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Ferrimagnetic magnon drop solitons close to the angular momentum compensation point
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Precessional solitons, referred to as magnon drop solitons driven by spin torque, are known to exist in
ferromagnetic free layers of nanocontact devices. To increase the operating frequency of nanoscale devices,
it has been proposed that transition metal–rare earth ferromagnetic alloys are good candidates. In addition,
these alloys can exhibit angular momentum compensation providing another parameter controlling frequency.
In this article magnon drop solitons in ferrimagnets are studied by a combination of analytical and numerical
solutions of the Landau-Lifshitz equation for a two-sublattice model. For such magnets, two magnon modes
exist, but only one of them, the mode with the lower absolute value of the precession frequency, is involved
in the formation of the droplike soliton. The precession frequency for the soliton depends strongly on the
angular momentum compensation parameter; it grows significantly in the vicinity of the angular momentum
compensation point. These solitons are shown to be stable and a minimum sustainable compensation-dependent
spin torque is obtained.
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I. INTRODUCTION

The soliton-based approach is the most suitable for the
description of physical systems with essentially nonlinear
dynamics, for example, magnetically ordered materials. This
approach is well suited for investigation of static and dy-
namic solutions of the Landau-Lifshitz equation, describing
nonlinear spin dynamics of ferromagnets [1–9]. Originally
low-dimensional topological and nontopological magnetic
solitons such as vortices, skyrmions, and magnon drops of
various dimensions were of interest to theorists as brief ex-
amples of highly nonlinear elementary excitations. With the
development of nanoscale fabrication technology, solitons
were experimentally observed in structures such as nanodisks
[10,11] and nanocontacts [12,13] on a thin ferromagnetic film.
The dynamic properties of magnetic vortices typically involve
frequencies in the sub-GHz to low-GHz range, so an obvious
application of magnetic solitons is high-frequency nanoscale
oscillators [14,15]. For oscillator applications, the theoretical
development of spin transfer torque has been shown to provide
the necessary driving force for excitation of soliton dynamics.
Subsequently, nanopillar and nanocontact devices have been
fabricated for nanoscale oscillator applications based on mag-
netic vortex dynamics.

For nanoscale oscillator applications it is desirable to fur-
ther increase the operating frequency, which is limited by the
magnetic properties of the free-layer material. A typical free-
layer material can be a ferromagnetic alloy such as permalloy,
but this alloy limits the highest frequency to about 1 GHz for a
magnetic vortex oscillator. Recently it was shown that various
dynamical processes, in particular, the operating frequency of
spin-pumped nano-oscillators, can be significantly increased
to the subterahertz range using a ferrimagnetic transition

metal–rare earth (TM-RE) free layer such as alloy Gd(Co,Fe)
close to the angular momentum compensation point [16–19].

It is important to stress that some ferrimagnetic mate-
rials can have so-called compensation points, where either
the magnetizations or angular momenta of sublattices com-
pensate each other at some temperature values. Generally,
these two temperatures are not equal and their difference can
be as large as 50 K [16]. The key point here is that near
the compensation of the angular momenta (at the angular
momentum compensation point) the spin dynamics becomes
faster [16–21]. Moreover, angular momentum compensated
ferrimagnetic alloys can have a nonzero magnetic moment
resulting in the possibility of vortex formation in the free
layer. The vortex oscillator frequency can be increased to a
range of 10–30 GHz and then controlled by the current as
well as alloy concentrations. Also, temperature dependence
of the angular momentum and magnetization compensation
points implies that temperature has an effect on the frequency
[20,21].

