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Localization spectrum of a bath-coupled generalized Aubry-André model in the
presence of interactions
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A generalization of the Aubry-André model, the noninteracting Ganeshan-Pixley-Das Sarma model (GPD)
introduced by Ganeshan et al. [Phys. Rev. Lett. 114, 146601 (2015)], is known analytically to possess a mobility
edge, allowing both extended and localized eigenstates to coexist. This mobility edge has been hypothesized
to survive in closed many-body interacting systems, giving rise to a new nonergodic metallic phase. In this
work, coupling the interacting GPD model to a thermal bath, we provide direct numerical evidence for multiple
qualitative behaviors in the parameter space of disorder strength and energy level. In particular, we look at the
bath-induced saturation of entanglement entropy to classify three behaviors: thermalized, nonergodic extended,
and localized. We also extract the localization length in the localized phase using the long-time dynamics of
the entanglement entropy and the spin imbalance. Our work demonstrates the rich localization landscape of
generalized Aubry-André models containing mobility edges in contrast to the simple Aubry-André model with
no mobility edge.
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I. INTRODUCTION

Systems with many-body localization (MBL) retain some
information of the initial state in the long-time limit, evading
the eventual thermalization postulated by the eigenstate ther-
malization hypothesis (ETH) [1–4]. Many-body localization
was first realized on one-dimensional systems with random
disorder [5–11] as a natural extension of the noninteracting
Anderson localization [12,13] into the interacting regime.
Some analytical advancements were obtained by studying the
randomized Bethe lattice [5,14,15]. However, at the single-
particle level, localization can also emerge in deterministic
quasiperiodic Hamiltonians, with the earliest example being
the Aubry-André (AA) model [16,17]. Superficially, both
random and quasiperiodic potentials break the translational
symmetry, but their localization properties are qualitatively
distinct, starting already at the single-particle level. In partic-
ular, while the Anderson model in one dimension is always
localized, the quasiperiodic AA has a critical disorder strength
for inducing localization characterized by a self-duality. The
self-dual point of quasiperiodic models can be decorated
with an eigenstate energy dependence [18–28], giving rise to
the single-particle mobility edge—the energy level separat-
ing localized and extended single-particle eigenstates. Since
single-particle quasiperiodic localization has its own MBL
generalization [29–34] in the presence of interactions, one
natural question is whether the coexistence of both local-
ized and thermalized eigenstates survives interaction [35–40],
or, equivalently, the fate of the single-particle mobility edge
in the corresponding interacting quasiperiodic Hamiltonian.
However, the study of nonequilibrium physics even in one-
dimensional interacting systems of interest in the current work
is mostly limited to small-size numerical simulations, and
therefore, making a conclusive analytic statement is not possi-
ble at this stage. One possible scenario supported by numerics

is that the single-particle mobility edge is destroyed or pushed
to the low- and high-energy tails of the spectrum [40].

One notable example of the class of quasiperiodic systems
with mobility edges is the generalization of the AA potential
[see Eq. (2)] introduced in Ref. [22] that produces an analyt-
ical single-particle mobility edge. We refer to this particular
generalized AA model as the GPD model, emphasizing the
fact that this is a specific generalization, and other generalized
AA models with mobility edges also exist (see, e.g., [18–21]).
Surprisingly, unlike the general hypothesis we mentioned ear-
lier, existing numerical evidence [33–38] for the GPD model
suggests that the single-particle mobility edge survives in-
teractions and the interacting system manifests something
like a many-body mobility edge separating the many-body
spectrum of the interacting GPD model. In Refs. [36,41],
the authors studied the entanglement entropy scaling law
of each eigenstate and found an area-volume law transition
with respect to the eigenenergy, marking a localized-extended
crossover in the interacting GPD system. Similarly, the eigen-
state fluctuation—the variation among the expectation values
of a local operator on neighboring eigenstates—vanishes after
some energy level upon entering the ergodic regime [36,41].
Notably, the two characteristic energies do not match, suggest-
ing three phases on the spectrum: MBL, nonergodic extended,
and ETH (ergodic extended). While the chaotic extended
and integrable localized phases are usually thought of as the
only two regimes, the nonergodic extended phase has been
demonstrated on the disordered Bethe lattice [14]. Refer-
ences [38,42] extended the idea by applying machine learning
classification on the eigenstate entanglement spectrum. They
found that the three-output classification scheme is optimal,
reasserting the existence of an intermediate phase which is
neither MBL nor ETH in the interacting GPD spectrum. In
the current work, we study the localization spectrum of the
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many-body GPD from a new perspective: the stability of the
interacting system against a bath-induced avalanche. In our
approach, the system is coupled to a bath, which sets it apart
from previous papers that studied isolated systems. Addi-
tionally, we look at the dynamic evolution of the interacting
system rather than static quantities, as was done before.

