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Complexity plays a very important part in quantum computing and simulation where it acts as a measure of
the minimal number of gates that are required to implement a unitary circuit. We study the lower bound of the
complexity [Eisert, Phys. Rev. Lett. 127, 020501 (2021)] for the unitary dynamics of the one-dimensional lattice
models of noninteracting fermions. We find analytically using quasiparticle formalism, the bound grows linearly
in time and is followed by a saturation for short-ranged tight-binding Hamiltonians. We show numerical evidence
that for an initial Neel state the bound is maximum for tight-binding Hamiltonians as well as for the long-range
hopping models. However, the increase of the bound is sublinear in time for the later, in contrast to the linear
growth observed for short-range models. The upper bound of the complexity in noninteracting fermionic lattice
models is calculated, which grows linearly in time even beyond the saturation time of the lower bound, and
finally, it also saturates.

DOI: 10.1103/PhysRevB.108.064309

I. INTRODUCTION

Complexity has been playing a dominant role in a wide va-
riety of studies in both humanities and natural sciences [1–8].
Historically, complexity emerged to understand the time a
computer takes to complete a task, and it later engulfed many
research areas. Distinct notions of complexity have been de-
fined in various research fields in which it quantifies how
hard the given task is. The possibility of computation of any
computable function by the computing machine, as envisaged
by the Church-Turing thesis, makes computational complex-
ity a well-defined quantification of complexity. It quantifies
complexity as a minimum number of time steps required to
complete the given task in a Turing machine. The ease (or
hardness) of a task depends on how the complexity varies
with the size of the problem [9]. The complexity of classical
dynamics, quantified as the algorithmic complexity [10] and
the Kolmogorov complexity, can then be characterized using
computational complexity [11–13].

Nature at its depth is quantum mechanical. Historically,
after the success of a few elementary algorithms in quantum
computation [14–17], the notions of quantum computational
complexity classes were defined [18]. The universality of a
set of quantum gates for simulating any unitary operator was
proved [19]. Quantum complexity theoretic tools were used
to understand the possibility of estimating the quantities of
quantum many-body systems from the quantum computer.
It is known that estimating the ground-state energy of the
Hubbard model [20,21], the Heisenberg model [22], and the
nearest-neighbor interactions in one- and two-dimensional
systems [23–25] are quantum Merlin-Arthur (QMA) com-
plete. Many related results on the computational complexity
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of the transverse field Ising model [26] are shown. The
computational undecidability (uncomputability) [27] is also
proven for various quantities in quantum many-body sys-
tems [28–32]. The complexity in the form of possibility
of efficient simulation in noisy intermediate-scale quantum
(NISQ) computers and the quantum supremacy is also studied
for various quantum many-body systems [33–35].

At this juncture, we want to ask how difficult the many-
body quantum dynamics are from the perspective of quantum
computation. For example, consider a pure product many-
particle initial state |�〉in is evolved to some other final state
|�〉fin = U |�〉in. The complexity of the process is essentially
the complexity of implementing the unitary operator U . The
complexity is quantified in terms of gate complexity, which
is defined as the number of universal gates minimized over
all the universal gate sets required to simulate the unitary dy-
namics. As there can be many universal gate sets, minimizing
overall universal gate sets is tedious, leading to difficulty in
calculating gate complexity. To counter this, Nielsen (with
others) has developed techniques to find the lower bounds on
the gate complexity [36–38].

Recently, Eisert [39] showed the lower bound on gate
complexity that depends on the entanglement produced by the
unitary operator acting on the pure product states. However,
note that entanglement and gate complexity are different.
The swap gate does not produce any entanglement, yet the
complexity of producing the swap gate is nonzero. In this
work, we study the gate complexity growth for many-body
dynamics. Complexity growth has been playing an interest-
ing role in understanding the quantum gravity models (See
Ref. [40]). The conjecture [41] on the growth of complexity
with random unitary operators has been proven recently [42].
Our main goal of this paper is to study the lower bound
of the complexity growth for Hamiltonian systems. To ex-
plore this possibility, here we consider long-range power-law
hopping models of noninteracting fermions. With recent
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advancements in experiments with atomic, molecular, and
optical systems (AMO) [43,44], power-law hopping with tun-
able exponent 0 < α < 3 can be realized in laser-driven cold
atom setup [45,46]. However, we would like to emphasize
that these experimentally realizable models are for hard-core
bosons. In the dilute limit, where the role of interaction is
weak, potentially our results for noninteracting fermions can
still be relevant in the context of AMO experiments. The dipo-
lar (α = 3) and van der Waals (α = 6) couplings also have
been experimentally realized in the case of neutral atoms and
Rydberg atoms [47–50]. Hence, there has been a plethora of
work on long-range models in last few years [51–57]. We also
investigate the tight-binding limit, i.e., α → ∞, where the
entanglement growth can be well understood within the quasi-
particle frame work [58,59]. Quasiparticle description can
be extended for other interacting integrable models as well,
where a statistical description of local properties of the steady
state is possible in terms of a Generalized Gibbs Ensemble
(GGE) [60] in contrast to the generic nonintegrable models,
where the stationary behavior of local and quasilocal observ-
ables is described by the Gibbs (thermal) ensemble [61,62].