In light of the significant increase in the operating fre-
quency range of vortex oscillators in ferrimagnetic layers, it
is important to study other forms of solitons in these systems.
In this article the nontopological magnon drop soliton driven
by spin torque with a nanocontact on a ferrimagnetic alloy
is theoretically studied near the angular momentum com-
pensation point. Previous theoretical work on magnon drop
solitons [2–9] has been done for ferromagnets by solution of
the Landau-Lifshitz-Gilbert (LLG) equation. In these systems
magnon drops form in perpendicular easy-axis ferromagnets
with the central magnetization nearly opposite the free-layer
magnetization with a relatively narrow transition region defin-
ing the soliton edge. Without Gilbert damping, solution of
the LL equation results in a so-called conservative magnon
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drop stabilized by precession of the magnetization. It is worth
mentioning here the origin of such terminology: in the frame-
work of quantum mechanics, these solitons can be treated
as a bound state of a large number of magnons; thus this
soliton resembles the drop of usual liquid with magnons as the
strongly interacting particles in liquid [2]. With the addition of
nonconservative terms in the LLG equation, spin torque will
provide necessary antidamping for the formation of a dissi-
pative droplet soliton. This type of soliton can exist because
dissipation is balanced by spin torque resulting in a structure
stabilized by dynamic precession. The magnon drop soliton
has been experimentally observed [22–24] in ferromagnetic
free-layer systems having high precession frequencies in the
range 10–20 GHz. Since ferromagnetic magnon drop solitons
result in a high oscillator operating frequency, and ferrimag-
netic dynamics can result in a further frequency increase, the
goal here is an investigation of the modified LLG equation
describing ferrimagnetic dynamics close to the angular mo-
mentum compensation point.

To determine magnon drop soliton structures, precession
frequencies, and stability, this paper is organized as follows:
First the modified LLG equation including spin torque is
presented for the ferrimagnet in the vicinity of the angular
momentum compensation point. For the special case of the
conservative magnon drop without damping and spin torque
the form of the conservative soliton is determined numeri-
cally to obtain the precession frequencies and radial structures
as a function of the boundary condition at the nanocontact
center. The interesting result here is the relation between the
precession frequency and angular momentum compensation
parameter. These compensation-dependent solutions are then
used to calculate quantities such as the precession frequency
and the total magnetization of the free layer. Finally, on the
basis of soliton perturbation theory, the time dependence of
the total magnetization is used to investigate the effect of
damping and spin torque on the stability of these solutions.

II. FERRIMAGNETIC DYNAMICS

We begin with a definition of the variables and parameters
used in the LLG equation driven by spin torque. In addition,
the approximations leading to the magnon drop solutions of
the LLG equation are outlined. For a two-sublattice ferrimag-
net the magnetizations are expressed as �M1,2 = g1,2μB�s1,2 in
terms of the sublattice g values and spin densities, where μB

is the Bohr magneton. The lengths of sublattice spins have
different dependence on the temperature, and at some value
of the temperature (angular momentum compensation point)
they can be equal, giving rise to angular momentum compen-
sation. It is worth noting here that g factors of sublattices
usually are not equal: the compensation of magnetizations
takes place at some different temperature (magnetization com-
pensation point), where the effects of the increased frequency
spin dynamics are absent; see, e.g., [16,17,20,25]. Close to
the angular momentum compensation point, �s1 + �s2 ≈ 0, so
it is sufficient to use the formulation for the antiferromagnet
with variables, normalized total density of angular momen-
tum �m = �s1+�s2

2s0
, and the so-called antiferromagnetic vector,

or Néel vector �l = �s1−�s2
2s0

. In the following s1,2 = |�s1,2| and

s0 = (s1 + s2)/2 unless the vector notation is explicitly given.
Then in the continuum approximation the free-layer energy
density is

w = Eex

2
�m2 + A

2
(∇ l̃)

2 + K

2

(
1 − l2

z

)
, (1)

where Eex is the homogeneous exchange energy, describing
the intersublattice exchange, which is often used to ana-
lyze antiferromagnets (see [25] for more details), A is the
nonhomogeneous exchange constant, and K is the easy-axis
anisotropy constant. Instead of using of the set of Landau-
Lifshitz equations for spin densities �s1 and �s2 or, equivalently,
for the vectors �m and �l , we use so-called sigma-model ap-
proximation, well known for antiferromagnets and valid for
ferrimagnets near the compensation point; see [25]. The
derivation of the sigma-model equation is based on two con-
ditions: first, that the length of the vector �m is much less
than the length of the vector �l and, second, that the exchange
constant Eex exceeds the value of the anisotropy constant.
Within the framework of this approach, the vector �m can be
excluded from the set of equations resulting in one closed
equation for the principal dynamic variable, the normalized
antiferromagnetic vector �l . The dynamics of �l is described by
the equation

h̄(s1 − s2)
∂�l
∂t

+ h̄(s1 + s2)
1

ωex

(
�l × ∂2�l

∂2t

)
= −�l × δW

δ�l , (2)

where W = W (�l ) is the static energy of the ferrimagnet,
written as a functional of the vector function �l , and h̄ωex =
gμBHex, Hex is the so-called exchange field; see monograph
by Turov et al. [26] for more details. Within this approach, the
vector �m plays the role of a slave variable; it can be expressed
through �l and ∂�l/∂t by a simple formula. See, e.g. [25],