The bath-coupling approach was first used to answer the
question of whether MBL survives in the thermodynamic limit
[43–49]. The intuition is as follows. In an infinitely long chain
with random disorder, rare large thermal regions may exist
which keep expanding until the entire system is delocalized,
suppressing MBL. References [46,47] coupled the spin chain
to an ideal infinite-temperature bath to mimic such a rare
thermal inclusion and studied the scaling of the thermalization
rate with respect to the chain length, with the specific question
being the existence of a possible avalanche instability destroy-
ing MBL. For quasiperiodic systems, due to the deterministic
nature of the system, the avalanche is unlikely to occur spon-
taneously, making quasiperiodic MBL more stable than the
random disorder case in large-size systems [48]. Nevertheless,
one can still think of the bath-induced avalanche as a dynamic
probing tool, in the same manner as in the quenched dynamics
experiments [50–52]. Indeed, artificially implanted thermal
seeds have been implemented experimentally to directly study
the possibility of the avalanche [53]. We use this same tech-
nique of introducing a bath coupling to study the stability (or
not) of the mobility edge in the interacting GPD model in the
current work.

In this paper, we numerically simulate an experiment in
which a spin chain under the quasiperiodic GPD potential
(system) is coupled to another spin chain without the disorder
(bath). The system’s initial state is chosen to be an eigenstate
of the respective Hamiltonian, so that without the bath, the
initial state is strictly invariant and survives forever. Upon
being coupled to the bath, the system eventually thermalizes,
characterized by the saturation of the entanglement entropy.
However, depending on the localization property of the initial
eigenstate, this process can be either fast, slow, or decelerated
(fast at a short time but slower at a longer time), which allows
us to categorize the initial state into ETH, MBL, and the exotic
nonergodic metallic phase. Our goal is to find (or not) a clear
behavior in the system coupled to the bath which is mani-
festly intermediate between the well-known ETH and MBL
behaviors. This does not happen in either the random disorder
Anderson model or the quasiperiodic AA model, where nu-
merics find only MBL or ETH phases in the interacting system
depending on the disorder strength.

It is possible that MBL itself is a finite-time, finite-system
transient, which disappears in the thermodynamic limit, and
if so, the same would happen to all the associated physics,
including that in the current work. While the fate of MBL
(and all associated generic quantum phenomena in interact-
ing disordered systems) remains an important open question
of principle well beyond the scope of the current work, it
is undeniable that MBL phenomena manifest themselves in
finite-size experimental atomic and qubit systems in apparent
agreement with the theoretical work. Therefore, in the same
spirit as Refs. [36,38,41], our “phase” refers to a finite-size,
finite-time manifestation, and we refrain from commenting
on the thermodynamic limit, which is inaccessible to any

current simulations (and which remains open even for the
crucial question of the existence or not of MBL itself). We
also study the situation where the system is initialized in the
Néel state, which is a superposition of almost all eigenstates.
In the noninteracting systems, AA is more stable than GPD
against bath-induced thermalization since AA has no mobility
edges. Surprisingly, the situation reverses in the presence of
interaction, with the AA model now being more susceptible to
the bath. Again, this result is consistent with recent findings
on the early localization of the closed GPD model, which
establishes that interaction actually enhances MBL in GPD
[54].