The paper is organized as follows. In Sec. II we introduce
geometrically local circuit cost, and in Sec. III we discuss the
model. Next, we discuss the results in Sec. IV, which consists
of two parts, first the tight-binding model and then the long-
range model. Finally, in Sec. V we summarize our results and
conclude.

II. GEOMETRICALLY LOCAL CIRCUIT COST

The quantum circuit complexity of any unitary operator U
is the number of basic gates minimized over universal gates.
As the single-particle gates don’t constitute entanglement
generation and from the quantum computation perspective,
it is easy to operate (within the error bounds), the circuit
complexity counts only nonlocal gates. If the quantum cir-
cuit simulating the unitary dynamics contains only operators
acting on single- and two-particle systems, the quantum com-
plexity is termed as geometrically local circuit cost and
denoted as Cg(U ).

Consider a lattice of L particles with each dimension
d . Unitary dynamics U ∈ SU (dL ) can be generated by the
Hamiltonian H (k) as

U = K exp

(
−i

∫ 1

0
dk H (k)

)
. (1)

H (k) can be expressed with the traceless Hermitian opera-
tors h1, h2, · · · , hJ acting on two-particle systems with norm
||h j || = 1, ∀ j as

H (k) =
J∑

j=1

y j (k)h j, (2)

where y j : [0, 1] → R is the cost function. The geometrically
local circuit cost Cg(U ) of a unitary operator U is

Cg(U ) := inf
∫ 1

0

J∑
j=1

|y j (k)|dk, (3)

where the infimum is taken over all the continuous function y j

satisfying Eq. (1) and Eq. (2).
Note that while it seems that for any Hamiltonian H (k) that

can be written as H (k) = ∑J
j=1 y j (k)h j , the above integration

can be computed in a straight forward manner, and hence
obtaining Cg(U ) should be an easy task. We would like to
emphasize an infimum needs to be computed over all such
representations of H (k), that makes computing exact geomet-
rically local circuit cost for any Hamiltonian an extremely
tedious job. Hence, in this work we are interested in calcu-
lating the lower bound. The geometrically local circuit cost
Cg(U ) is lower bounded by the entanglement generation by
the unitary operator U as [39]

Cg(U ) � 1

c log(d )

L−1∑
i=1

E(U |φ〉〈φ|U † : i), (4)

where

E(U |φ〉〈φ|U † : i) := S(trB(ρ)) (5)

is the entanglement entropy over the bipartition A =
{1, 2, · · · i} and B = {i + 1, · · · L}, c > 0, and |φ〉 is pure prod-
uct state. The constant c emerges from lower bounding the
entangling rate introduced in Ref. [63]. We consider c = 2 as
optimal value obtained in Refs. [64,65]. The von Neumann
entropy S(ρ) is S(ρ) = −Trρ ln ρ.

We are interested in studying the quantity that bounds the
Cg(U ) and we call it geometric entanglement capacity (GEC)
of a unitary operator U and define as

Eg(U ) := 1

log(d )

L−1∑
i=1

E(U |φ〉〈φ|U † : i). (6)

As the |φ〉 is some pure product state it might so happen
that if the choice of the initial pure product state is inappropri-
ate, it does not capture the actual complexity of an operator.
Hence we define the following quantity as maximum GEC
by maximizing over all pure product states |φ〉, and we call
the upper bound of maximum GEC of an unitary operator
Emax

g (U ), which takes Emax
g (U ) = L2

4 . This can be easily seen
as follows. If L is even and owing to the fact that symmetry
of entanglement is measured by the entanglement entropy we
can write