�m = ν�l + 1

ωex

(
∂�l
∂t

× �l
)

, (3)

where the compensation parameter ν = (s1 − s2)/(s1 + s2) is
introduced. This parameter shows how far from the compen-
sation point the ferrimagnet is, and at the angular momentum
compensation point the compensation parameter ν = 0. Thus,
instead of two equations for the sublattice magnetizations, one
equation can be used for the antiferromagnetic vector �l . Note
that far from the compensation point, where ν ∼ 1, the term
with the second time derivative in Eq. (2) is a higher-order
correction that can be neglected, and the standard first-order
Landau-Lifshitz-Gilbert equation for the total spin density of
the ferrimagnet is sufficient, which equals (s1 − s2)�l; see [25]
for more details.

For the case when l � m the Landau-Lifshitz equa-
tions for each sublattice can be expressed in terms
of the single free-layer antiferromagnetic vector, �l =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ) in polar coordinates with the z
axis perpendicular to the free layer and the origin is at the
center of the nanocontact. In the following the nonconserva-
tive terms are Gilbert damping and spin torque where the spin
polarization has the normalized components (p1, p2, p3), and
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the equations for the dependent variables, θ (�r, t ) and ϕ(�r, t ),
are [25]

−ν sin θϕ̇ = 1

ωex
(θ̈−c2∇2θ )− 1

ωex
sin θ cos θ [ϕ̇2 − c2(∇ϕ)2]

+ ωK sin θ cos θ + αθ̇

− τ sin2θ (p2 cos ϕ − p1 sin ϕ), (4)

ν sin θ θ̇ = 1

ωex
(ϕ̈sin2θ + θ̇ ϕ̇ sin 2θ ) − c2

ωex
∇(sin2θ∇ϕ)

+ αϕ̇sin2θ + τ p3sin2θ

+ τ sin θ cos θ (p1 cos ϕ + p2 sin ϕ). (5)

Here the dot indicates the time derivative, α is the Gilbert
damping constant (α ∼= 0.01), τ = σ j is the spin-torque term
where σ = εgμB

2eLMs
, and j is the nanocontact current density in

a free layer of the thickness L. Additional parameters are de-
fined to be the exchange frequency, ωex, anisotropy frequency,
ωK , and the characteristic magnon velocity c; see [21,25] for
details.

III. CONSERVATIVE MAGNON DROP

Without damping and spin torque the form of the conserva-
tive droplet solution is obtained through the ansatz, ϕ = −ωt
and θ = θ (r) with α = 0 and τ = 0. Note the negative sign
in the time dependence of ϕ, which is opposite to that used
before for ferromagnetic droplets. This difference is because
in the earlier papers the Landau-Lifshitz equation for magneti-
zation was used, whereas here we are using equations for spin
density, which has the opposite sign. Then Eq. (5) is satisfied
automatically and Eq. (4) simplifies to a standard [2–6] form,

∇2
ρθ − sin θ cos θ +  sin θ = 0, (6)

in terms of the dimensionless length and frequency pa-
rameters ρ = r/a where a2 = c2/ωKωex(1 − ω̄2) and  =
ν̄ω̄/(1 − ω̄2). It is quite natural to introduce dimensionless
frequency ω̄ = ω/

√
ωexωK , because the quantity

√
ωexωK co-

incides with the “exchange-enhanced” frequency of linear
magnetic resonance exactly at the angular momentum com-
pensation point ν = 0 [18,25]. With the parameters applicable
to Gd(Fe,Co), the values are ωex/2π = 5 THz and ωK/2π =
2.8 GHz with a corresponding spin density,

√
ωexωK = 118

rad/ns. The minimal value for a is c/
√

ωexωK , which can
be rewritten as

√
A/K = 8.6 nm using values of A = 5.2 ×

10−12 J/m, K = 70 kJ/m3 [27], and c = 6 km/s. Note that
in the notation of Eq. (1) these values are twice as large as
those in [27] because of different definitions. Also, the use of
the reduced compensation parameter, ν̄ = ν

√
ωex/ωK � ν, is

quite natural for the case of interest, i.e., almost-compensated
ferrimagnets with ν � 1; see [18,21,25,28].