The rest of this paper is organized as follows. In Sec. II, we
provide the details of the setup. We analyze the simulation
results for entanglement growth in Sec. III using a log-log
ansatz, sorting each set of parameters into one of the behaviors
(ETH, MBL, or nonergodic extended). In Sec. IV, we focus on
the intermediate- and strong-disorder regimes and use a linear-
log ansatz to extract the localization length from entanglement
entropy and spin imbalance dynamics. A prominent energy
dependence shown in the interacting GPD compared to the
AA model reiterates the phase classification in Sec. III. We
conclude and discuss the outlook in Sec. V.

II. SETUP AND METHODS

We focus on a spin-1/2 chain described by the Hamiltonian

Hs =
Ls−1∑
j=1

(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + V Sz

jS
z
j+1

) + W
Ls∑

j=1

h jS
z
j, (1)

where Sx,y,z
j are the spin-1/2 operators at site j, V is the

interaction strength, and W is the disorder strength. This paper
focuses on V = 0 (noninteracting) and V = 1 (interacting).
The on-site potential is defined by the GPD quasiperiodicity
[22]

h j = cos(2πϕ j + φ)

1 − α cos(2πϕ j + φ)
+ const, (2)

where ϕ = 1+√
5

2 is the golden mean; φ is an initial phase,
which is randomly sampled; and the system size is Ls = 12.
The constant is chosen such that hj sum to zero. In this paper,
we compare two representative cases of Eq. (2), one without
a mobility edge (AA) and one with a mobility edge (GPD):
α = 0 and α = −0.8. In summary, we study four cases:
noninteracting AA, interacting AA, noninteracting GPD, and
interacting GPD. The behaviors of the noninteracting coun-
terparts are well established, which we use to benchmark
the more elusive interacting systems. In particular, the entire
noninteracting AA spectrum is localized (extended) for W >

1 (<1). On the other hand, the single-particle GPD model
has an intermediate phase with a mobility edge where the
spectrum accommodates localized and extended eigenstates
for 0.1 � W � 2.0 [54].

To simulate the thermal bath, we consider another
nondisordered Heisenberg spin chain

Hb =
−1∑

j=1−Lb

(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + Sz

jS
z
j+1

)
, (3)
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where Lb = 12 is the same as the size of the system. Al-
though the Heisenberg spin chain is Bethe ansatz -integrable
and technically nonergodic, we numerically test that adding
an integrability-breaking next-nearest-neighbor hopping term
(with a coefficient of 0.2 similar to that in Ref. [55]) yields a
negligible effect. Therefore, it is safe to consider the Heisen-
berg spin chain as a thermal bath in our setup.

We couple the bath to the system. Here, the system-bath
coupling is modeled by a repeating sequence of sharp pulses
so that the dynamics of every cycle τ = 10 is described first
by independent evolutions of the bath and system under their
respective Hamiltonians, that is, by exp(−iτHs) exp(−iτHb),
and then by the coupling unitary

Usb = exp
[−iτ

(
Sx

0Sx
1 + Sy

0Sy
1 + Sz

0Sz
1

)]
(4)

that entangles the last spin of the bath and the first spin of the
system. We note that the system-bath coupling is implemented
entirely through the unitary Usb and not through any ad hoc
terms in the Hamiltonian. This setup allows for all the evo-
lution unitaries Ub, Us, and Usb to be computed exactly using
exact diagonalization in advance, allowing us to evolve the
composite system to a sufficiently long time. This numerical
method is equivalent to the time-evolving block decimation
(TEBD)-type algorithm used in [49]. We implement this al-
gorithm using the ITENSOR JULIA package [56] with cutoff of
10−10.