Emax
g (U ) = 1

log d
{2[log d + log d2 + · · · + log d ( L

2 −1)]

+ log d
L
2 } = L2

4
. (7)

III. MODEL

Our main focus is to investigate the lower bound of the
complexity for models of free fermions. We study noninter-
acting fermions in one-dimensional (1D) lattice of size L. The
system is described by the following long-range power-law
hopping Hamiltonian

H = −
∑
i, j �=i

1

|i − j|α (ĉ†
i ĉ j + H.c.), (8)
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where ĉ†
i (ĉi) is the fermionic creation (annihilation) oper-

ator at site i, and n̂i = ĉ†
i ĉi is the number operator. While

the Hamiltonian H is a long-range hopping model of free
fermions in the limit α → ∞, the Hamiltonian is the same
as tight-binding model with nearest-neighbor hopping, and it
reads as

H = −
∑

i

ĉ†
i ĉi+1 + H.c. (9)

The Hamiltonian Eq. (9) can be diagonalized in the momen-
tum basis and can be written as

H =
∑

k

εk ĉ†
k ĉk, (10)

where εk = −2 cos k. ĉ†
k and ĉk are fermionic creation and

annihilation operators in momentum basis. All the results
presented in the paper are for half-filling cases, i.e., number
of fermions N = L/2 and L is chosen to be an even number.
However, we have considered other filling fractions and found
qualitatively similar results.

IV. RESULTS

In order to obtain GEC, we prepare the system in a
nonequilibrium pure product state |φ〉 and then let it evolve
under the unitary dynamics governed by a Hamiltonian H .
The calculation of GEC involves the bipartite von Neumann
(entanglement) entropy, which is given by S = −TrρA ln ρA,
where the reduced density matrix ρA is defined as ρA ≡
TrB|φ(t )〉〈φ(t )|. The trace is over the degrees of freedom of
the complement B (which is of the size L − �) of A (which
is of the size �), and |φ(t )〉 = e−iHt |φ〉 is the time-dependent
state of the system.

A. Tight-binding model: Numerical results
vs quasiparticle picture

First, we investigate the tight-binding model, and our aim
is to find out a pure product state |φ〉 that maximizes GEC
[Eq. (6)]. Given the expression of GEC essentially involves
von Neumann entanglement entropy S, we investigate the
growth of S with time for different initial product states in
Fig. 1. We find numerical evidence that the entanglement
growth for the Neel state, i.e., |φ〉 = ∏L/2

i=1 ĉ†
i |0〉 is the max-

imum in the short-time regime. We compare the entanglement
dynamics for Neel state with different possible random initial
states, among which we report three such states in our pa-
per which are denoted as R1 (L/2 fermions are completely
randomly distributed over the lattice), R2 (in first 50 sites
fermions are occupied in alternative sites and the rest of the
fermions are completely randomly distributed over rest of the
lattice), and R3 (in first 64 sites fermions are occupied in
alternative sites and the rest of the fermions are completely
randomly distributed over rest of the lattice). In all three cases,
while we report our results for three individual uniformly
random realizations, in each case we check our results for
1000 such random realizations and find that the growth of
GEC is slower than the Neel state.

On the other hand, the out-of-equilibrium dynamics of
S after a quantum quench in finite-size integrable systems

FIG. 1. Entanglement dynamics for the Hamiltonian Eq. (9) and
for different initial states. Upper panel results are for (a) � = 50 and
L = 100, lower panel results correspond to (b) � = 50 and L = 200.
The solid line corresponds to quasiparticle prediction for the Neel
state.

can be described by the quasiparticle picture. According to
this picture, the initial state acts as a source of quasiparti-
cle excitations which are produced in pairs and uniformly
in space. After being created, the quasiparticles move bal-
listically through the system with opposite velocities. Only
quasiparticles created at the same point in space are entangled
and while they move far apart, carrying entanglement and cor-
relation in the system. A pair contributes to the entanglement
entropy at time t only if one particle of the pair is in A and
its partner in B. Keeping track of the linear trajectories of the
particles, it is easy to show [59,66]

S(t ) =
∑

n

[
2t

∫
2|vn|t<�

dk

2π
vn(k)sn(k) + �

∫
2|vn|t>�

dk

2π
sn(k)

]
. (11)

