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Anisotropy of the spin Hall effect in a Dirac ferromagnet
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We study the intrinsic spin Hall effect of a Dirac Hamiltonian system with ferromagnetic exchange coupling,
a minimal model combining relativistic spin-orbit interaction and ferromagnetism. The energy bands of the
Dirac Hamiltonian are split after introducing a Stoner-type ferromagnetic ordering, which breaks the spherical
symmetry of pristine Dirac model. The totally antisymmetric spin Hall conductivity (SHC) tensor becomes
axially anisotropic along the direction of external electric field. Interestingly, the anisotropy does not vanish in
the asymptotic limit of zero magnetization. We show that the ferromagnetic ordering breaks the spin degeneracy
of the eigenfunctions and modifies the selection rules of the interband transitions for the intrinsic spin Hall
effect. The difference in the selection rule between the pristine and the ferromagnetic Dirac phases causes the
anisotropy of the SHC, resulting in a discontinuity of the SHC as the magnetization, directed orthogonal to the
electric field, is reduced to zero in the ferromagnetic Dirac phase and enters the pristine Dirac phase.
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I. INTRODUCTION

The spin Hall effect (SHE) allows generation of a spin
current transverse to the external electric field within materials
with large spin-orbit coupling (SOC) [1]. It is a standard
method of spin current generation in the field of spintronics.
The effect has been studied with strong interest in theoretical
and experimental point of views [2–5]. In the early stage of
research, substantial effort was put in understanding the SHE
in paramagnetic materials with large SOC, e.g., heavy metals
[5–7]. Recent studies have expanded the system to include fer-
romagnetic and antiferromagnetic materials. First-principles
calculations [8,9] have shown that the SHE in ferromagnets
displays the interplay of ferromagnetic ordering and SOC.
However, a general model that can account for such interplay
has not been established.

One of the simplest models that includes both ferromag-
netism and spin-orbit coupling is the Dirac ferromagnet [10].
The SOC, a relativistic effect, naturally exists in the Dirac
equation [11]. Despite its origin in relativistic particle physics,
the Dirac equation is employed as a low-energy effective
model in condensed-matter physics, partly, because of its di-
verse mathematical forms [12]. For example, bismuth [13,14]
and the bulk states of three-dimensional topological insulators
[15–17] are effectively described by the Dirac Hamiltonian
based on k · p perturbation theory. Particularly, the Dirac
Hamiltonian is equivalent with an isotropic Wolff Hamilto-
nian [13], which effectively describes the low-energy states of
semiconductors and semimetals with strong SOC and small
gaps. Various transport properties that arise from such a
unique Hamiltonian have been discussed [10,18–20].

Ferromagnetic ordering can be incorporated into the Dirac
equation through a Stoner-type mean field. Along this line,
historical proposals were made: (i) a ferromagnetic order
parameter having opposite signs between the positive and the

negative energy states introduced by MacDonald and Vosko
[21]; (ii) an order parameter having the same sign in both
states proposed by Ramana and Rajagopal [22]. It is known
that ferromagnetic order can be induced in topological insula-
tors by doping magnetic impurities [15,23,24]. A recent study
also showed the possibility of introducing ferromagnetism
into a Dirac semimetal by a proximity effect [25].

It is well known that the two-dimensional Rashba-type
Hamiltonian can be regarded as a minimal model to treat
the anomalous Hall effect (AHE) in ferromagnets [26–28].
However, in the Rashba Hamiltonian, the form of SOC breaks
the mirror symmetry and, hence, it cannot be used to study the
coupling between ferromagnetism and SOC in mirror sym-
metric materials. In contrast, the Dirac Hamiltonian inherently
includes the SOC without breaking its spherical symmetry,
which is broken if ferromagnetic order is introduced in the
system. We, thus, consider a system that can be described by
a ferromagnetic Dirac Hamiltonian, i.e., a Dirac ferromagnet
as a minimal model to study the SHE in the ferromagnets.

In this paper, we study the spin Hall effect of a Dirac ferro-
magnet with particular focus on its anisotropy. The intrinsic
spin Hall conductivity (SHC) is calculated using the Kubo
formula in the clean limit. The SHC tensor is found to be axi-
ally anisotropic along the axis parallel to the external electric
field. The anisotropy of the SHC tensor is found to be main-
tained even when the ferromagnetic ordering asymptotically
vanishes. Comparing the eigenfunctions of the ferromagnet
and pristine Dirac electrons through degenerate perturbation
theory, the anisotropy of the SHC tensor and its asymptotic
limits are explained by the modification of selection rules
associated with the set of eigenfunctions in Dirac ferromagnet.

The paper is organized in the following order. In Sec. II,
the theoretical model is defined, and the calculation method
is presented. The main result is shown in Sec. III where the
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anisotropy of the intrinsic SHC tensor and its asymptotic
behavior in zero magnetization limit are discussed. In Sec. IV,
we compare the ferromagnetic and pristine Dirac electron
systems to explain the anisotropy and discontinuity of the
SHC. A summary follows in Sec. V.

II. MODEL DESCRIPTION

The model Hamiltonian of a Dirac ferromagnet is de-
scribed by a 4 × 4 Dirac Hamiltonian with magnetization
M = (M1, M2, M3) representing the ferromagnetic ordering,

H0 = h̄vkiρ1 ⊗ σ i + �ρ3 ⊗ σ 0 + Miρ3 ⊗ σ i, (1)

where h̄ is the reduced Planck’s constant. ρi (i = 1–3) and
σ i (i = 1–3) are the Pauli matrices spanning the electron-hole
space and the spin space, respectively.1 ρ0 and σ 0 are 2 × 2
identity matrices. The first two terms of the right-hand side
of Eq. (1) are known to represent the low-energy electronic
states of systems with large SOC (and a small band gap),
which is equivalent with an isotropic Wolff Hamiltonian [13].
In the context of such a low-energy effective Hamiltonian,
v and � are the Fermi velocity and the band gap around the
Dirac cone, respectively. See, for example, Ref. [18] in which
the Hamiltonian is derived for the electronic states near the
L point of bismuth. Note that the k · σ term in Eq. (1) contains
the SOC, which originates from the off-diagonal components
of velocity matrix in the k · p expansion.

In Eq. (1), we express the magnetization M using the spin
magnetic moment operator ρ3 ⊗ σ i [14,29], where the field M

acts oppositely on electron (positive energy) and hole (nega-
tive energy) states [21]. Miρ3 ⊗ σ i is the physical description
of spontaneous magnetization since generators ρ3 ⊗ σi also
couple with the external magnetic-field B [30]. The generators
ρ3 ⊗ σi can be derived using the Peierls substitution and the
Foldy and Wouthuysen transformation [31]. Details on the
derivation of the Dirac Hamiltonian [Eq. (1)] is shown in
Appendix A. We do not consider another definition of ferro-
magnetic order (Siρ0 ⊗ σ i) proposed in Ref. [22] in which the
field S acts on electron and hole states in the same way. Addi-
tionally, we assume a weak magnetization limit that satisfies
M < � so as to avoid the gap closing. Note that the case with
M > � corresponds to a Weyl semimetal phase [32–34]. In
the following, we refer to the system represented by H0 with
M = 0 (M �= 0) as the pristine (ferromagnetic) Dirac electron
system. We choose h̄ = 1 and renormalize the Fermi velocity
with v = 1. The Einstein notation is employed.