The energy-resolved initialization is a significant differ-
ence between our setup from other MBL dynamical probes.
While the initial state is usually the Néel state, which is
the superposition of an extensive number of eigenstates, for
our purpose of observing the energy-dependent localization
spectrum, we set the initial state of the system to be an energy
eigenstate of Hs, where we use a filling fraction of 1/4 (that
is, the total Sz is −3). This constitutes the main result of our
paper. In Sec. IV, we revisit the conventional setup initialized
in a superposition state. We note that due to the 1/4 filling con-
straint, the modified Néel state is now | ↓↑↓↓↓↑↓↓↓↑↓↓〉. In
both cases, the initial state of the bath is | ↓↑↓↓↓↑↓↓↓↑↓↓〉.
In the energy-resolved setup, we take the average over 14
choices of the initial phase φ and 11 consecutive energy levels,
so that the 220 energy levels of the system are grouped into 20
data points. In the superposition setup, we take an average of
over 342 choices of φ. The random choices of φ are always
fixed throughout the entire study so that the relative errors
between the data points are lower.

Our main observable is the growing entanglement entropy
between the system and the bath for t = 500, 510, . . . , 1000.
The time-dependent entanglement entropy is given by

S(t ) = −Tr[ρs(t ) ln ρs(t )], ρs = Trb|ψ (t )〉〈ψ (t )|, (5)

where |ψ (t )〉 is the system-bath wave function at time t and
Trb traces out the bath, leaving only the density matrix of
the system. In the superposition case, we also calculate the
spin imbalance,

I (t ) = D
Ls∑

j=2

〈ψ (t )|Sz
j |ψ (t )〉〈ψ (0)|Sz

j |ψ (0)〉, (6)

where D is chosen so that I (0) = 1. Note that the first spin of
the system is skipped to avoid any direct effect due to Usb.

We note that the time step τ = 10 and the time range
t = 500−1000 are most suitable for our purpose. One should
not think of our setup as a Trotterized approximation of the
evolution under a constant Hamiltonian, and thus, τ does not
need to be small and can be tuned to clearly differentiate
the three behaviors of the GPD model. Indeed, a small τ

both increases the computational expense and induces strong
variation on Smax, which in turn complicates the fitting process
(three fitting parameters instead of two as in the sections be-
low). Therefore, the “kicked” setup with large τ actually helps
us by increasing and stabilizing Smax, so that the dependence
of S(t ) on the system parameters becomes simpler. Last, we
numerically verify that τ = 5 and τ = 15 give essentially the
same result, so our finding is not a fine-tuned effect on τ .

Regarding the time range, the minimum time should be
at least long enough that the complicated transient dynamics
is suppressed. We have seen that after t ∼ 500, the entropy
variation with time becomes smooth enough for our purpose
(see Appendix B). For the upper bound of the time window,
we note that for small W , beyond t ∼ 103, S(t ) will be too
close to Smax, so that the dynamics is severely overwhelmed
by numerical fluctuation.

III. THREE-PHASE CLASSIFICATION

Our classification scheme is based on the long-time dy-
namics of the entanglement entropy between the system and
the bath, distinguishing the ETH, nonergodic extended, and
localized regimes. To extract the features from S(t ), we first
define the quantity

S̃(t ) = Smax − S(t )

Smax
, (7)

where Smax ≈ 5.6088 is the empirical saturated entropy of the
setup. Note that S̃(0) = 1 and S̃ → 0 as t → ∞. In the time
range of t = 500−1000, S̃ can be fitted to a power law decay
(see Appendix B),

S̃(t ) ≈ c

(
t

t0

)−γ

, (8)

where we use t0 = 500 and c, γ > 0 are the fitting parameters.
We find that c and γ together can classify different regimes in
the (E ,W ) parametric space. In particular, the three regimes
(ETH, nonergodic extended, and MBL) reside on three cor-
ners of the (c, 2−γ − c) feature space.

