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Magnetic states of graphene proximitized Kitaev materials
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Single-layer α-ruthenium trichloride (α-RuCl3) has been proposed as a potential quantum spin liquid.
Graphene/RuCl3 heterobilayers have been extensively studied with a focus on the large interlayer electron
transfer that dopes both materials. Here we examine the interplay between the competing magnetic state of
RuCl3 layer and graphene electronic properties. We perform self-consistent Hartree-Fock calculations on a
Hubbard-Kanamori model of the 4d5 t2g electrons of α-RuCl3 and confirm that out-of-plane ferromagnetic
and zigzag antiferromagnetic states are energetically competitive. We show that the influence of hybridization
between graphene and RuCl3 bands is strongly sensitive to the magnetic configuration of RuCl3 and the relative
orientations of the two layers. We argue that strong hybridization leads to graphene magnetoresistance and that
it may tilt the balance between closely competing magnetic states. Our analysis can be applied to any van der
Waals heterobilayer system with weak interlayer hybridization and allows for arbitrary lattice constant mismatch
and relative orientation.
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I. INTRODUCTION

The discovery of two-dimensional (2D) intrinsic ferromag-
nets [1,2] opened up van der Waals magnetism [3,4] as a
promising research topic. Given a bulk van der Waals magnet
platform, a wide range of magnetic and spintronic properties
can often be flexibly engineered in its atomically thin films.
The case of van der Waals-Kitaev materials [5] such as α-
ruthenium trichloride (α-RuCl3) [6] is particularly intriguing
because of their potential to realize highly unusual quantum
spin-liquid phases [7–10]. The term Kitaev material refers to
Mott insulators that are described by frustrated spin Hamil-
tonians with large Kitaev components [11], whether or not
they actually realize the spin-liquid state. The magnetic ion
sublattices of bulk Kitaev materials usually have honeycomb
lattice layers populated by heavy d5 transition metal ions [12].

Thanks to the development of the tear-and-stack techniques
[13,14] for van der Waals compounds, single-layer and few-
layer RuCl3 structures can be flexibly stacked with other van
der Waals compounds to form a new class of tunable 2D
multilayers [15–25]. The work function difference between
graphene and RuCl3 results in a large electron density transfer
from graphene to RuCl3. Measured graphene hole densities
vary across experiments, ranging between 0.03 ∼ 0.06e per
Ru atom (2 ∼ 4 × 1013 cm−2) [19,20]. (The sample depen-
dence is not yet fully understood.) Electrical gates can induce
more limited changes in layer resolved charge density, provid-
ing a route to control the doping of 2D Mott insulators without
introducing disorder.

Bulk α-RuCl3 has zigzag antiferromagnetic (AFM) order
at low temperature, as confirmed by both neutron scatter-
ing experiments [26–29] and ab initio simulations [30–32].
The magnetic state is believed to result from competition
between the Kitaev interaction and various non-Kitaev terms
in the effective spin model [31,33]. For monolayer α-RuCl3,

however, numerical simulations can predict ferromagnetic
(FM) [34] or zigzag AFM [16] states, depending on details.
All ab initio electronic structure calculations agree that the
two states are very close in energy. The effect of an adjacent
graphene layer has variously been reported to favor zigzag
states [16,35] or to enhance the Kitaev term in the spin model
and suppress non-Kitaev terms, moving the system towards
[15,16] the spin-liquid region of its phase diagram. However,
the large lattice constant mismatch between graphene and
α-RuCl3 complicates electronic structure simulations. At the
same time, experimental probes of the single-layer magnetic
state are challenged by the inapplicability of neutron scatter-
ing. One possible method to probe 2D magnetism directly
is to employ a superconducting quantum interference device
(SQUID), which is a powerful tool able to detect out-of-
plane ferromagnetism in 2D materials, however, only at a
temperature lower than 1 ∼ 2 K. Spin-resolved photoemis-
sion measurements are also difficult due to the limited size of
exfoliated flakes. One promising alternative is to use optical
probes [36]. Still, the true magnetic ground state of the RuCl3

layer remains a mystery at present.
In this work we propose that the transport properties of

RuCl3-proximitized graphene can be used as an indirect probe
of the RuCl3 magnetic state. In Sec. II we introduce the micro-
scopic Hamiltonian we use to model the monolayer RuCl3. In
Sec. III we present the results of a Hartree-Fock simulation on
the Mott-insulating state of monolayer RuCl3, including the
magnetic configurations and the electronic conduction band
structures of various metastable magnetic states. We have
reproduced both FM and zigzag AFM states as well as their
close competition in energy. We also find a new metastable
state with