A. Rotation matrix

Taking the unit direction of spontaneous magnetization
(m̂ ≡ M/M ) as a reference, the wave-vector k can be sepa-
rated into two parts: k‖ represents the parallel component of k
with m̂, whereas, k⊥ is the perpendicular component, that is,

k = (k · m̂)m̂ − (k × m̂) × m̂ ≡ k‖m̂ + k⊥. (2)

Note that k2
⊥ = k2 − (k · m̂)2. In the spherical coordinate sys-

tem, m̂ is defined as: m̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ).
For simplicity, we define a rotation matrix R, which rotates m̂
to ẑ: Rm̂ = ẑ. The explicit form of the rotation matrix R is

R =
⎛
⎝ (1 − cos θ ) cos2 ϕ − 1 (1 − cos θ ) sin ϕ cos ϕ sin θ cos ϕ

(1 − cos θ ) sin ϕ cos ϕ (1 − cos θ ) sin2 ϕ − 1 sin θ sin ϕ

sin θ cos ϕ sin θ sin ϕ cos θ

⎞
⎠. (3)

Note that the inner product of k and M is kiMi = k · M =
Mk · m̂ = Mk‖. Thus, the energy eigenstates of H0 read

Eζ ,η = ζ

√
k2
‖ + (

√
�2 + k2

⊥ + ηM )2, (4)

where ζ = ±1 represents the energy eigenstates [ζ = 1 for
positive (electron) and ζ = −1 for negative (hole) energy
states], and η = ±1 indicates the spin state (η = 1 for spin-up
and η = −1 spin-down).

The band dispersion of pristine Dirac Hamiltonian (H0

with M = 0) is spherically symmetric, and the spin space is
doubly degenerate. In the presence of magnetization, the spin
degeneracy is broken, and spin-split bands appear as shown
in Fig. 1(a). Note that the spin polarization of each spin state
(η = ±1) is not necessarily parallel to the direction of M, due

1ρ space is effectively the orbital space when taking the Dirac
Hamiltonian as the effective Hamiltonian of multiorbital systems.

to the inherent spin-orbit coupling of Dirac Hamiltonian. In
addition, the Fermi surface becomes axially anisotropic along
the direction of magnetization, which can be recognized by
the Fermi contours on the k‖ − k⊥ plane [see Fig. 1(b)].

FIG. 1. (a) Band dispersions and (b) Fermi contours (μ/� = 3,
positive energy branch) of the Dirac ferromagnet. The red colored
bands correspond to η = +1, and blue colored bands correspond to
η = −1. The magnetization is set to M/� = 0.4.
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TABLE I. Expressions of g(0)
μν in the Green’s function of the Dirac ferromagnet. Indices μ, ν are listed in columns and rows.

(μ, ν ) 0 1 2 3

0 ε
(
ε2 − ε2

k

) − 2εM2 −2�εM1 −2�εM2 −2�εM3

1 −2�Mk‖ k1

(
ε2 − ε2

k

) − 2M1Mk‖ k2

(
ε2 − ε2

k

) − 2M2Mk‖ k3

(
ε2 − ε2

k

) − 2M3Mk‖
2 0 −2ε(k2M3 − k3M2) −2ε(k3M1 − k1M3) −2ε(k1M2 − k2M1)

3 �
(
ε2 − ε2

k

) −M1

(
ε2 + ε2

k

) + 2Mk‖ −M2

(
ε2 + ε2

k

) + 2Mk‖ −M3

(
ε2 + ε2

k

) + 2Mk‖

B. Green’s function

The electron Green’s function G(0)(ε) = (ε − H0)−1 is
rewritten with the generators of ρμ ⊗ σ ν [10],

G(0)(ε) = 1

D(ε)
g(0)

μνρμ ⊗ σ ν, (5)

where μ, ν = 0, 1, 2, 3 and the denominator D(ε) =∏
η,ζ=±1(ε − Eη,ζ ). The 16 components of the numerator

g(0)
μν are listed in Table I. Here, we set εk = √

k2 + �2 − M2.

C. Charge and spin velocity operator

The velocity operator is obtained directly from the Dirac
Hamiltonian Eq. (1),

vi = ∂H0

∂ki
= ρ1 ⊗ σ i, (6)

where the charge current operator is defined as ji = −evi.
i = 1, 2, 3(x, y, z) represents the Cartesian coordinates of the
velocity.

The spin velocity operator is given by the anticommutator
of the velocity operator and the spin operator sk = ρ3 ⊗ σ k

[18,19], that is,

vk
i = 1

2 {vi, sk} = εik jρ2 ⊗ σ j, (7)

where εik j is the Levi-Civita symbol and k = 1, 2, 3(x, y, z)
represents the Cartesian coordinates of the spin direction. We
define the spin current operator as jk

i = h̄
2 vk

i .

III. INTRINSIC SPIN HALL CONDUCTIVITY

The intrinsic spin Hall conductivity is calculated through
the Kubo formula. The correlation function between charge
current j j and spin current jk

i reads

Qk
i j (iv) = − 1

V

∫ β

0
du eivu

〈
T̂ jk

i (u) j j (0)
〉
,

(8)
= 1

V β

∑
k,n

tr
[
G̃(0)(iωn) jk

i G̃(0)(iωn + iv) j j
]
,

where iv → ω + i0 is analytic continuation of the response
frequency ω with Matsubara frequency v = 2mπ/β, and β

is the inverse temperature. G̃(0)(iωn) is the electron Green’s
function with Matsubara frequency wn = (2n + 1)π/β and
chemical potential μ,

G̃(0)(iωn) = 1

D(iωn + μ)
g(0)

μν (iωn + μ)ρμ ⊗ σ ν. (9)

The intrinsic SHC is obtained by taking the static limit of the
correlation function Qk

i j (iv),

σ k
i j = lim

v→0

Qk
i j (iv) − Qk

i j (0)

−v
. (10)

Assuming zero temperature (β → ∞) and evaluating the
Matsubara summation, the intrinsic SHC can be separated into
two parts σ k

i j = σ
k,(1)
i j + σ

k,(2)
i j with

σ
k,(1)
i j = e

8πV

∑
k

tr[−2GA(ε)vk
i GR(ε)v j

+ GR(ε)vk
i GR(ε)v j + GA(ε)vk

i GA(ε)v j]

∣∣∣∣∣
ε=μ

, (11)

σ
k,(2)
i j = e

8πV

∑
k

∫ μ

−∞
dε tr

[
GR(ε)vk

i ∂εGR(ε)v j

− ∂εGR(ε)vk
i GR(ε)v j − (R ↔ A)