Soliton solutions are obtained by numerical integration of
Eq. (6) using the shooting method with the boundary con-
ditions, θ (r)|r=0 = θ (0), dθ (r)/dr|r=0 = 0, and θ (r) → 0 as
r → ∞, which also gives a numerical value for the param-
eter  at given value of θ (0) and vice versa. It is further
remarked that the magnon drop solution only exists if 1 >

 > 0; see [2–6]. The solutions of Eq. (6) for the case of
a ferromagnet have been known [2–6] for many years with

FIG. 1. Radial soliton profiles with θ (0) = 0.98π (black),
θ (0) = 0.80π (green), and θ (0) = 0.50π (red).

a characteristic linear relation between  and the precession
frequency, ω. However, for the ferrimagnet it is noticed that
there is a more complicated relation between the parameter
 and the precession frequency also involving the angular
momentum compensation parameter. Typical soliton radial
forms are shown in Fig. 1 for different values of θ (0) where
it is remarked that the approximate soliton radius decreases
for smaller initial values of θ (0). At the most interesting case
of small values of , the soliton profile is “dropletlike” type,
with a large enough central area, where θ (r) ∼ π , bordered
by the “domain wall” from the rest of the magnet, where
θ (0) → 0.

Previous numerical simulations [8,9] have shown that the
soliton radius tends to match the nanocontact radius with both
centers roughly coinciding. These observations indicate that
the θ (0) condition is related to the nanocontact radius.

For the ferromagnet the initial θ (0) corresponds to a single
frequency, but owing to the form of  as a function of ω, this
is no longer the case for the ferrimagnet. With  determined
by numerical solution of Eq. (6) it is noticed that two mode
frequencies can be obtained in terms of the parameters, ,

ω̄ = ω√
ωexωK

= 1

2
(−ν̄ ±

√
42 + ν̄2). (7)

It is noted that Eq. (7) implies that there are two solutions;
however, owing to the definition of a and the requirement that
0 <  < 1, the only frequency corresponding to the upper
sign of Eq. (7) must be chosen for the case of magnon drop
solitons. In the following only the positive sign will be con-
sidered. Using Eq. (7) the positive-frequency branch is plotted
versus a reduced compensation parameter, ν̄ for various initial
θ (0), or equivalently  in Fig. 2.

In the ν → 0 limit notice that the frequency becomes ω2 =
ωexωK , giving the frequency characteristic for antiferromag-
nets. Moreover, the frequency branch of Fig. 2 is a decreasing
function of the compensation parameter, which will be of
interest in spin-torque oscillator applications. For large values

064403-3



C. E. ZASPEL, E. G. GALKINA, AND B. A. IVANOV PHYSICAL REVIEW B 108, 064403 (2023)

FIG. 2. Reduced frequency ω̄ = ω/
√

ωexωK versus ν̄ for θ (0) =
0.98π (black), θ (0) = 0.9π (green), θ (0) = 0.8π (red), and θ (0) =
0.7π (blue). Here and in the following figures these corre-
spond to  = 0.2109,  = .3392,  = 0.4576, and  = 0.5660,
respectively.

of ν̄ � 1 the positive-frequency mode has the form ω̄ = /ν̄

or ω = ωK/ν, and at the ferromagnetic limit (ν = 1) the
positive-frequency mode corresponds to the ferromagnetic
soliton. However, at the ferrimagnetic region ν � 1 its or-
der of magnitude is determined by the exchange-relativistic
quantity

√
ωexωK . Note that in this limit the other mode with

negative frequency (not corresponding to drop solitons) is
ω̄ = −ν̄/ or ω = −νωex/; which is the exchange mode
for the standard ferrimagnet far from the compensation point.