√
3 × √

3 magnetic cells, which is fragile to small
variations of model parameters. In Sec. IV we analyze the
effect of coupling between RuCl3 and graphene bands in
the heterobilayer allowing for arbitrary relative orientation

2469-9950/2023/108(6)/064401(8) 064401-1 ©2023 American Physical Society

https://orcid.org/0000-0001-5473-3590
https://orcid.org/0000-0003-3561-3379
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.064401&domain=pdf&date_stamp=2023-08-01
https://doi.org/10.1103/PhysRevB.108.064401


JINGTIAN SHI AND A. H. MACDONALD PHYSICAL REVIEW B 108, 064401 (2023)

FIG. 1. (a) Simplified schematic of the lattice structure of mono-
layer α-RuCl3, which is a honeycomb lattice of edge-sharing RuCl6

octahedrons. Both the chemical frame xyz and the crystallographic
frame abc are indicated in the figure. The Cl triangular lattices are
actually slightly distorted. (b) Labels of bond types in the hopping
term of the Hamiltonian. The blue (green) spheres represent the A
(B) sublattice of the Ru honeycomb lattice. The notation for the hop-
ping parameters 〈i, j〉�n relates (b) to terms retained in the hopping
Hamiltonian.

between the layers, recognizing that interlayer hybridization is
weak compared to other energy scales, and that intersections
of the isolated layer Fermi surfaces play a key role. We find
that in both zigzag AFM and

√
3 × √

3 states, within certain
ranges of twist angle, the Fermi surfaces of the two ma-
terials intersect, allowing for an interlayer-coupling-induced
avoided-crossing gap to open near the Fermi energy, and argue
that this can cause a substantial increase in resistivity of the
system. On the contrary, in FM state the Fermi surfaces of
the two layers never intersect. Our treatment of the inter-
layer hybridization is inspired by the Bistritzer-MacDonald
model of twisted bilayer graphene [37] and can be applied to
other 2D materials with large mismatches in lattice constant
and orientation. We develop a phenomenological model in
which the interlayer coupling contribution to the Hamiltonian
is governed by three free parameters by applying symmetry
restrictions. We calculate the band structure of the bilayer
system and indeed see the avoided band crossing near the
Fermi energy. The bands of isolated graphene and zigzag-
state RuCl3 are doubly degenerate as a result of a Kramer’s
degeneracy protected by combined three-dimensional (3D)
spatial inversion and time-reversal symmetry (IT ). The de-
generacy is lifted at the avoided crossings by IT -violating
interlayer coupling, leading to nonzero net magnetic moment
and spin-dependent transport properties. In Sec. V we discuss
and propose possible future developments.

II. MODEL

In α-RuCl3, each Ru3+ ion is at the center of an octahedron
formed by six Cl− ions, as shown in Fig. 1(a). The octahedral
crystal field splits the five 4d orbits of Ru atom into three
t2g orbits and two eg orbits, with the latter’s energy higher
by several eV, allowing us to confine our attention to the
degrees of freedom within the t2g space. The t2g orbits are
stretched along the coordinate planes of the xyz coordinate
system shown in Fig. 1(a), which differs from the crystallo-
graphic abc frame by an orthogonal transformation of basis

(â b̂ ĉ) = (x̂ ŷ ẑ)Q, where

Q = 1√
6

⎛
⎜⎝

1 −√
3

√
2

1
√

3
√

2
−2 0

√
2

⎞
⎟⎠. (1)

In the insulating case, five electrons are present in the six-
dimensional t2g space on each site so it is more convenient to
use a hole representation. We adopt the model Hamiltonian
from Ref. [31]:

H = Hint + HSOC + HTB. (2)

The interaction part Hint is purely on site and of Kanamori
type [38]:

Hint = 1

2

∑
i,ξη,σσ ′

(U ′h†
i,ξσ h†

i,ησ ′hi,ησ ′hi,ξσ

+ JH h†
i,ξσ h†

i,ξσ ′hi,ησ ′hi,ησ + JH h†
i,ξσ h†

i,ησ ′hi,ξσ ′hi,ησ ),
(3)

where i labels the honeycomb sites, ξ, η = yz(x), xz(y), xy(z)
label the atomic t2g orbits and σ, σ ′ =↑,↓ label spin. h†

i,ξσ

(hi,ξσ ) creates (annihilates) a hole with spin σ on the orbit
ξ of site i. Note that this expression is equivalent to the one
given in Ref. [31] with U ′ = U − 2JH , where U represents the
Coulomb interaction strength and JH is the Hund’s coupling
amplitude.