]
, (12)

where GR,A(ε) = G(0)(ε ± iγ ) are the retarded and advanced
Green’s function with a damping constant γ . The detailed
structure of the self-energy (damping constant) in the Dirac
Hamiltonian has been considered using short-range impurities
[10,19,20]. Here, we focus on the intrinsic contribution to the
SHE where we first introduce a damping constant γ and later
take it to the clean limit γ → 0. The extrinsic contribution
can be obtained by extending the calculation on self-energy
γ or by employing semiclassical Boltzmann equation [35]
to include the effect of disorder. The intrinsic contribution
is dissipationless and, therefore, it cannot be treated by the
Boltzmann equation approach. In the zero-temperature as-
sumption, the integral in σ

k,(1)
i j reduces to a surface term

ε = μ, whereas, σ
k,(2)
i j contains integration over energy up to

the chemical potential μ. Consequently, σ k,(1)
i j is often referred

to as the “Fermi-surface” term, and σ
k,(2)
i j is known as the

“Fermi sea” term [36].
Here, we take one of the nonvanishing tensor components

σ 3
21 as an example, in which the direction of magnetization

is rotated arbitrarily. Through integration by parts, the Fermi-
surface term exactly cancels part of the Fermi sea term. See
Appendix B 3. The total intrinsic SHC, thus, reduces to a
compact form,

σ 3
21 = σ

3,(1)
21 + σ

3,(2)
21

= 2e

V

∑
k

∫ μ

−∞
dε sgn D′(ζEη )δ[D(ε)]∂ε

(
X (0)(ε)

D′(ε)

)
,

(13)
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where X (0)(ε) = sαX (0)
α (ε) and X (0)

α (ε) is defined as

X (0)
α (ε) ≡ g(0)

0α (ε)∂εg(0)
3α (ε) − ∂εg(0)

0α (ε)g(0)
3α (ε). (14)

Equation (13) clearly shows that the intrinsic SHE in the Dirac
ferromagnet is purely a Fermi sea effect. This is analogous to
the intrinsic AHE: the anomalous Hall conductivity (AHC) is
obtained by integrating the Berry curvature of all bands be-
low the Fermi surface, corresponding to an interband mixing
effect independent of the relaxation time [35,37]. Through
a straightforward calculation, σ 3

21 can be separated into two
terms with respect to m̂,

σ 3
21 ≡ σ 3,iso

21 + m2
1

(
σ 3,m̂

21 − σ 3,iso
21

)
, (15)

where we define σ 3,iso
21 and σ 3,m̂

21 as

σ 3,iso
21 ≡ −e�

4V

∑
k,η,ζ

ζ

∫ μ

−∞
dε δ(ε − ζEη )

×
(

1

Eηk̃2
⊥

+ η

M

1

Eηk̃⊥
− η

M

Eη

k̃3
⊥

)
, (16)

σ 3,m̂
21 ≡ −e�

4V

∑
k,η,ζ

ζ

∫ μ

−∞
dε δ(ε − ζEη )

(
− ηM

E3
η k̃⊥

− 1

E3
η

)
,

(17)

and k̃⊥ =
√

k2
⊥ + �2.

Equations (15)–(17) are the main results of this paper.
The forms clearly show the symmetry of the intrinsic SHC
in Dirac ferromagnet. σ 3,iso

21 only depends on the strength of
magnetization (M), which is the isotropic contribution to σ 3

21.
On the contrary, the term σ 3,m̂

21 − σ 3,iso
21 depends on the strength

and the direction of the magnetization. The latter is the source
of an anisotropic contribution to σ 3

21. Surprisingly, the intrinsic
SHC is anisotropic along the x axis, which is parallel to the
external electric-field Ê (charge current). Note that we take
σ 3

21 as an example where the external electric field is applied
along the x axis and the polarization of spin current is parallel
to the z axis. σ 3,iso

21 and σ 3,m̂
21 both contain ε integrals with an

integration limit that approaches minus infinity (ε → −∞).
One needs to introduce a proper energy cutoff (�ε ) to avoid
the ultraviolet divergence in the effective Dirac Hamiltonian
[38,39]. See Appendix B 5 for the details.

We first the present results when the Fermi level lies within
gap of the Dirac cone (μ = 0). σ 3

21 reads

σ 3
21 = − e�

4π2

[
m2

1

(
ln

2�ε

�
− 1

)
− M2

6�2
(1 − 4m2

1 )

]
+ O(M̃4).

(18)

As M approaches zero, we may drop the second-order term
O(M̃2). Interestingly, the zeroth-order term, independent of
M, is dependent on the direction of magnetization, i.e., m1.
Consequently, the value of SHC differs when M is reduced to
zero from the ferromagnetic state along different directions.
For example, if the magnetization is oriented along the x axis
(m1 = 1), σ 3

21 takes a nonzero value when M is reduced to
zero, whereas σ 3

21 vanishes with M → 0 when the magne-
tization is orthogonal to the x axis (m1 = 0). Note that σ 3

21
takes a nonzero value for the pristine Dirac phase (M = 0)
[18,19]. Thus, the M → 0 limit of the ferromagnetic Dirac

-0.3

-0.2

-0.1

0

0.1

0.2
(a)

-4 -2 0 2 4
-9

-8

-7

-6

-5
(b)

FIG. 2. Chemical potential dependence of intrinsic SHC contri-
butions: (a) σ 3,iso

21 and (b) σ 3,m̂
21 . The strength of magnetization M̃

is set to 0.1, 0.5, 0.8. The energy cutoff is set to �ε = 100. The
conductivity is in the unit of σ 0

s = e�/8π 2. The chemical potential
is normalized by �, i.e., μ̃ ≡ μ/�.

phase does not match that of the pristine Dirac phase when
the magnetization of the former is orthogonal to the x axis.

In Fig. 2, we present the chemical potential dependence
of the isotropic contribution σ 3,iso

21 and the anisotropic con-
tribution σ 3,m̂

21 . The intrinsic SHC is even with respect to
μ. This is in contrast to the intrinsic AHC in the Dirac
ferromagnet, which is known to be odd with μ [10]. Both
σ 3,iso

21 and σ 3,m̂
21 have plateaus in the band gap (|μ/�| � 1).

The width of the plateau linearly reduces with increasing M.
The sign of σ 3,iso

21 and σ 3,m̂
21 at the plateau is opposite. When

the chemical potential is placed near the edge of the band gap,
σ 3,iso

21 increases compared to that at the plateau. σ 3,iso
21 takes a

maximum at μ = � for all strengths of M. A further increase
in |μ| causes σ 3,iso

21 to decay and change its sign. In contrast,
σ 3,m̂

21 monotonically decreases with increasing |μ|. Overall,
the magnitude of σ 3,m̂

21 is significantly larger than that of σ 3,iso
21 .

Thus, the intrinsic SHC of the Dirac ferromagnet is dominated
by the m̂-dependent term (σ 3,m̂

21 ). In the following, we discuss
the aniosotropy of σ 3

21 in detail.