We emphasize that a simple power law is probably in-
capable of describing the dynamics up to an infinitely long
time (equivalently, the Heisenberg time tH ∼ 70 000), but the
fitting ansatz (8) together with time window t = 500−1000 is
most suitable for distinguishing the three different behaviors.

Before describing numerical results, we provide a physical
interpretation of the feature space. Our two indicators, c and
2−γ − c, can be written as

c ≈ S̃(t0)

S̃(0)
, (9)

2−γ − c ≈ S̃(2t0)

S̃(t0)
− S̃(t0)

S̃(0)
. (10)
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FIG. 1. The behavior of the four systems in the (c, 2−γ − c) feature space. The lower left, upper left, and lower right in each panel
correspond to the ETH, the nonergodic extended, and the localized behaviors, respectively. The colored dots indicate the behavior at the
highest part of the energy spectrum, and the “tails” of the dots indicate the behavior across the energy spectra, where the ends of the tails
correspond to the lowermost parts. Dashed circles indicate where the three behaviors cross over. Note the effect of the mobility edge in the
noninteracting GPD (the upper part of the spectrum is more localized). For the interacting GPD where the behavior is not yet fully understood,
we can see that the upper part of the spectrum goes to the nonergodic extended phase in the intermediate disorder, suggesting a nonergodic
metallic phase.

We can see that c quantifies the decay of S̃(t ) [or the saturation
of S(t )] until t0, characterizing the early-time thermalization
rate. On the other hand, 2−γ − c compares the thermalization
rate at late time t0−2t0 with that at early time 0−t0, measuring
the deceleration over time. It is easy to see that the limit c → 1
corresponds to the MBL phase, and 2−γ − c is trivially small
in that case because both late-time and early-time thermaliza-
tion rates vanish. Small c, on the other hand, is a signature
of the extended phase. This is because early-time localiza-
tion is dominated by direct resonance, which is stronger in
the extended phase [57]. However, c alone is insufficient to
distinguish between ETH and nonergodic extended phases,
necessitating the deceleration measure 2−γ − c. Following
Ref. [45], the avalanche happens only partially in the non-
ergodic extended phase. At early time, some l bits quickly
hybridize with the thermal seed, leading to fast thermalization.
Unlike the ETH phase, where the thermal seed can expand
infinitely to fill the entire system, the nonergodic extended
phase, at a late time, comprises disconnected thermal seeds
and a finite remaining fraction of l bits, whose couplings with
the thermal regions are too weak to fuel further avalanche.
As a result, the thermalization rate at late time is significantly
smaller than that at early time. Therefore, 2−γ − c ∼ 0 (finite)
indicates the ETH (nonergodic metallic) phase through the
direct estimate of the thermalization deceleration between the
short time and the long time.

At each point of the (E ,W ) parametric space, where E is
fixed by the quantum state initialization and W is the effec-
tive disorder parameter of the Hamiltonian (2), we simulate
the time-dependent entanglement entropy of the system and
extract the two feature indicators c and 2−γ − c from Eq. (8).
In Fig. 1, we display the calculated parametric points in the
feature space, with the colors denoting W , and the direction
from head (circle) to tail indicates the variation from high to
low E . We first note that the noninteracting models completely
lack the ETH phase (vanishing c and 2−γ − c) because these
systems are always trivially nonergodic due to the absence
of any interaction. In addition, the noninteracting AA model
does not show any significant energy dependence (note the
length of the tail), while the GPD counterpart exhibits clearly

defined tails which for intermediate W stretch from the local-
ized phase at the low-energy end to the nonergodic extended
phase at the high-energy spectrum part. These observations
agree well with established facts for noninteracting AA and
GPD models.