Here we would like to mention one limitation of this the-
ory: In the formal limit ν → 0 with a finite value of  it is
noted ω → √

ωexωK and the characteristic soliton size a is
divergent. This problem is known for droplet solitons in anti-
ferromagnets [29] (see also the recent review [30]), which can
be solved by inclusion of a higher anisotropy term of the form
of −K ′(l2

x + l2
y )2 with positive constant K ′. However, we will

not discuss such generalization of the model because we were
not able to find any information about such higher anisotropy
terms for materials of interest like Gd(FeCo) alloys. This limit
will be discussed later during the treatment of nonconservative
solitons.

IV. DISSIPATIVE MAGNON DROP

Next, the dynamic effects of damping and spin torque will
be determined by an analysis of the time dependence of the
free-layer spin components using numerical solutions for the
droplet structure θ (ρ). Previous authors [8] have
obtained the sustaining spin torque necessary for magnon drop
solitons in ferromagnetic nanocontacts through a linearization
of Eq. (2) along with the compatibility condition. However,
for the ferrimagnet the parameter (ω̄, ν̄ ) depends on
an additional compensation parameter. Here the effect of
nonlinearity on the stability and sustaining spin torque is
determined from consideration of the time dependence of the

FIG. 3. The total spin, Sz versus ν̄ for θ (0) = 0.98π (black),
θ (0) = 0.9π (green), θ (0) = 0.8π (red), and θ (0) = 0.7π (blue). It
is noted that the maximum Sz decreases as θ (0) decreases.

dimensionless z component of the spin associated with the
soliton Sz, which equals the difference between the total spin
of the magnet in the ground state and the soliton total spin [2].
This quantity can be found by Sz = 2s0 ∫(ν − mz )dr which
is integrated over the area of the film—here 2s0mz is the spin
density determined by Eq. (3)—and by the definition, the
value of Sz is positive. Without accounting for the effects of
damping and spin torque, the quantity Sz is conserved. In the
general case, the evolution of this quantity can be found by
integration of Eq. (5) over the free-layer area to give the key
equation used to determine soliton stability,

d

dt

∫ ∞

0

[
ν(1 − cos θ ) + ω

ωex
sin2θ

]
�d�

=
∫ ∞

0
(−αω + τ p3)sin2θρdρ, (8)

where τ > 0 and units are GHz. Here the left-hand integrand
is proportional to the time derivative of Sz,

Sz =
√

ωK

ωex

∫ ∞

0
[ν̄(1 − cos θ ) + ω̄sin2θ]�d�, (9)

which is clearly conserved in the absence of dissipation and
spin torque (to shorten the equation, we omit the multiplier
2π ). The z component of the total spin is calculated numeri-
cally for the range, 0.01 < ν̄ < 3, using Eq. (9) for different
 values with the results shown in Fig. 3.

Using Eq. (8), the time derivative of Sz can be written as

dSz

dt
= −αω̄

√
ωexωK J + τ p3F. (10)
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FIG. 4. The integral, J () versus parameter  in Eq. (6).

Here the functions J () and F (, ω̄) are defined by the
integrals,

J () =
∫ ∞

0
sin2θ (ρ)ρdρ, (11)

F (, ω̄) =
∫ ρ0

0
sin2θ (ρ)ρdρ, (12)

where the upper limit is ρ0 = r0/a and r0 is the nanocontact
radius. Moreover, the upper limit is also a function of ω̄

through the definition of a so the integral defining F (, ω̄)
includes two variables. Finally, the assumption that the radial
dependence of τ is represented by a unit step function results
in the form of Eq. (12).

In the following the integrals are calculated numerically
with ω̄(, ν̄) given by Eq. (7) and θ is the numerical solution
of Eq. (6). Bear in mind that  only depends on the “initial”
θ (0) so in the following the J, F, and Sz integrals are rep-
resented by data sets obtained for variable θ (0) with fixed ν̄

corresponding to measurements on an actual system. This is
done for a fixed compensation parameter with a range 0.4π <

θ (0) < π corresponding to  = 0.8431π when θ (0) = 0.4π

and  = 0.18181π for θ (0) = 0.99π . Using Eq. (11) the in-
tegral J () is shown in Fig. 4. It is remarked that this integral
is dependent of ν̄ or ω̄ only through their combination, .

Referring to Eq. (10) it is natural to choose Sz as the
independent variable for stability analysis so both F and ω̄

are expressed in terms of this variable with the results shown
in Figs. 5 and 6 for reduced compensation parameters in the
range 0.1 � ν̄ � 1.