The anisotropy of intrinsic SHC

σ 3
21 is calculated and plotted as a function of magnetization

direction in Fig. 3 where the strength of the magnetization
and the position of the chemical potential are varied. |σ 3

21|
takes a maximum when M ‖ x̂ (m1 = ±1) and is nearly zero
when M ⊥ x̂ (m1 = 0). The SHC, thus, shows a strong uni-
axial anisotropy where its symmetry axis is aligned along the
direction of the electric field (charge current). The anisotropy
is not strongly influenced by the position of the chemical
potential and the strength of magnetization. For the latter, σ 3

21
is independent of M when the chemical potential is inside the
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FIG. 3. The angular dependence (m1) of intrinsic SHC σ 3
21 for

various chemical potentials: (a) μ̃ ≡ μ/� = 0, (b) μ̃ = 1, and
(c) μ̃ = 2. The black solid line (*) shows the results for the pris-
tine Dirac Hamiltonian [29]. The strength of the magnetization
M̃ ≡ M/� is set to 0.1, 0.5, and 0.8. The energy cutoff is set to
�ε = 100. The conductivity is in the unit of σ 0

s = e�/8π 2.

band gap (μ = 0), see Fig. 3(a). Strikingly, the anisotropy
of σ 3

21 does not vanish when M asymptotically approaches
zero. That is, σ 3

21 takes a nonzero value when M is reduced to
zero along the direction of external electrical-field Ê , whereas,
σ 3

21 vanishes when M approaches zero with its direction set
perpendicular to Ê [see Fig. 4]. In comparison, the AHE
in the Dirac ferromagnet asymptotically vanishes with the
strength of magnetization [10] regardless of the magnetization
direction. These results, thus, suggest that the Dirac ferromag-
net model is not smoothly connected with the pristine Dirac
model when ferromagnetic ordering vanishes asymptotically.
This discrepancy is discussed in the following section.

IV. PRISTINE VS FERROMAGNETIC DIRAC
ELECTRON SYSTEMS

To account for the asymptotic behavior of the intrinsic SHC
in the Dirac ferromagnet, we compare the Hamiltonians of
ferromagnetic and pristine Dirac systems. The former is given
in Eq. (1), whereas, the latter is defined by

HD = h̄vkiρ1 ⊗ σ i + �ρ3 ⊗ σ0. (19)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-10

-8

-6

-4

-2

0

2

FIG. 4. The magnetization strength M̃ dependence of intrinsic
SHC σ 3

21 for various chemical potential μ̃’s. The circled line groups
correspond to the magnetization direction parallel with or perpendic-
ular to x̂. The energy cutoff is set to �ε = 100. The conductivity is
in the unit of σ 0

s = e�/8π 2.

The eigenfunctions read

�D
ζ ,η = 1√

2

⎛
⎜⎝

√
1 + ζ �

k̃
ζ k·σ

|k| χη√
1 − ζ �

k̃
χη

⎞
⎟⎠, (20)

where k̃ = √
�2 + k2 and spinor χη is defined as χ+1 =

(1 0)T , χ−1 = (0 1)T . Again, we choose h̄ = v = 1 for
simplicity.

For the Dirac ferromagnet, here, we use a specific magne-
tization direction M = (0, 0, M ) for simplicity. The specific
direction of magnetization can be rotated to arbitrary direction
by a global unitary transformation without loss of generality
(see Appendix C for the details). The ferromagnetic Dirac
Hamiltonian [Eq. (1)] is, then, simplified to

HF = HD + H′(M ), (21)

where the magnetization-dependent part of the Hamiltonian is
H′(M ) = Mρ3 ⊗ σ 3. The corresponding eigenfunctions are

�F
ζ ,η = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ζe−iφ
√

1 + η �

k̃⊥

√
1 + ζη

Qη

Eη

−η
√

1 − η �

k̃⊥

√
1 − ζη

Qη

Eη

e−iφ
√

1 + η �

k̃⊥

√
1 − ζη

Qη

Eη

ζ η
√

1 − η �

k̃⊥

√
1 + ζη

Qη

Eη

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

where k1 = k⊥ cos φ, k2 = k⊥ sin φ, k3 = k‖, Qη = k̃⊥ +
ηM, and Eη =

√
k2
‖ + (k̃⊥ + ηM )2. As evident, �D

ζ ,η and �F
ζ ,η

do not take the same form in the paramagnetic limit (M → 0).
This discrepancy causes the difference in σ 3

21 for pristine and
ferromagnetic Dirac electron systems when M for the latter
asymptotically approaches zero along the direction of the
external electrical field.
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A. Degenerate perturbation theory

To trace the discrepancy between �D
ζ ,η and �F

ζ ,η in the para-
magnetic limit, we construct the eigenfunctions of the Dirac
ferromagnet from �D

ζ ,η using degenerate perturbation theory
[40]. Here the magnetization H′ is treated as perturbation.

First, we define the following projection operator that maps
the total Hamiltonian to each spin-degenerate energy subspace
(ζ = ±1) as

Pζ =
∑

η

�D
ζ ,η�

D†
ζ ,η = 1

2

[(
1 + ζ �

k̃

)
I2 ζ k·σ

k̃

ζ k·σ
k̃

(
1 − ζ �

k̃

)
I2

]
. (23)

The projected Hamiltonian Hζ in each energy subspace reads

Hζ = Pζ (HD + H′)Pζ . (24)

The unperturbed Hamiltonian HD is naturally diagonalized
in each energy subspace Hζ , whereas, the magnetization H′

breaks the spin degeneracy. Hence, a new basis set �
(0)
ζ ,η is

required to diagonalize the perturbation PζH′Pζ to the first
order,

Pζ Ĥ′Pζ �
(0)
ζ ,η = E (1)

ζ ,η�
(0)
ζ ,η, (25)

where E (1)
ζ ,η = ζηMk̃⊥/k̃ is the first-order correction of the

eigenenergy and �
(0)
ζ ,η explicitly reads

�
(0)
ζ ,η = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζe−iφ
√

1 + η �

k̃⊥

√
1 + ζη k̃⊥

k̃

−η
√

1 − η �

k̃⊥

√
1 − ζη k̃⊥

k̃

e−iφ
√

1 + η �

k̃⊥

√
1 − ζη k̃⊥

k̃

ζη
√

1 − η �

k̃⊥

√
1 + ζη k̃⊥

k̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

which is the zeroth-order [O(M0)] correction of the eigen-
function. Apparently, �

(0)
ζ ,η′s are the eigenfunctions of

the Dirac ferromagnet in the paramagnetic limit: �
(0)
ζ ,η =

�F
ζ ,η|M→0. �

(0)
ζ ,η and �D

ζ ,η span the same spin-degenerate

space, but �
(0)
ζ ,η, in addition, contains information of the per-

turbation (i.e., the magnetization).
The first-order correction of the eigenfunction is calculated

through the new basis,

�
(1)
ζ ,η = �

(0)†
ζ ,−ηH̄′

ζ�
(0)
ζ ,η

E (1)
ζ ,η − E (1)

ζ ,−η

�
(0)
ζ ,−η +

∑
η′

�
(0)†
−ζ ,η′H′�(0)

ζ ,η

E (0)
ζ ,η′ − E (0)

−ζ ,η

�
(0)
−ζ ,η′

= −ζM
k‖

2k̃2
�

(0)
−ζ ,η, (27)

where H̄′
ζ = PζH′P−ζ (Eζ − HD)−1P−ζH′Pζ is the second-

order perturbation in the subspace Hζ . Thus, up to the
first-order correction, the eigenenergy and eigenfunctions are

Eζ ,η = ζ k̃ + ζηM
k̃⊥
k̃

+ O(M2), (28)

�F
ζ ,η = �

(0)
ζ ,η − ζM

k‖
k̃

�
(0)
−ζ ,η + O(M2), (29)

which are fully consistent with the Taylor expansion of Eζ ,η

and �F
ζ ,η of the ferromagnetic Dirac Hamiltonian. Clearly,

when the magnetization (M ) asymptotically approaches zero,

the energy bands become spin degenerate [Eqs. (28) and (29)],
but the eigenfunctions return to �

(0)
ζ ,η, which differs from �D

ζ ,η

by a specific gauge chosen by the direction of magnetization.