In the spin-orbital coupling (SOC) term

HSOC = λ
∑
i,ξη

(Leff,ξη · Sσσ ′ )h†
i,ξσ hi,ησ ′ , (4)

the elements of the effective orbital angular momentum op-
erator are Lμ

eff,ξη = −iεμξη, μ, ξ, η = x, y, z and εμξη is the
Levi-Civita symbol. The spin vector operator S is half of the
Pauli matrix vector.

The spin-independent tight-binding (TB) part

HTB = −
∑

i j,ξη,σ

T ξη
i j h†

i,ξσ h j,ησ (5)

consists of a crystal field (CF) contribution HCF (i = j) and
a hopping contribution Hhop (i 	= j). HCF exists due to the
deviation of the true crystal field from a perfect octahedral
field, while Hhop includes up to the third-nearest-neighbor
hopping. For bond 〈i, j〉�n , T ξη

i j = T ξη

�n
where � = X,Y, Z ,

n = 1, 2, 3 and the definitions of all bond types �n are illus-
trated in Fig. 1(b). In the presence of time reversal (T ), spatial
inversion (I), in-plane threefold rotations (C3), and a t3wofold
rotation symmetry about the b axis (C2b), the hopping matrices
are constrained to the forms

TZ1 =
⎛
⎝t1 t2 t4

t2 t1 t4
t4 t4 t3

⎞
⎠, TZ2 =

⎛
⎝t ′

1 t ′
2 t ′

4′
t ′
2′ t ′

1 t ′
4

t ′
4 t ′

4′ t ′
3

⎞
⎠,

(6)

TZ3 =
⎛
⎝t ′′

1 t ′′
2 t ′′

4
t ′′
2 t ′′

1 t ′′
4

t ′′
4 t ′′

4 t ′′
3

⎞
⎠,

with all entries real, and TXn and TYn are obtained by suc-
cessively applying the coordinate rotation x → y → z → x to

064401-2



MAGNETIC STATES OF GRAPHENE PROXIMITIZED … PHYSICAL REVIEW B 108, 064401 (2023)

(a) (b) (c)

(e) (f) (g)

(d) (h)

(i)

–189.6 meV/Ru site –190.9 meV/Ru site
ξ = ±56.3°

–190.1 meV/Ru site
ξ1,2 = +57.1°, –50.4°

zigzagFMc

FIG. 2. (a)–(c) The atomic magnetic moment configurations of (a) FMc, (b) zigzag, and (c)
√

3 × √
3 states. The arrows show the in-plane

projections of the moments and the colors of the center spots represent the orientation of the moments, with the correspondence illustrated in
legend (d), where φ is the azimuthal angle and ξ is the canting angle, i.e. the elevation angle from the plane. Numerical values for energies
and canting angles are provided below the figures. (For the

√
3 × √

3 state the first canting angle is for the brighter sites and the second for
the darker sites.) (e)–(g) The topography of the first conduction band of (e) FMc, (f) zigzag and (g)

√
3 × √

3 states. (h)–(i) The topography of
the first electronic conduction band of (h) FMc and (i) zigzag states with second- and third-nearest-neighbor hopping amplitudes set to zero.
In (f), (g), and (i), the dashed hexagon is the structural honeycomb lattice Brillouin zone (BZ) and the solid polygon is the magnetic BZ.

TZn . The crystal field matrix is given by

Tii =
⎛
⎝ 0 
 



 0 



 
 0

⎞
⎠, (7)

up to an irrelevant constant.
The parameters of this model have been extracted from

bulk RuCl3 ab initio results in Refs. [31,32]. We follow
Ref. [31] and use U ′ = 1.8 eV, JH = 0.6 eV (U = 3 eV) and
λ = 0.15 eV. In bulk systems, C3 symmetry is violated by the
C2/m layer stacking arrangement. For the monolayer systems
we study below, we recover C3 symmetry by averaging the
CF Hamiltonian over three directions. For nearest-neighbor
hopping processes, we use the Z1-bond parameters previously
extracted from ab initio simulations of a suspended monolayer
[15]; for further neighbor hoppings we use Z2- and Z3-bond
parameters from bulk systems.