In the presence of interactions, the ETH regime in the
feature space becomes populated by low-W points, while
high-W points remain MBL. These are general characteris-
tics of any interacting quasiperiodic model. However, GPD
differs from AA in two essential aspects. First, the noner-
godic extended phase prominently exists in the interacting
GPD model but is almost nonexistent in the AA counterpart.
Second, for AA, the energy dependence follows the generic
rule of being more localized in the high- and low-energy tails
of the spectrum and more extended in the middle (note that
the heads and tails in the second panel of Fig. 1 almost draw
closed loops). On the contrary, the interacting GPD spectra
display a distinct unique trend with respect to energy, with
the low-energy part being more localized and the high-energy
part being more extended, thus showing nonergodic behavior.
These results suggest that the well-known single-particle mo-
bility edge in the GPD model will likely survive interaction
and manifest as a nonergodic metallic phase, which is absent
in a generic interacting quasiperiodic model without mobility
edges.

A false-color diagram of the two-dimensional (2D)-to-2D
parameter-to-feature mapping is shown in Fig. 2. The behav-
ior of the four systems (mapped color) can be summarized as
follows.

(i) Noninteracting AA (V = 0, α = 0). At low disorder
W � 1, it shows the expected nonergodic extended behavior
(green), and for W � 1, it shows the expected localized be-
havior (blue), with virtually no energy dependence, consistent
with the whole spectrum being either extended or localized
depending on whether W < 1 or >1.

(ii) Interacting AA (V = 1, α = 0). At low disorder W �
1.5, it shows the expected ETH behavior (red); for W � 1.5, it
shows the localized behavior (blue), with virtually no energy
dependence. There is a slight energy dependence in the sense
that the edge part of the spectrum is slightly more localized,
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FIG. 2. The false-color “phase diagrams” obtained by mapping the (E ,W ) parameter space to the (c, 2−γ − c) feature space using the same
data as in Fig. 1. The rightmost panel is the legend (the feature-to-color mapping), where the shaded region roughly corresponds to the dashed
circles in Fig. 1. Note that red, green, and blue correspond to the ETH, the nonergodic extended, and the localized behaviors, respectively.
We can see that this feature space gives the expected phase diagrams in the known parameter regime (note that the noninteracting GPD phase
diagram shows an effect of the mobility edge, although it is not very sharp due to the small system size). For the interacting GPD model where
the behavior is not yet fully understood, it is clear that the three behaviors coexist in the phase diagram indicated by the three colors, unlike
the other three cases where only two behaviors are present (green and blue for noninteracting systems; red and blue for interacting systems),
suggesting a nonergodic metallic phase there.

as expected. Thus, interacting AA is either ETH or MBL,
depending on W .

(iii) Noninteracting GPD (V = 0, α = −0.8). For W �
0.3 it shows the expected nonergodic extended behavior for
the entire spectrum (green), and for W � 1.1 it shows the
expected localized behavior for the entire spectrum (blue).
Within the intermediate disorder regime (i.e., for 0.3 � W �
1.1), the high-energy part is more extended (more greenish via
the intermediate color of cyan), as expected from the existence
of a single-particle mobility edge.

(iv) Interacting GPD (V = 1, α = −0.8). For W � 0.3 it
shows the expected ETH extended behavior for the entire
spectrum (red), and for W � 1.7 it shows the expected local-
ized MBL behavior for the entire spectrum (blue). In between,
we see that the low-energy part shows the localized behavior,
while the high-energy part shows the nonergodic extended
behavior (green). This supports the claim that three phases,
including a nonergodic metallic phase, exist in the interacting
GPD model’s (E ,W ) parameter space.

IV. LOCALIZATION LENGTH IN THE INTERMEDIATE-
AND STRONG-DISORDER REGIMES

The previous section used the power law ansatz to classify
three phases. For the MBL phase, γ at a late time is so low that
some information is hidden, such as the l-bit structure where
thermalization happens through long-range resonance being
suppressed exponentially with distance. For this purpose, we
extract the localization length in the localized phase using
the long-time dynamics of the entanglement entropy and the
spin imbalance. In the localized phase, we expect that the
dynamics at the timescale t = 500−1000 is dominated by
the bath coupled directly with the degrees of freedom in the
system (the timescale is not long enough for the avalanche
effect). Since these degrees of freedom (DOFs) are localized,
we can model the coupling strength of a DOF at a distance j
away from the bath as [43–45]