B. SHC in spectral representation

Next, we calculate the intrinsic SHC through the Kubo for-
mula using the three sets of eigenfunctions, i.e., �D

ζ ,η, �
(0)
ζ ,η,

and �F
ζ ,η, to show the effect of different eigenfunctions on the

SHC. The Kubo formula for SHC in the spectral representa-
tion [41] is given by

σ l
ji = − e

4

∑
k,ζ ,η

f (εk)�l,ζ ,η
ji , (30)

�
l,ζ ,η
ji = −

∑
(ζ ′,η′ )�=(ζ ,η)

2 Im
φ

†
ζ ,ηv

l
jφζ ′,η′φ

†
ζ ′,η′viφζ,η

(Eζ ,η − Eζ ′,η′ )2
, (31)

where f (εk) is the Fermi-Dirac distribution function and
�

l,ζ ,η
ji are the Berry curvaturelike terms [41,42] for band in-

dices ζ , η, where (ζ ′, η′) �= (ζ , η) indicates summation over
all interband transitions. In the following, we substitute �D,
�(0), and �F into φζ,η. Note that we calculate different
components of the spin Hall conductivity tensor with a fixed
magnetization direction: m̂ ‖ ẑ.

For the eigenfunctions of pristine Dirac Hamiltonian
(�D), we consider all nonvanishing components of the to-
tally antisymmetric SHC tensor. The corresponding Berry
curvature-like terms are

�
D,3,ζ ,η

21 =
∑

(ζ ′,η′ )�=(ζ ,η)

�

(ζ − ζ ′)k̃3

(
k2

1 + k3
2

k2
δη,η′ + k2

3

k2
δη,−η′

)

= ζ
�

2k̃3
, (32)

where two transition channels ζ , η → −ζ ,±η equally con-
tribute to �

D,3,ζ ,η

21 due to the spin degeneracy. One may verify
that �

D,1,ζ ,η

32 and �
D,2,ζ ,η

13 have similar expressions, which
suggests that the ζ , η → −ζ ,±η channels contribute equally
despite the geometry of SHC.

For the eigenfunctions �(0), the corresponding Berry cur-
vaturelike terms, denoted as �

F0,l,ζ ,η
ji , are

�
F0,3,ζ ,η

21 = �
F0,1,ζ ,η

32 =
∑

(ζ ′,η′ )�=(ζ ,η)

�(η − η′)(ζη + ζ ′η′)
2(ζ − ζ ′)2k̃3

= ζ
�

2k̃3
, (33)

�
F0,2,ζ ,η

13 =
∑

(ζ ′,η′ )�=(ζ ,η)

�(η + η′)(ζη − ζ ′η′)
2(ζ − ζ ′)2k̃3

= ζ
�

2k̃3
. (34)

As evident from the first line of Eq. (33), transitions that
conserve spin, i.e., η′ = η, vanish in the summation. Thus,
only spin-flipping transitions ζ , η → −ζ ,−η contribute to
�

F0,3,ζ ,η

21 and �
F0,1,ζ ,η

32 . In contrast, for �
F0,2,ζ ,η

13 , the transi-
tions that flip the spin η′ = −η vanishes as apparent from the
second line of Eq. (34). Here, the spin-conserving transitions
ζ , η → −ζ , η contribute to �

F0,2,ζ ,η

13 . As evident, Eqs. (33)
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TABLE II. Summary of transition channels in �
l,ζ ,η

ji for each
eigenfunction set.

�D
ζ ,η �

(0)
ζ ,η �F

ζ ,η

m̂ ‖ Ê ζ , η → −ζ , ±η ζ , η → −ζ , η ζ , η → −ζ , η

m̂ ⊥ Ê ζ , η → −ζ , ±η ζ , η → −ζ , −η ζ , η → ±ζ , −η

and (34) are identical to Eq. (32). This is because �(0) only
differs from �D by a specific gauge chosen by the direction
of magnetization.

For the eigenfunctions of Dirac ferromagnet (�F
ζ ,η ), the

corresponding Berry curvaturelike terms are as follows:

�
F,3,ζ ,η

21 = �
F,1,ζ ,η

32

=
∑

(ζ ′,η′ )�=(ζ ,η)

�(η − η′)(ζηEη′Qη + ζ ′η′EηQη′ )

2k̃⊥EηEη′ (ζEη − ζ ′Eη′ )2

= ζ
�

2Eηk̃3
⊥

[
k̃⊥ + η

M
(k2

‖ + M2)

]
, (35)

�
F,2,ζ ,η

13 =
∑

(ζ ′,η′ )�=(ζ ,η)

�(η + η′)(ζηEη′Qη − ζ ′η′EηQη′ )

2k̃⊥EηEη′ (ζEη − ζ ′Eη′ )2

= ζ
�

2E3
η

Qη

k̃⊥
. (36)

Only spin-flipping transitions ζ , η → ±ζ ,−η contribute to
�

F,3,ζ ,η

21 and �
F,1,ζ ,η

32 and the spin-conserving transitions
ζ , η → −ζ , η contribute to �

F,2,ζ ,η

13 . Here, in the presence of
the spin gap, �

F,3,ζ ,η

21 and �
F,1,ζ ,η

32 have an extra spin-flipping
channel: ζ , η → ζ ,−η. As evident, �

F0,2,ζ ,η

13 is also equal
to �

F,2,ζ ,η

13 in the M → 0 limit, but �
F0,3,ζ ,η

21 and �
F0,1,ζ ,η

32

do not take the same form with �
F,3,ζ ,η

21 and �
F,1,ζ ,η

32 in the
M → 0 limit due to the absence of the transition channel
ζ , η → ζ ,−η for the former (i.e., for the eigenstates �(0)).
Furthermore, we note that the Berry curvaturelike terms all
vanish with zero gap (� = 0). Thus, gap of Dirac cone � is
essential for the nonzero SHE in the Dirac ferromagnet.