III. RESULTS

We perform self-consistent Hartree-Fock calculations on
the monolayer model, limiting translational symmetry break-
ing by allowing magnetic unit cells with up to 2

√
3 × 2

√
3

honeycomb cells (12 × 2 = 24 Ru sites). Given the supercell
size we choose a variety of initial guesses for the density
matrix that allow all other symmetries to be broken. We first
discuss results obtained with the model parameter choices
explained in the previous section. The low-energy magnetic
configurations are shown in Figs. 2(a)–2(c) and the corre-
sponding lowest electronic conduction bands are shown in
Figs. 2(e)–2(g). Of all the extremal states we find, the zigzag
state is the lowest in energy. The out-of-plane ferromagnetic
(FMc) state is also competitive but only third lowest, exceed-
ing the zigzag state by about 1.3meV per Ru atom. Between
them in energy is a

√
3 × √

3 state, which has not been re-
ported in previous work and has an energy that is higher than
the zigzag state by 0.84 meV per Ru atom. We do not find
incommensurate spiral states, despite the strong dominance
of t2, which gives rise to a dominant Kitaev term in the
spin model under the framework of second-order perturbation
theory [31]. The findings that the ground state is a zigzag and
that the FMc state is quite close in energy is consistent with
experiment, and suggests that the model provides a reasonable
description of RuCl3.

To test how robust our results are against changes in model
parameters, we also perform the self-consistent Hartree-Fock
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calculations excluding the second- and third-neighbor hop-
ping integrals. As Figs. 2(h)–2(i) show, both the conduction
bandwidth and the momentum-space location of the band
bottom are strongly influenced by further-neighbor hopping.
We will see in Sec. IV that the location of the conduction
band minimum can have a profound influence on how the
band interacts with a proximate layer of graphene. In the
absence of further-neighbor hopping, the ground state remains
zigzag, but the energy of FMc state is only 0.11 meV per Ru
site higher, and there is no longer a competitive

√
3 × √

3
solution. The

√
3 × √

3 state is absent even if we restore the
further-neighbor hoppings to 80% of their original values,
indicating that the state is fragile.

In summary we see that further-neighbor hopping helps to
stabilize the zigzag state, and that it plays an important role
in the band structure. We see in the following section that
these relatively minor changes in electronic structure have a
qualitative influence on how a RuCl3 layer interacts with a
graphene layer.

IV. HYBRIDIZATION WITH GRAPHENE

The influence of an adjacent insulating van der Waals
ferromagnet layer on the electronic structure of graphene
is normally modeled by adding an exchange term to the
graphene Hamiltonian, which spin splits its bands. If the ad-
jacent layer is AFM, as in the RuCl3 case, the influence of
oppositely directed moments tends to cancel because elec-
trons in a small graphene Fermi pocket tend to average over
atomic length scales. The situation can be more complex,
however, when there is charge transfer between graphene
and the van der Waals magnet, something that is known to
occur [19,20] in the RuCl3 case. In discussing the electronic
structure of the graphene/RuCl3 system we recognize that
although the 2D materials share a triangular Bravais lattice,
they have very different Bravais lattice constants (aG = 2.46Å
for the graphene layer and aR = 5.8Å for the RuCl3) and
their relative orientations are normally uncontrolled. In the
rest of this section, we first model the interlayer coupling and
then analyze its influence on the electronic structure of the
combined system.

We assume a spin-conserving tunneling amplitude Tξ (r)
from t2g d orbital ξ in RuCl3 to the pc orbital [39] in graphene
that is some function of the difference r between the lateral
2D positions of the atoms in question. At this point we do not
specify the concrete form of the function Tξ (r). Later on we
will see that a model can be constructed from a small number
of phenomenological parameters related to these functions.

Following a procedure similar to that used in the derivation
of Bistritzer-MacDonald model of twisted bilayer graphene
[37], we obtain the following expression for interlayer tunnel-
ing between Bloch states in the two layers:

〈G, ασk|H |R, βξσ ′ p〉 = δσσ ′×∑
GG,GR wξ (k + GG) ei(GG·τG

α −GR ·τR
β ) δk+GG,p+GR ,

(8)

where α (β) labels the graphene (RuCl3) sublattice, σ, σ ′ =↑
,↓ label spin, GG and GR are respectively reciprocal lattice
vectors of the graphene and RuCl3 layer, τG

α (τR
β ) is the loca-

tion of sublattice α (β) in a graphene (RuCl3) unit cell, and

wξ (q) = 1√
G

c R
c

∫
d2rTξ (r)e−iq·r (9)

is proportional to the Fourier transform of the real-space tun-
neling function. G

c and R
c are the unit cell areas of graphene

and RuCl3, respectively. We see that the condition for Bloch
states in the two layers to hybridize is that the two momenta
should be equal when reduced to the BZ of one layer up to a
reciprocal lattice vector of the other layer.