g j = g0e− j
ξloc , (11)

where ξloc is the localization length of the DOF. The normal-
ized decay of the part of S̃ that is due to the bath entangling
with this DOF can be modeled by f (g2

jt ), where f is a func-
tion satisfying f (0) = 1, f (+∞) → 0. The exact form of f
is not essential, but it is expected that, on the ln t scale, f
is initially constant at 1, then goes down to 0 within a scale
several times smaller than ln tmax ≈ 7, and then stays constant
at 0. Now the decay of the full S̃(t ) can be modeled by

S̃(t ) = 1

N

∑
j

f
(
g2

jt
)
, (12)

where N is the number of DOFs. Since we are averaging
several energy levels and disorder realizations, j in the sum
runs over a large number of essentially uniformly distributed
samples within Ls, and N is the number of such samples.

Now on the ln t scale, each term in the sum goes from 1 to
0 fairly quickly near ln t ≈ ln(1/g2

j ) = 2 j/ξloc + const. This
implies that if we increase ln t from a to b, the DOFs with j
within the range a � 2 j/ξloc + const � b will decay, which is
approximately N (b − a)ξloc/(2Ls) of them in the time regime,
where the decaying is not near the beginning or the end. Since
the decay of each DOF contributes to the change by −1 in the
sum (although the form of f smooths out the sum, the slope
is not affected), this gives a constant slope of S̃(t ) in the ln t
scale,

S̃(t ) ≈ − ξ S
loc

2Ls
ln t + const (13)

in this time regime. (The superscript S indicates that it is
extracted using the entropy.) Note that the ln t fit does not
contradict the power law fit used in the previous section, as
the power γ approaches zero as the system becomes more and
more localized, essentially becoming a log behavior.

In our case, we fit this slope using S̃(t ) for t =
500, 510, . . . , 1000 to extract ξloc. This ansatz is valid if the
fast hybridizing modes are thermalized before t = 500 and the
slow modes survive after t = 1000. The result of the energy-
resolved case is shown in Fig. 3, and the superposition case is
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FIG. 3. The energy-resolved localization length ξloc extracted from the long-time behavior of S̃(t ). The W = 1.7 curve of interacting AA is
not shown because it is too close to the ETH phase. Ribbons indicate the symmetrized 68% bootstrap confidence interval for the randomness
of the choices of φ.

shown in Fig. 4(a). Note that the result is consistent with the
many-body inverse participation ratio given in Appendix A.

The argument above also applies for the spin imbalance
I (t ). However, due to the local dynamics of the spins, we also
need to extract the value I0 that corresponds to the beginning
of the decay numerically, which is not necessarily close to 1.
We use the average of I (t ), t = 10, 20, . . . , 50 for I0. Also,
due to the 1/4 filling and the skipping of the first spin, the
equilibrium value of I (t ) is Ieq ≈ 0.2273 instead of 0. Now

FIG. 4. The superposition localization length ξloc extracted from
the long-time behavior of (a) S̃(t ) and (b) Ĩ (t ). Ribbons indicate the
symmetrized 68% bootstrap confidence interval.

we have

Ĩ (t ) ≡ I (t ) − Ieq

I0 − Ieq
≈ − ξ I

loc

2(Ls − 1)
ln t + const (14)

in the same time regime as in Eq. (13). We do the same fit as
in the case of S̃, and the result is shown in Fig. 4(b).

From Fig. 4, it is clear that, although AA is more stable
than GPD in the noninteracting case, the interaction destabi-
lizes AA dramatically while making GPD only slightly more
unstable, resulting in GPD being more stable than AA in the
interacting case. From Fig. 3, it is also clear that noninter-
acting AA is more stable than GPD due to the high-energy
part of the GPD spectrum, which is more extended. The
interaction, on the other hand, stabilizes the lower part of
the spectrum of GPD slightly while destabilizing the upper
part.