Since we have fixed the magnetization direction along the
z axis, �

F,2,ζ ,η

13 corresponds to the case with m̂ ‖ Ê , whereas
�

F,3,ζ ,η

21 and �
F,1,ζ ,η

32 represent the case with m̂ ⊥ Ê . One can
verify that Eq. (35) is exactly the same with the integrand of
Eq. (16). Thus, upon integrating the Berry curvaturelike terms
across the k space, the SHC of the Dirac ferromagnet with
m̂ ⊥ Ê is near zero. It turns out that the transition ζ , η →
ζ ,−η compensates most of the contribution from the tran-
sition ζ , η → −ζ ,−η, causing the small SHC with m̂ ⊥ Ê .
Note that the compensation is exact in the asymptotic limit of
zero magnetization.

The transition channels that contribute to the Berry curva-
turelike terms are summarized in Table II. With the degenerate
perturbation theory, one can trace the origin of the discrepancy
between pristine and ferromagnetic Dirac electron systems in
the zero magnetization limit. In the pristine Dirac model, the
spin space spanned by η is degenerate, thus, the nonvanishing
components of the SHC tensor share the same transi-
tion channels (ζ , η → −ζ ,±η). In the Dirac ferromagnet,

however, the spontaneous magnetization H′(M ) breaks the
spin degeneracy. Consequently, each nonvanishing compo-
nent of the SHC tensor possesses distinct transition channels,
either spin-flipping or spin-conserving channels (see Table II).
Furthermore, in the presence of the spin gap, a unique spin-
flipping transition channel ζ , η → ζ ,−η emerges when m̂ ⊥
Ê , which nearly compensates contribution from the transition
channel ζ , η → −ζ ,−η on the SHC. Thus, the appearance
of the spin-flipping transition channel causes the SHC to be
negligible when m̂ ⊥ Ê . These results show that the change in
the selection rule of the state transitions define the SHC and
is the cause of the anisotropy in the SHC that persists to the
M → 0 limit.

V. SUMMARY

To summarize, we have developed a minimal model to
study the intrinsic spin Hall effect in a ferromagnetic Dirac
system. We find the nonvanishing components of the SHC
tensor is anisotropic. The anisotropy is defined by the direc-
tion of magnetization. Specifically, the SHC is finite when
the magnetization is parallel with the external electric field,
whereas, it is near zero when the two are orthogonal. Using the
spectral representation of the Kubo formula, the nonvanishing
components of the SHC tensor are examined in the context
of transition channels. We find the interband transition chan-
nels in the pristine Dirac Hamiltonian system bifurcate into
spin-conserved or spin-flipping ones in the presence of the ex-
change field, which ultimately causes the anisotropy of SHC
in the Dirac ferromagnet. Interestingly, the anisotropy persists
as the magnetization approaches zero. The SHC is smoothly
connected to the pristine Dirac phase when the magnetization
is reduced to zero along the applied electric field. In con-
trast, a discontinuity in the SHC appears at the ferromagnetic
Dirac/pristine Dirac border when the magnetization is not
parallel to the electric field. The discontinuity of the SHC at
the ferromagnetic Dirac/pristine Dirac border is caused by the
emergence of a spin-flipping transition channel spontaneously
appearing with a spin gap in the Dirac ferromagnet.

Our paper demonstrates the effect of ferromagnetic order-
ing on the intrinsic SHE using a minimal model combining
ferromagnetism and SOC. The massive Dirac Hamiltonian has
been employed as an effective Hamiltonian around the L point
of semimetallic bismuth. A ferromagnetic Dirac system can be
achieved by magnetic doping or the magnetic proximity effect
from a neighboring layer. In the ferromagnetic Dirac phase,
we placed a limit on the strength of spontaneous magnetiza-
tion to be smaller than the gap of Dirac cone (i.e., M < �).
If the magnetization equals the gap, a gap closing occurs,
which can be classified as a topological phase transition. In the
extreme case where the magnetization is larger than the gap,
the Dirac semimetal turns into a magnetic Weyl semimetal.
Further theoretical study is required to address the SHE in the
latter system.
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APPENDIX A: WOLFF HAMILTONIAN

In this Appendix, we present the derivation of the Wolff
Hamiltonian from the Kohn-Sham Hamiltonian and show
its equivalence with the pristine Dirac Hamiltonian with an
isotropic velocity. We start with a general single electron
Hamiltonian that includes the spin-orbit coupling,

Ĥ = p̂2

2m
+ V (r) + h̄

4m2c2
σ · ∇V (r) × p̂. (A1)

Following the kp theory, the Hamiltonian can be expanded
around a band extremum k0, e.g., the L point of bismuth.
Accordingly, the wave function around the extremum k0 can
be constructed using the Bloch basis,

ψ (r) =
∑

n

∫
dk cn(k)eik·run,k0 , (A2)

where cn(k) is an expansion coefficient and un,k0 is a function
periodic in space. The matrix elements of the Hamiltonian
around the band extremum can be rewritten as

〈n, k| Ĥ |n′, k〉 cn′ (k) = Encn(k), (A3)

〈n, k| Ĥ |n′, k〉 =
[
εn,k0 + h̄2k2

2m

]
+ h̄k · pn,n′

m
, (A4)

where εn,k0 is the eigenenergy of the Bloch state at k0 and the
momentum matrix elements pn,n′ are given as

pn,n′ = (2π )3

�

∫
cell

dr u∗
n,k0

(
p̂ + h̄

4mc2
σ × ∇V (r)

)
un′,k0 .

(A5)

Equation (A5) clearly shows that the SOC generates an
anomalous velocity term in the momentum matrix element.
Focusing on the low-energy properties, we select the lowest
conduction and highest valance bands (both spin degenerate,
the band gap is 2�) to construct an effective Hamiltonian.
Under such circumstance, Eq. (A4) reduces to the Wolff
Hamiltonian,

H = h̄kiW
j

i ρ2 ⊗ σ j + �ρ3 ⊗ σ 0, (A6)

with the Wolff tensor W 1
i = Im(pi,1,4/m) = −Im(pi,3,2/m),

W 2
i = Re(pi,1,4/m) = −Re(pi,3,2/m), and W 3

i =
Im(pi,1,3/m) = Im(pi,4,2/m). The band indices 1,2 and
3,4 are the spin degenerate conduction bands and the valance
bands, respectively. If the Wolff tensor is approximately
isotropic, i.e., W j

i = δi jv, Eq. (A6) is equivalent to Eq. (1)
without magnetization. We note that the representation of
the velocity operator (ρ2 ⊗ σ ) in the Wolff Hamiltonian
differs from the original Dirac Hamiltonian up to a unitary
transformation.

The exchange coupling term in Eq. (1) is obtained using
the spin magnetic moment operator [14]. To derive the spin
magnetic moment operator in the Dirac Hamiltonian, we first
rewrite the wave vector as the momentum operator in the
pristine Dirac Hamiltonian and perform Peierls substitution

h̄k → p̂ → π̂ = p̂ + e/cA,

H0 = vπiρ1 ⊗ σ i + �ρ3 ⊗ σ 0. (A7)

Applying Foldy and Wouthuysen transformation [31] gen-
erated by S = v

2�
ρ2 ⊗ σ iπ̂i, the Dirac Hamiltonian can be

decoupled into positive and negative energy states,

H′
0 = eiSH0e−iS

= H0 + i[S,H0] + i2

2!
(S, [S,H0]) + · · ·

=
(

� + v2π2

2�

)
ρ3 ⊗ σ 0 + h̄ev2

2�c
Biρ3 ⊗ σ i + O(v2/�2)

(A8)

where the external magnetic field arises from the vector poten-
tial B = ∇ × A. The spin magnetic operator ρ3 ⊗ σ i couples
to external magnetic field oppositely in positive (electrons)
and negative (holes) energy states.