Because the separation between layers exceeds the atom
size in either layer, wξ (q) typically drops rapidly with |q|. We
are mainly interested in how hybridization with the magnetic
insulators influences the transport properties of graphene, and
therefore mainly interested in single-particle states with ener-
gies close to the graphene Fermi energy. Because the carrier
density in graphene layer is relatively small when normalized
per atom, its low-energy electronic states lie at momenta
close to the Dirac points ±KG = ±(4π/3aG)(cos θ, sin θ ).
(Here θ is the orientation angle of graphene relative to that of
RuCl3.) For this reason we can replace wξ (k + GG) in Eq. (8)
by wξ (K ), where K is the closest graphene BZ corner. Ab
initio electronic structure calculations [15] suggest a typical
hybridization strength wξ (K ) ∼ 10 meV. The RuCl3 BZ mo-
menta p that satisfy the δ function in Eq. (8) are those that are
close to a corner when reduced to graphene’s BZ. We discuss
the implications of these properties further below.

We discuss two limits of coupling between graphene’s
near-Fermi surface states and RuCl3 states. When the
graphene state couples to a RuCl3 state that is separated from
the Fermi energy by an energy 
E that is much greater
than the hybridization scale wξ (K ), the hybridization can be
treated perturbatively and gives rise to energy shifts that are
∼ wξ (K )2/
E and potentially spin dependent as discussed
further below. These spin-dependent energy shifts are the
exchange interactions between graphene quasiparticles and
the magnetic insulator spins mentioned above. On the other
hand if a RuCl3 state is within wξ (K ) around the Fermi
energy, it will couple strongly to the graphene orbitals, cre-
ating avoided crossing gaps and reducing graphene orbital
velocities to cause a significant drop in the conductivity of
the system. Measurements of graphene transport properties
therefore can be used to determine when the graphene Fermi
surface intersects or nearly intersects the RuCl3 Fermi surface.

The carriers of the Mott insulator RuCl3 can be of either
magnetic polarons or Fermi liquid character type depending
on the level of doping [40–42]. Here we assume that the
location and shape of Fermi surface RuCl3 is captured by
rigid-band occupation of the conduction band obtained in
Hartree-Fock calculations for the insulating state. As men-
tioned previously, those mean-field theory calculations do
describe the competition between magnetic configurations
reasonably accurately. As we explain below, the coupling
between RuCl3 and graphene layers can be strongly sensitive
to their relative orientation θ . If θ is not controlled when
the bilayer device is fabricated, this sensitivity will lead to
strongly device-dependent properties. On the other hand, in
situ twist angle control [43,44] could add to the power of
graphene transport probes of insulating magnetic states. In our
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(a) (b) (c)

θ = 0° θ = 13° θ = 15°

(d)

mc = 0 mc = ±1 mc = ±2

FIG. 3. (a)–(c) Schematics of isolated graphene (red) and RuCl3 Fermi surfaces (light blue, blue or green) and their reciprocal-lattice
replicas for (a) FMc, (b) zigzag and (c)

√
3 × √

3 magnetic states. These figures roughly assume that the electron charge transfer from graphene
to RuCl3 is 0.04e per Ru atom (0.007e per carbon atom, 2.7 × 1013cm−2 [19]). The illustrated twist angle of the graphene lattice with respect
to RuCl3 is indicated below each figure. The bands of the FMc and

√
3 × √

3 states are nondegenerate whereas those of the zigzag state are
doubly degenerate. It follows that for the FMc and

√
3 × √

3 states the total Fermi surface area per magnetic BZ is double that of graphene,
whereas that of the zigzag state is the same. However, the fraction of k-space that is within a replica Fermi surface is equal in the FMc and
zigzag cases, because the zigzag BZ is half as large, while the replicated

√
3 × √

3 Fermi surfaces occupy an area that is three times larger
because the BZ area of this state is 1/3 of that of FMc. In (b), the intersecting Fermi surfaces are highlighted by small dashed boxes, and their
replicas in the first BZ of RuCl3 are also shown. (d) Schematics of some d orbits in the abc frame of RuCl3 and the pc orbit of graphene.

analysis we allow for arbitrary relative orientation between the
layers.