The limiting behavior in Figs. 5 and 6 can be understood
in terms of θ (0). In the limit θ (0) → 0 the limits of the other
quantities are ω̄ → 1, Sz → 0 from Eq. (9) and since a → ∞,
the upper limit in Eq. (12), ρ0 → 0, and the integral, F → 0.
In the more interesting limit θ (0) → π , the value of ω̄ → 0,
cos θ ∼= −1, and the well-defined droplike form of the soliton
with a circular domain wall of the radius R � a is forming
(see Fig. 1 and [2,6] for details); in this case the value of
Sz → ∞. When the value of R exceeds the contact radius,

FIG. 5. Reduced frequency of the spin precession in the soliton
ω̄, defined by Eq. (7), versus Sz; ν̄ = 1 (black), ν̄ = 0.1 (red), ν̄ =
0.5 (blue), and ν̄ = 0.1 (red).

since sin θ ∼= 0 in the nanocontact area, F → 0 as seen in
Fig. 6.

V. SOLITON STABILITY

The value of Sz is positive and, in some sense, it can
be considered as a measure of the power of the soliton; a
larger soliton amplitude and characteristic size corresponds
to a larger value of Sz. In particular, the vanishing of Sz

corresponds to the disappearance of the soliton which is ob-
viously the case in the absence of antidamping effects caused
by spin current. The stationary points found in the previous
section correspond to the mutual compensation of damping
and antidamping effects for some concrete values of soliton
parameters. The stability of the soliton is determined by anal-

FIG. 6. The integral, F versus Sz: ν̄ = 1 (black), ν̄ = 0.5 (blue),
and ν̄ = 0.1 (red).
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FIG. 7. The function G(Sz, 4) for ν̄ = 0.5 in the region of the
critical points (upper black curve), and G(Sz, 3.476) at the minimum
sustaining torque, τs,min (lower red curve).

ysis of the critical points of Eq. (10) where the right-hand side
is now expressed as a function of the independent variable
Sz calculated from Eq. (10). It is convenient to define the
right-hand side of Eq. (10) as the function

G(Sz, τ ) = −αω̄
√

ωexωK J + τ p3F, (13)

where the units are GHz. The integral J is expressed as a
function of Sz through multiplication of Eq. (6) by ρθρ and
integration over the free-layer area to obtain the relation

Sz = 2Jω̄/(1 + ω̄2). (14)

Since ω̄ can be expressed as a function of Sz, Eq. (14) is
used to obtain the integral J (Sz ) to be used in Eq. (13).

Stability can be determined by time integration of Eq. (10)
at the stationary point G(Sz, τ ) = 0 indicating that the soliton
is stable if dG/dSz < 0 and unstable if dG/dSz > 0. The
particular value of τ at this point is referred to as the sustaining
torque. As an example, consider a sustaining torque of τ = 4
GHz for ν̄ = 0.5 with the function G(Sz, 4) plotted in Fig. 7.
It is also noted that as τ is decreased the stable point moves
to a larger Sz and the maximum of G(Sz, τ ) decreases to a
point where the maximum is tangent to the Sz axis defining
the minimum sustaining torque, τs,min.

The shape of the curves in Fig. 7 is understood by re-
ferring to the forms of the function defining G(Sz, τ ) in
Eq. (13). From numerical calculations it is noted that the
product ω̄(Sz )J (SZ ) is a monotonically increasing function
for larger values of SZ . However, F (Sz, τ ) has a maximum
depending on ν̄ as in Fig. 6, implying that the maximum as
well as both critical points are the result of the limiting values
for θ (0). It is also noted that the stable critical point will be
stable for any large enough value of τ . In Fig. 7 notice that
there are two critical points at Sz = 7.962 and Sz = 16.343
with the second point being stable. The stable critical point
corresponds to ω̄ = 0.354 and  = 0.202 with a correspond-
ing θ (0) = 0.983π . By finding the tangent point on the Sz axis
as in Fig. 7, the minimum sustaining torque is obtained for

FIG. 8. τs,min versus ν̄ over the range 0.1 � ν̄ � 1.

any reduced compensation parameter as noted in Fig. 8. In
general, it is seen that as ν̄ increases, τs,min decreases.