APPENDIX B: INTRINSIC SHC IN THE KUBO FORMULA

The intrinsic SHC is obtained by calculating the Fermi-
surface and Fermi sea terms with zeroth order of damping
constant O(γ 0).

1. Fermi-surface contribution

Substituting G̃R,A into Eq. (11), the Fermi-surface term
reads

σ
k,(1)
i j = e

8πV

∑
k

εikl tr(ρμρ2ρλρ1)tr(σ νσ lσ τσ j )

×
(

gR
μν (ε)gR

λτ (ε)

DR(ε)DR(ε)
− 2

gA
μν (ε)gR

λτ (ε)

DA(ε)DR(ε)

+ gA
μν (ε)gA

λτ (ε)

DA(ε)DA(ε)

)∣∣∣∣∣
ε=μ

. (B1)

The numerator and denominator of Eq. (B1) can be ex-
panded on the order of γ ,

gR,A(ε) = g(ε) ± iγ g′(ε) + O(γ 2),

DR,A(ε) = D(ε) ± iγ D′(ε) + O(γ 2). (B2)

Note that for the denominators, we have the following approx-
imation:

1

D2(ε) + γ 2(D′(ε))2
� π

|D′(ε)|γ δ[D(ε)]. (B3)

Taking the zeroth order of γ , the Fermi-surface term reads

σ
3,(1)
21 = 2e

V

∑
k

δ[D(ε)]

|D′(ε)| X (0)(ε)

∣∣∣∣∣
ε=μ

. (B4)
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2. Fermi sea contribution

Substituting G̃R,A into Eq. (12), the Fermi sea term reads

σ
k,(2)
i j = e

8πV

∑
k

εikl tr(ρμρ2ρλρ1)tr(σ νσ lσ τσ j )

×
∫ μ

−∞
dε

[
gR

μν (ε)∂zgR
λτ (ε)

− ∂εgR
μν (ε)gR

λτ (ε)
[DR(ε)]2 − (R ↔ A)

]
.

(B5)

For Eq. (B5), the tensor component σ
3,(2)
21 reads

σ
3,(2)
21 = − 2e

πV

∑
k

∫ μ

−∞
dε Im

[
X R(ε)

DR(ε)2

]
. (B6)

Taking the zeroth order of γ , the integrand in Eq. (B6) is
approximated as

Im

[
X R(ε)

DR(ε)2

]
≈ π sgn D′(ζEη )∂εδ[D(ε)]

X (0)(ε)

D′(ε)
, (B7)

where X R(ε) is expanded on the order of γ ,

X R(ε) = X (0)(ε) + iγ X ′(0)(ε) + O(γ 2). (B8)

The intrinsic Fermi sea term, thus, reads

σ
3,(2)
21 = −2e

V

∑
k

∫ μ

−∞
dε sgn D′(ζEη )∂εδ[D(ε)]

X (0)(ε)

D′(ε)

= −2e

V

∑
k

[
sgn D′(ζEη )

δ]D(ε)]

D′(ε)
X (0)(ε)

∣∣∣∣∣
ε=μ

ε=−∞

−
∫ μ

−∞
dε sgn D′(ζEη )δ[D(ε)]∂ε

(
X (0)(ε)

D′(ε)

)]
,

(B9)

where we apply integration by parts in the last equation. Note
that the first term in Eq. (B9) with the lower boundary van-
ishes at ε → −∞ and its upper boundary term exactly cancels
the Fermi-surface term [Eq. (B4)]. Consequently, the total
intrinsic SHC reduces to a compact form shown in Eq. (13).

3. Anisotropic SHC

To obtain an analytical expression of Eq. (13), we first
rewrite δ[D(ε)],

δ[D(ε)] =
∑

η,ζ=±1

δ(ε − ζEη )

8MEηk̃⊥
, (B10)

where we denote k̃⊥ =
√

�2 + k2
⊥. Hence, Eq. (13) is rewrit-

ten as

σ 3
21 = 2e

V

∑
k,η,ζ

∫ μ

−∞
dε

δ(ε − ζEη )

64M2E2
η k̃2

⊥

×
[
∂εX (0)(ε) − ζX (0)(ε)

(
1

Eη

+ η

M

Eη

k̃⊥

)]
. (B11)

Owing to δ(ε − ζEη ) in the integral, we replace ε in X (0)(ε)
and X ′(0)(ε) with ζEη, which gives

X (0)(ζEη ) = −8�M2[(1 − m2
1

)
Eη

2 + m2
1ηMk̃⊥ + m2

1k̃2
⊥
]
,

X ′(0)(ζEη ) = −8�ζEη

[
2M2 + ηMk̃⊥ − M2

1

]
. (B12)

Equation (B11), thus, reads

σ 3
21 = −e�

4V

∑
k,η,ζ

∫ μ

−∞
dε δ(ε − ζEη )

[
m2

1

(
− ηM

E3
η k̃⊥

− 1

E3
η

)

+
(

1

Eηk̃2
⊥

+ η

M

1

Eηk̃⊥
− η

M

Eη

k̃3
⊥

)]
, (B13)

from which we obtain Eqs. (16) and (17) by separating the
isotropic- and magnetization-dependent parts.

4. Calculation of σ
3,iso
21 and σ

3,m̂
21

σ 3,iso
21 and σ 3,m̂

21 both contain ε integrals with an integration
limit that approaches minus infinity (ε → −∞). One needs
to introduce a proper energy cutoff to avoid the ultraviolet
divergence in the effective Dirac Hamiltonian [38,39]. We,
therefore, separate the ε integrals in σ 3,iso

21 and σ 3,m̂
21 into a

divergent part [ε ∈ (−∞, 0)] and a convergent part [ε ∈
(0, μ)],

σ 3,iso
21 = Diso + Ciso, (B14)

σ 3,m̂
21 = Dm̂ + Cm̂, (B15)

where Ciso, Cm̂ and Diso, Dm̂ are the convergent and divergent
terms of the isotropic and the m̂-dependent contributions,
respectively.