As Figs. 3(a)–3(c) show, Fermi surface intersections do
not occur for any relative twist angle when RuCl3 is in the
FMc state. In contrast, for the zigzag state, we estimate that
they occur within the twist angle range θ ∼ (17 ± 4)◦. For
the

√
3 × √

3 state, intersections occur within both (0 ± 5)◦
and (16 ± 6)◦ orientation intervals. In general the larger the
magnetic unit cell, the smaller the magnetic BZ, the denser
the magnetic insulator Fermi surface k space replicas, in-
creasing the chance that Fermi surfaces intersect. When the
insulator has an ordered magnetic state, lower translational
symmetry (larger magnetic unit cells) limits the ability of mo-
mentum conservation to restrict hybridization. We speculate
that interlayer hybridization has a weaker effect in spin-liquid
states because they do not break translational symmetry. The
role of interlayer hybridization in graphene/Kitaev spin-liquid
heterostructures could be explored by generalizing earlier
Kondo-Kitaev lattice model analyses [45,46] to the physically
relevant case of incommensurate lattices, but this is outside
the scope of the current study.

There is an opportunity to reduce the number of free
parameters that are relevant for hybridization by symmetry.
This can be seen by noting that the t2g orbital wave func-
tions, φyz(x) = yz�(|x|), φxz(x) = xz�(|x|), and φxy(x) =
xy�(|x|), are linear combinations of the c-projected angular
momentum mc eigenstates:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φmc=0(x) = 1√
3

(
c2 − a2+b2

2

)
�(|x|),

φmc=±1(x) = (a±ib)c√
2

�(|x|),
φmc=±2(x) = (a±ib)2

2
√

2
�(|x|).

(10)

Here we use x to represent 3D position vectors to distinguish
from 2D position vector r. In a two-center approximation,
Tmc (r) = T|mc|(|r|)eimcθr , implying that

wmc (q) = imcw|mc|(|q|)eimcθq . (11)

In this way we are able to express interlayer coupling in
terms of three real parameters wmc = wmc (|KG|), where mc =
0, 1, 2. We expect the energy hierarchy between them to
be |w0| > |w1| > |w2| since from the schematic shown in
Fig. 3(d), larger |mc| orbitals orbit extend more along ab
plane and less along c axis, implying that the real-space tun-
neling function Tmc (r) has broader range but overall smaller
absolute value, and thus that the momentum-space tunneling
function wmc (q) has narrower range. In Fig. 4(a) we take w0 =
10 meV, w1 = 5 meV and w2 = 3meV and graphene Dirac
velocity h̄vF = 7 eV Å. These numbers have only a qualitative
justification, especially when the possible importance of hop-
ping between metal ions via Cl p bands is recognized. Their
order of magnitude is chosen to reproduce the typical size of
ab initio band hybridization gaps.

In the decoupled limit, both the graphene and the zigzag
state RuCl3 bands are doubly degenerate. Both degenera-
cies can be viewed as Kramer’s degeneracies protected by
k-preserving IT symmetry, where I is the 3D spatial in-
version operator and T is the time-reversal operator. When
the coupling between the two layers is turned on, the band
degeneracies of both materials are weakly lifted. This obser-
vation is consistent with the fact that placing graphene on top
of a RuCl3 layer breaks overall IT symmetry. Because its
tunneling amplitudes are odd under reflection through a plane
midway between the two layers, the w1 contribution dom-
inates the Kramers violation. Away from the hybridization
points, the exchange splitting of the graphene bands quickly
drops to values ∼ 0.1 meV, far smaller than in a graphene/FM
insulator heterostructure. This finding is consistent with our
expectation that the exchange coupling effects in graphene are
extremely small when the magnetic layer does not have a net
moment. At the hybridization points, both spin channels of
the graphene band are gapped and the spin splitting increases
to 2 ∼ 3 meV. We therefore expect that a reduction in overall
electrical conductivity will accompany Fermi surface intersec-
tions, even when the magnetic insulator is in an AFM state.
Note that in the coupled bilayer system the total spin magne-
tization of the combined system in nominally AFM systems
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graphene K
graphene K'
RuCl3 UHB

θ = 13°

(ky = 0)

(a) (b) (c)