Using this method, the reduced frequency can be obtained
for a sustaining torque for various values of the reduced
compensation parameter. Next consider the dependence of the
reduced frequency on the sustaining spin torque. These results
are seen in Fig. 9 for three values of the reduced compensation
parameter.

It is noted that each curve starts at the minimum sustaining
torque for each value of ν̄ and ends at the minimum value
of Sz calculated from Eq. (10), which is determined by the
minimum θ (0) = 0.4π selected for calculation of these data.
For the ferromagnetic case, early indirect experimental de-
tection [19] of magnon drop solitons indicated a very weak
increase of the frequency with an increase in the nanocontact
current. On the other hand, simulations [8] including effects
of the Oersted field showed a small frequency decrease as

FIG. 9. Reduced frequency versus sustaining torque, τs : ν̄ = 1
(black), ν̄ = 0.5 (blue), and ν̄ = 0.1 (red).
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the nanocontact current is increased. Here a sharp frequency
decrease is noticed as the torque is increased from τs,min, a
gradual decrease as the torque is decreased further for all
values of the compensation parameter, and the frequency ap-
proaches a constant value at high τ . The general tendency is
the smaller the value of ν̄, the larger the reduced frequency.
Thus, the small values of decompensation parameter ν̄ < 0.1
are very attractive for the obtaining of higher frequencies,
but the minimal sustaining torque also increases for smaller
ν̄, so it is necessary to estimate values of τ corresponding
to typical nanocontact current densities. First let us discuss
the relation between the sustaining torque and frequency at
the ν̄ → 0 limit where the scale parameter a is undefined,
but ω̄ → 1 and Fig. 8 implies that the minimum sustaining
torque becomes very large. To determine if these torques
correspond to typical current densities in nanocontacts, cur-
rent densities are estimated using τ = σ j from Sec. II. In
the determination of σ the saturation magnetization is deter-
mined from the anisotropy frequency to be Ms = 0.66 × 105

A/m, g = 2.2, ε = 0.2, and L = 5 nm. The numerical value
for the coefficient is σ = 0.0386 m2/C. Then for the 50 nm
radius nanocontact and τ = 40 GHz the current density is
j = 6.5 × 1012A/m2, which is a large current density for a
typical nanocontact. Both Figs. 8 and 9 show that as ν̄ → 0
the value of τs,min becomes very large, implying that current
density will become too large. Therefore, this limit is not
attainable in typical applications. In fact, for the parameters
used here only values of τ < (10−15) GHz are acceptable
that go with the values of ν̄ > (0.1−0.2) considered here
with a corresponding reduced frequency ω̄ of about 0.5. It is
further noted that the values ν̄ ∼ 1 already correspond to a
high level of compensation, (s1 − s2)/(s1 + s2 )̃

√
ωex/ωK =

0.024, with full manifestation of noncompensated ferrimag-
neticlike dynamics and high frequencies of the order of

the exchange-enhancement “antiferromagnetic” limit value√
ωex/ωK .

VI. CONCLUSION

In this article conservative and dissipative magnon drop
solitons are investigated in the two-sublattice ferrimagnet near
the angular compensation point. For the case of the conserva-
tive soliton, rescaling of parameters leads to the same equation
to be solved for the conservative soliton in the ferromagnet
with a dimensionless-frequency-like parameter . Close to
the compensation point, i.e., at ν̄ < 0.2, the precession fre-
quency in the soliton is comparable to the antiferromagnetic
resonance frequency, which is in the subterahertz region [18],
whereas at ν̄ � 1, the frequency decreases to the range of
dozens of GHz as the lower mode of magnetic resonance
for ferrimagnets far from the compensation. Analytical ex-
pression for the frequency is obtained as a function of the
compensation parameter, ν and .

The dissipative soliton includes Gilbert damping, which
is countered by spin-torque antidamping resulting in stable
soliton structures. For this case it is necessary to determine the
stability of the soliton defined as the point in parameter space
where the total z component of the magnetization remains
constant. The stability analysis leads to a determination of the
sustaining value of the spin torque as well as the minimum
sustaining spin torque above which stable solitons can form.
Finally, estimates of the sustaining current density are calcu-
lated for typical ferromagnetic TM-RE alloys.
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