The divergent terms (Diso and Dm̂) represent the SHC with
the chemical potential exactly placed at the center of the gap
between the positive and the negative energy states (μ = 0). In
other words, it contains contribution from the entire negative
energy states (ζ = −1, η = ±1),

Diso = e�

4V

∑
k,η

1

Eηk̃2
⊥

+ η

M

1

Eηk̃⊥
− η

M

Eη

k̃3
⊥

, (B16)

Dm̂ = −e�

4V

∑
k,η

ηM

k̃⊥E3
η

+ 1

E3
η

. (B17)

As the k summation involves a logarithmic divergence in three
dimensional reciprocal space, we adopt a cutoff energy �ε. �ε

is defined such that the following condition is satisfied:

E2
η = k2

‖ + (k̃⊥ + ηM )2 � �2
ε . (B18)

With the energy cutoff, the spin-split bands in the negative-
energy states are truncated by two different ellipsoids [see
Fig. 1(b)]. Setting M̃ = M/�, we expand M̃ up to second
order in M̃ to obtain an analytical expression for Diso and Dm̂
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(M/� is placed back in),

Diso
�ε

= e�

4π2

M2

6�2
+ O(M̃4), (B19)

Dm̂
�ε

= − e�

4π2

(
ln

2�ε

�
− 1 + M2

2�2

)
+ O(M̃4). (B20)

For the convergent terms (Ciso and Cm̂), the k integration is
confined within the area that satisfies the following condition:

E2
η = k2

‖ + (k̃⊥ + ηM )2 � μ2. (B21)

The integration range is similar to that of the energy cutoff
scheme. Again, the energy states are truncated by two dif-
ferent ellipsoids associated with the spin-up and spin-down
bands (η = ±1). Here, either the positive- or the negative-
energy state (ζ = ±1) is truncated. After some calculations,
Ciso and Cm̂ read

Ciso = e�

8π2

∑
η=±1

η|μ|
2M

�(μ)
∫ θβ

θα

dθ
cos2 θ(

sin θ − η M
|μ|

)2

−
(

1 − M2

|μ|2( sin θ − η M
|μ|

)2

)
cos θ tanh−1 cos θ

(B22)

Cm̂ = − e�

8π2

∑
η=±1

�(μ)

(
cos θα + ln tan

θα

2

)
, (B23)

where θα = sin−1 �+ηM
|μ| , θα = π

2 , and �(μ) is defined as

�η(μ) =
{

1, |μ| > � − ηM
0, (otherwise).

(B24)

Note that σ 3
21 is artificially divided into the convergent part and

the divergent part. Hence, the convergent part is expected to
exactly cancel the divergent part when the chemical potential
approaches negative infinity. This is indeed the case. The
cancellation between the C terms with μ = �ε and the D
terms justifies the energy cutoff scheme.

5. Cutoff schemes for ultraviolet divergence

In the pristine Dirac phase, a momentum cutoff scheme is
typically employed to deal with the ultraviolet divergence. In
such scheme, the wave-vector k is truncated within a sphere
of radius � in the momentum space,

k2
‖ + k2

⊥ � �2. (B25)

Note that, in the Dirac ferromagnet, the Fermi sea of spin-split
bands (η = ±1) form ellipsoids with axial anisotropy along
k‖. The ellipticity of the Fermi sea asymptotically approaches
1 when |k| � M and the Fermi sea of the spin-split bands
tend to coincide at the cutoff momentum � � M. In the
momentum cutoff scheme, Diso

� and Dm̂
� are approximated in
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FIG. 5. Comparison between (a) Ciso and −Diso
� (dashed); (b) Ciso and −Diso

�ε
(dashed); (c) Cm̂ and −Dm̂

� (dashed); (d) Cm̂ and −Dm̂
�ε

(dashed).
M is set to be 0.1, 0.5, 0.8, corresponding to color sequence from red to purple. The cutoff momentum/energy is set to be � = �ε = 100,
according to the limit of chemical potential μ̃min = −100. The divergent parts are taken in opposite sign for comparison. The conductivity is
in the unit of σ 0

s = e�/8π 2.
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the small magnetization limit as

Diso
� = − e�

4π2

(
ln

2�

�
− 1 − M2

6�2

)
+ O(M̃4), (B26)

Dm̂
� = − e�

4π2

(
ln

2�

�
− 1 + M2

2�2

)
+ O(M̃4). (B27)

Dm̂ shows exactly the same result for two cutoff schemes,
whereas Diso is different for the two. For example, in the limit
of M → 0, Diso vanishes in the energy cutoff scheme but is
finite for the momentum cutoff scheme. The difference is due
to the ellipticity of Fermi sea of the negative-energy branches,
causing a gap between the Fermi surface of the two spin-split
bands [see Fig. 1(b)] whose area is on the order of M/�. Diso

contains terms on the order of M−1 [Eq. (B16)], which return a
nonvanishing contribution to the momentum integration even
in the gap area. Counterintuitively, the small gap between the
spin-splitting Fermi surfaces is significant to the whole Fermi
sea term and does not vanish in the limit of M → 0.

Additionally, we compare the convergent part and the di-
vergent part to check the consistency of two cutoff schemes.
For the momentum cutoff, the convergent part and the di-
vergent part are different for the isotropic contributions Ciso

and Diso
� [see Fig. 5(a)], which do not reach the same value

with μ → �. In contrast, for the energy cutoff scheme, the
convergent part and the divergent part are consistent for both
the isotropic contribution [see Fig. 5(c)] and the anisotropic
contribution [see Fig. 5(d)]. Note that the convergent part
should exactly cancel the divergent part at infinite negative
energy (−∞ or �) since no states contributes to SHE. This
indicates that the energy cutoff scheme should be the appro-
priate approach.

APPENDIX C: GENERAL MAGNETIZATION DIRECTION

To generalize the discussion with an arbitrary magnetiza-
tion direction [note that we chose M ‖ ẑ in HF , see Eq. (21)],

we define a global unitary transformation, which connects the
two Hamiltonians H0 and HF ,

U †H0U = HF , (C1)

with unitary matrix U = uiρ3 ⊗ σ i and u =
(sin θ/2 cos ϕ, sin θ/2 sin ϕ, cos θ/2). Note that we
have defined M = M(sin θ sin ϕ, sin θ sin ϕ, cos θ ). The
corresponding eigenfunctions �F ′

ζ ,η with such M read

H0�
F ′
ζ ,η = Eζ ,η�

F ′
ζ ,η, �F ′

ζ ,η = U�F
ζ ,η. (C2)

Substituting �F ′
ζ ,η into the Kubo formula [Eq. (31)], the Berry

curvaturelike terms take the following form:

(�l
ji )

′ = �l
ji − 2umukε jlkεabm�b

ai − 2uium�l
jm

+ 4umukuiunε jlkεabm�b
an, (C3)

Choosing the component �3
21 as an example, we obtain

(
�

F,3,ζ ,η

21

)′ = �
F,3,ζ ,η

21 + m2
1

(
�

F,2,ζ ,η

13 − �
F,3,ζ ,η

21

)
, (C4)

which takes a similar form to that shown in Eq. (15). For
example, when the magnetization is directed along the x
axis (m1 = ±1), Eq. (C4) satisfies the relation (�F,3,ζ ,η

21 )′ =
�

F,2,ζ ,η

13 , which indicates that spin-conserving channel con-
tributes to the SHC. On the other hand, if the magnetization
points orthogonal to the x axis (m1 = 0), Eq. (C4) shows
(�F,3,ζ ,η

21 )′ = �
F,3,ζ ,η

21 where only the spin-flipping channels
are allowed.
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