(ky = 0) (ky = 0)

lower band a
lower band b
lower band c

upper band a
upper band b
upper band c

FIG. 4. (a) Closeup of an avoided crossing between strongly dispersing graphene and weakly dispersing RuCl3 bands for the zigzag state
of RuCl3. As is clear from Fig. 3(b), at orientation θ = 13◦ the Fermi surfaces of the two graphene valleys have a small intersection near k = 0
when mapped to the zigzag state magnetic BZ. For this illustration, we have taken the energy of graphene’s Dirac point to be 650 meV higher
than the upper Hubbard band bottom, w0 = 10meV, w1 = 5 meV and w2 = 3 meV. We see that near RuCl′3s BZ center, its states couple to both
valleys of graphene. (b) An enlarged illustration of the avoided band crossing from the boxed region in (e). The dashed lines in (a) and (b) mark
the position of the Fermi energy. The size of the spots in (b) represents the graphene fraction of the eigenstates, and the color represents the
spin orientation of the graphene component of the eigenstate, using the color scale shown at the top right corner (and also in Fig. 2(d)). The
graphene spin splitting is largest close to the avoided crossing points, and the spin orientations of the spin-split states lie close to the ab plane.
(c) Plot of Kramers degeneracy splitting δε and the expectation values of the graphene-projected spin Pauli matrices σ

μ

G in the three spatial
directions μ = a, b, c. The top, middle and bottom panels correspond, respectively, to the top two, middle two, and bottom two bands shown
in (b). We see that close to the hybridization points, the spin splitting can be up to ∼ 3 meV, while away from the hybridization points the
exchange splitting of graphene energies rapidly goes down to ∼ 0.1 meV with the splitting of zigzag upper Hubbard bands even weaker. The
spin-split graphene bands generally have almost in-plane spin orientations, which tend to stabilize at azimuthal angles close to 36◦ and 216◦

as one goes away from hybridization point.

will generically be nonzero because of the small splitting of
polarized states at the Fermi energy.

The case in which the magnetic layer has aligned spins,
either in its ground state as in the FM insulator CrI3 [47] or
due to field alignment, is distinct. The bands of the isolated
magnetic layer are then nondegenerate and spin polarized,
so that only one graphene spin-component is influenced by
hybridization. For example in the case of graphene/CrI3, the
spin-degenerate graphene π bands cross [48,49] a nondegen-
erate band of the magnetic insulator. When hybridization is
included, only one graphene spin channel is gapped. Under
these circumstances we expect spin-polarized electronic trans-
port, with the conductivity of the graphene spin component
that is present in the conduction band of the magnetic layer
suppressed. We predict, based on our electronic structure
model, that this suppression is anomalously weak in spin-
aligned RuCl3, independent of twist angle, because of the
absence of Fermi surface intersections illustrated in Fig. 3(a).
In contrast, graphene spin transport would be expected to
be strongly spin polarized in graphene/RuCl3 if the fragile√

3 × √
3 magnetic state were stable, since this configuration

has Fermi surface intersections at many twist angles.
We note that in some spin-aligned materials, including in

FM CrI3, the conduction band quasiparticles have the majority
spin, differing from valence band states via orbital instead
of spin quantum numbers. This is unlike the RuCl3 case, in
which the conduction band states can be viewed as form-
ing an upper Hubbard band with spins opposite to those of

the occupied valence band states. In the hypothetical case in
which the combined system Kramer’s degeneracy is protected
by C2T symmetry, where C2 is the in-plane twofold rotation,
interlayer coupling would not break Kramer’s degeneracy and
transport would not be spin dependent, but conductivity sup-
pression will still accompany Fermi surface intersections.

V. SUMMARY AND DISCUSSION

In this work we have analyzed how the electronic proper-
ties of an adjacent graphene layer can be used to probe the
magnetic state of 2D magnetic insulators, focusing on the
Kitaev material RuCl3 as a typical interesting example. We
assume that the Dirac point of graphene lies outside the band
gap of the insulator so that charge transfer occurs between
the two single-layer 2D systems. Charge transfer occurs in
Cr, Fe, and Ru trihalides [19,20,47–52], and we believe that
it is likely to be common. We predict that hybridization of
the materials can lead to sizable magnetoresistance that is
sensitive to the magnetic configuration of the insulator and
to the relative orientation of the two layers.

