset shows the paramagnon
spectrum simulated at 5 K.

magnitude higher than the local phonon temperature (T =
1 K), indicating a large value of the nonequilibrium magnon
density. This might also imply that the magnon-magnon scat-
tering in the transport case is enhanced compared to the
equilibrium condition at T = 1 K. However, the spatial distri-
bution of the nonequilibrium quantity AS plotted in Fig. 6(c)
still presents a very nice single exponential decay in the entire
transport region, except the position very close to the heat
source. This means that the increase of the local magnon
temperature is actually not crucial for the paramagnon life-
time and paramagnon diffusion length for the temperature and
magnetic field region adopted in this calculation. Therefore,
we conclude that the magnon-phonon scattering dominates
the scattering mechanism for the low-temperature transport in
the present case.

The influences of the magnon-phonon scattering can ac-
tually be seen in Fig. 3(a), where the paramagnon diffusion
length from the full calculation at 5 K is found to be much
shorter than that at 1 K in the relatively low magnetic field
region. In Fig. 7, we explicitly show a monotonic decrease
of the paramagnon diffusion length with increasing tempera-
ture under a magnetic field at B =5 T. As the shape of the
paramagnon spectrum plotted in the inset remains almost the
same as those in Figs. 4(c) and 4(d) at 1 K, the broadening
of the spectrum becomes much larger, corresponding to a
smaller paramagnon lifetime, as expected from the stronger
magnon-phonon scattering.

IV. SUMMARY

In summary, based on atomistic simulations, we stud-
ied paramagnetic spin transport in a one-dimensional spin
chain with a weak antiferromagnetic exchange interaction
between the spins, where we predicted a nonmonotonic
magnetic field dependence of the paramagnon diffusion
length. We found that such a nonmonotonic behavior origi-
nates from the antiferromagnetic exchange interaction, which
gives rise to an interplay between the field-induced mag-
netic order in the low-field region and the larger dissipation
rate proportional to the frequency in the high-field region.

Moreover, the magnon-magnon scattering was found to play
only a marginal role in the paramagnon diffusion, while
the magnon-phonon scattering dominates the decrease of
the diffusion length as the temperature increases. Although
our simulations were performed mainly at low temperatures,
the prediction of the nonmonotonic magnetic field depen-
dent paramagnon diffusion length may be valid at higher
temperatures as well, where the large thermal fluctuation,
however, requires a rather long simulation time to achieve
convergence.

It is also worth pointing out that the quantum effects
could become relevant to the low-temperature spin dynam-
ics when the thermal fluctuation is too weak to excite
high-frequency magnons, resulting in the suppression of
the interactions between magnons. As such effects can
be nicely captured via a quantum thermostat even with-
out self-consistent treatment of the temperature-dependent
magnon spectrum and population [39,40], they will not
change the predicted nonmonotonic behavior. The reason is
that thanks to the weak DDI and exchange interaction, the
high-frequency magnons exist only in the high magnetic
field region, where the magnon-magnon interactions have
only negligible influence on the magnon lifetime according
to Fig. 5(b).
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APPENDIX A: SELF-CONSISTENT CALCULATION
OF MAGNETIZATION

According to the quantum statistical theory, the average
magnetization of an individual spin under a magnetic field By
can be described by the Brillouin function B;(x) as

(m) = SgupB;(x), (AD)

with x = SgupBy/kgT . In our case, the exchange and dipole-

dipole interactions also contribute to the effective magnetic

field, so we need to replace By in Eq. (A1) by
(m)

Beff =B+ 2?(Bex + BDDI)a

1

(A2)

where B.x and Bpp; stand for the exchange and dipo-
lar fields given by Eq. (6). The average magnetiza-
tion (m) can then be determined self-consistently from
Egs. (A1) and (A2).

The quantitative comparison between the quantum expres-
sion (Al) and our classical simulation in Fig. 1 relies on
the condition of the maximal magnon energy, fio]™ < kgT,
which is satisfied perfectly at 100 and 300 K. For T =5 K,
we have o™ >~ 230 GHz at 8 T, leading to fiw™ /kgT ~ 2,
which is still in the acceptable region for the approximation
of the classical thermostat described by Eqs. (7) and (8)
(see also Ref. [38]). From a close comparison to the Bril-
louin function in Fig. 1, we can see the simulated results at
5 K are systematically smaller, especially in the high-field
region (corresponding to a larger magnon frequency), which
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FIG. 8. The data processing for a AFM chain. (a) The variation
of S, with position y at T =5 K. The red dashed line shows the
location of the temperature step. (b) The black dashed line indicates
the horizontal coordinate of y;, and the solid blue line is the fitting
curve.

may reflect the relevance of the quantum effects discussed
in Sec. IV.

APPENDIX B: THE DETAILS OF DATA PROCESSING
DURING DATA FITTING

Because all the data processing during fitting is the
same, we take the AFM chain as an example to illustrate
it. The location of the temperature step can be expressed
as yp = nod = 1.89 nm. By simulating the case of spin
transport with and without a heat source, we calculate the
S, of each spin and draw it as a function of position y
[Fig. 8(a)].

To characterize the spin transport signal caused by
a heat source, we need to subtract the data without a
heat source from the data with a heat source. So we
can define AS =S, —(S,), where (S,) is the average of
S, among all spins for the case without a heat source.
When AS is very small (<0.1), we can consider the
heat source to have no influence on the spin transport.
The point y; = 18.90 nm is the first one that meets this
condition, which is shown by the black dashed line in
Fig. 8(b). In the region yy <y < y;, AS describes the dif-
fusion of spin currents, and we fit the data [blue line in
Fig. 8(b)], which gives the spin diffusion length A = 9.64 +
0.57 nm.
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