V. CONCLUSION

By coupling to a thermal bath, we observed three distinct
regimes of the interacting GPD model: MBL, ETH, and non-
ergodic extended. While the former two phases are universal
for most models with single-particle localization, the third one
is more elusive, not even universal to quasiperiodic models
with single-particle mobility edges. This suggests a peculiar
richness of the GPD model and invites deeper examination.

Our probing method also adds a different perspective to
the standard MBL analysis, which can be generalized to other
theoretical and experimental studies. The system in our work
is inherently open due to an explicit bath coupling and remark-
ably produces characteristics qualitatively similar to those of
the closed system. Our bath coupling probe thus can serve as a
natural bridge between the conventional closed-system MBL
and the newly emerging open-system or non-Hermitian MBL
[58–60].

We mention that our results are based on finite-size and
finite-time exact simulations, and therefore, we cannot com-
ment decisively on the existence or not of the novel interacting
nonergodic extended phase in the long-time thermodynamic
limit, but this limitation is no more severe in our work than
it is for the basic question of the existence or not of the
MBL itself in the thermodynamic limit. In fact, we believe
that the nonergodic extended phase should manifest in inter-
acting atomic systems, which are constructed to mimic the
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FIG. 5. The MIPR of the energy eigenstates. Ribbons indicate the symmetrized 68% bootstrap confidence interval for the randomness of
the choices of φ.

interacting GPD phase, through measurements and analysis of
imbalance dynamics [39]. We urge such experiments through
the analog simulation of the GPD model, given the unique and
unusual nature of the interacting nonergodic extended phase
analyzed in the current work.

Although the kicked coupling setup with large τ helped
us simplify the behavior of S(t ) by increasing and stabilizing
Smax, one may wonder whether the nonergodic extended phase
might originate from this setup rather than from the system
itself. Nevertheless, we do not expect that to be the case. First,
there has been other previous evidence that such a regime
may exist in this model [36,38,41,42]. Second, our probe also
correctly showed that there is no such regime in the inter-
acting AA model. Therefore, the nonergodic extended phase
is likely from the GDP Hamiltonian rather than the kicked
setup. This point may be confirmed further in the future by
applying this setup to other models with different kicked setup
parameters.
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APPENDIX A: INVERSE PARTICIPATION RATIO

We calculate the many-body inverse participation ratio
(MIPR) of the four systems we study, defined by

MIPR = 1

1 − ν

⎛
⎝ 1

Lν

L∑
j=1

〈n j〉2 − ν

⎞
⎠, (A1)

where ν = 1/4 is the filling fraction and nj = Sz
j + 1/2 is the

particle number operator. The result is shown in Fig. 5. Note
that the value approaches 0 in the extended phase and 1 in the
localized phase. The energy dependence is consistent with the
results in the main text, with a monotonic variation showing
up only in GPD.

APPENDIX B: SELECTIVE RAW DATA FOR S̃(t ) AND I(t )

Here, we present some raw data for the entropy saturation
S̃(t ) and spin imbalance I (t ) in Fig. 6, where the fitting lines
are used to extract the data presented in the main text [I (t ) re-
quires an additional scaling indicated in Eq. (14)]. We present
only representative cases here; the cases for other parameters

FIG. 6. Some raw data for S̃(t ) and I (t ) for the interacting GPD model. The power law fitting for energy level group 210–220 for (a) W =
0.1 (ETH), (b) W = 0.7 (nonergodic extended), and (c) W = 2.1 (localized). (d) The log fitting for the same energy level group for W = 2.9.
(e) and (f) The superposition case log fittings for W = 2.9. Ribbons indicate the standard errors of the mean. Dashed lines indicate the best fit
for t = 500−1000.
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are qualitatively similar to these plots. We can see that the
spin imbalance is much noisier than the entanglement entropy.

[Note that Figs. 6(e) and 6(f) are averaged over 342 choices of
φ, while Figs. 6(a)–6(d) are averaged only over 14.]
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