Our specific predictions rely on a mean-field model de-
scription of both graphene and the doped 2D magnetic
insulator. We find that Hartree-Fock theory applied to a simple
but realistic model Hamiltonian is able to predict the relative
stability of different magnetic configurations of the single-
layer Mott insulator RuCl3. In agreement with earlier work
[16,34,35], we find that the ground state is a zigzag AFM but
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the out-of-plane FM state is also competitive, explaining the
weak fields required to achieve spin alignment in bulk RuCl3.
We also find a state with a

√
3 × √

3 magnetic cell that is
metastable in a narrow range of model parameters but is very
fragile.

Our explicit calculations have a number of deficiencies.
First of all, we do not account for many-body fluctuations
in Bloch state occupation numbers. These fluctuations can
in principle [40] eliminate the momentum-space occupation
number discontinuities associated with the Fermi surfaces we
have discussed. We do not, however, expect them to change
the locations in momentum space that have high spectral
weight near the Fermi energy. It follows that the conclu-
sions of our mean-field analysis should, for the most part, be
unaffected.

Second, we do not account for structural relaxation of the
van der Waals bilayers. Atomic position readjustments will be
larger in the RuCl3 layer, which is not as stiff as the graphene
layer, but we do not expect them to be large because interlayer
interactions are weak. The RuCl6 crystal field in isolated
monolayer RuCl3 is close to the ideal octahedral form, as can
be seen from the relatively small values of 
 and t4 in the
model [15]. We expect the relaxations of the Cl ions closer
to the graphene layer to distort the metal coordination further
from the octahedral ideal than in the isolated layer case, which
could increase the contribution of Ru–Cl–Ru indirect hopping
to the nearest-neighbor hopping parameters [31]. Reference
[16] predicts that the effect of graphene favors the zigzag state,
and also makes other AFM states more competitive.

We analyze the coupled bilayer within a mean-field frame-
work by considering the effect of interlayer hybridization as a
weak perturbation. For RuCl3 the hybridization energy scale
is estimated to be w ∼ 10 meV, smaller than the bandwidth
of either material. We argue that its influence on electronic
properties is sensitive primarily to the presence or absence of
intersections between the Fermi surfaces of the two materials
when the magnetic material Fermi surface is plotted in an
extended-zone scheme as in Fig. 3. Intersections between
Fermi surfaces will always suppress the graphene conductiv-
ity, and in the case of spin-aligned magnetic insulators, make
it spin dependent. Intersections occur for both zigzag and√

3 × √
3 states of RuCl3 over certain ranges of relative ori-

entation angle between the two layers. In the zigzag case both
spin channels of graphene are gapped. Spin splittings δε � w

occur only at those points in momentum space where strong
hybridization occurs. Upon moving away from band crossing
points, the symmetries of the isolated layers are gradually
recovered and the spin splitting is very small. On the other

hand for out-of-plane spin-aligned magnetic configurations,
weak exchange splitting occurs throughout momentum space.
In the case of RuCl3, these weakly momentum-dependent
exchange splittings are the main consequence of hybridization
since Fermi surface intersections do not occur.

We have discussed mainly the influence of coupling be-
tween layers on lateral transport within the graphene layers,
but our theory can also be used to address vertical trans-
port. However, it may not be clear exactly how this quantity
is best measured because it may be difficult to contact the
magnetic insulator layers. The more interesting observable is,
perhaps, transport between graphene layers through a mag-
netic layer. For both vertical and lateral transports, fabrication
of graphene/magnetic-insulator devices with in situ twist-
angle control [43,44] would greatly enhance the power of
transport probes, because it would allow the Fermi surface of
the magnetic insulator to be mapped out.

Although we have focused on the influence of the magnetic
state on graphene transport, which is more readily observable,
there must also be inverse effect in which hybridization tilts
the competition between magnetic states. On general grounds
interlayer hybridization will lower energy and therefore fa-
vor ordered states that have large Fermi surface overlaps
with graphene. This effect will be small, however, and can
only be the deciding factor if the prehybridization energies
of the competing states are very close. It should also favor
ordered magnetic states over spin-liquid states, in which in-
terlayer hybridization is likely suppressed by quasiparticle
fractionalization. Like all hybridization effects, the influence
on magnetic state competitions can be enhanced by applying
pressure to narrow the van der Waals layer separations. This
strategy might be readily simple to purse experimentally. In-
teresting future directions also include explorations on how
transport properties of graphene can probe the magnons of
ordered states [24] and the magnetic polarons of the doped
Mott-insulating states of substrate.
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