Here the sum is over the species of particles n whose number
depends on the model, k represents their quasimomentum
(rapidity), vn(k) is their velocity, and sn(k) their contribution
to the entanglement entropy. (For the tight-binding model
there is a single species of quasiparticle, hence we omit the
sum over n and the subscripts). The quasiparticle predic-
tion Eq. (11) for the entanglement entropy holds true in the
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space-time scaling limit, i.e., t, � → ∞ with the ratio t/�
fixed. If the maximum quasiparticle velocity is vM [67],
Eq. (11) predicts that for t � �/(2vM ), S� grows linearly
in time. Conversely, for t 
 �/(2vM ), only the second term
survives and the entanglement is extensive in the subsystem
size, i.e., S ∝ �. In order to evaluate Eq. (11), one needs to
evaluate vn(k) and sn(k). The former is the group velocities
of the excitations around the stationary state and the latter is
the thermodynamic entropy densities of the GGE [68]. The
thermodynamic entropy can be obtained as [69]

SGGE = −Tr[ρGGE ln ρGGE] =
∑

k

−λk
∂ ln Z

∂λk
+ ln Z

=
∑

k

−nk ln nk − (1 − nk ) ln(1 − nk ) =
∑

k

sk, (12)

where sk = −nk ln nk − (1 − nk ) ln(1 − nk ) is identified as
the entropy contribution of the quasiparticle with momentum
k. On the other hand, vk can be obtained from the disper-
sion relation of the Hamiltonian Eq. (9), i.e., vk = dεk/dk =
2 sin k (the maximum quasiparticle velocity vM = 2, which
corresponds to kM = π/2). This formula is generically valid
for free fermionic models with the crucial assumption that
the initial state is writable in terms of pairs of quasiparticles.
Other types of particular structures of initial states have also
been considered recently, for which the effective quasiparticle
velocities have been also computed [70,71].

Moreover, we want to find out the initial state for which
GEC is maximum. It is obvious from Eq. (12) that the max-
imum value sk can have is sk = ln 2, which corresponds to
nk = 1/2. The nk for the initial Neel state and as well as for all
other half-filled random states R1, R2, and R3 can be obtained
from

nk = 〈φ|n̂k|φ〉 = 1

L

∑
jl

ei( j−l )k〈φ|ĉ†
j ĉl |φ〉, (13)

where the initial state is |φ〉. For our choice of initial state
it is straightforward to see that nk = 〈φ|n̂k|φ〉 = 1

2 , which
implies sk = −nk ln nk − (1 − nk ) ln(1 − nk ) = ln 2 and the
maximum value of S is � ln 2. Moreover, the maximum of
GEC for all such states can be easily evaluated as

Eg = 2

ln 2

L/2−1∑
�=1

� ln 2 + L

2 ln 2
ln 2

= 2

(
L

2
− 1

)
L

2
+ L

2
= L2

4
,

and this is the upper bound of GEC for any unitary oper-
ator. While our numerical evidence in Fig. 1 supports our
analytical finding, i.e., in the long-time limit entanglement
entropy (also GEC) for all such initial states tend to saturate
to the same value, but the short-time growth is much faster
for the initial Neel state compared to other random states.
Also, Fig. 2 shows the variation of Eg with time for the Neel
state for different values of L. Remarkably, in the inset, we
show data collapse for Eg/L2 vs t/L plot. This result can
also be easily understood within quasiparticle picture. Note
that Eq. (11) works in the true space-time limit, i.e., when t ,
� → ∞. Here the GEC calculation involves summations of

FIG. 2. Variation of Eg for a tight-binding model with time for
initial Neel state and for different values of L. Solid lines correspond
to quasiparticle prediction. Top right inset shows data collapse in
Eg/L2 vs t/L plot. The solid blue line corresponds to the upper bound
of Eg/L2. The top left inset shows the variation of Eg with time and
the upper bound of the Eg in solid lines.

entanglement entropy over all the cuts that implies subsystem
size � = 1, 2 . . . L/2. Though it is expected that for relatively
large L and �, Eq. (11) works very well, but for very small
values of � (even though L is large enough) there could be a
discrepancy between exact entanglement entropy results and
quasiparticle predictions, which has also been observed in our
numerical results where in the long-time limit Eg/L2 oscillates
between roughly 0.15 and 0.20, which is less than 1/4, which
is essentially a prediction of Eq. (11).

As pointed out before, Eq. (11) works only in the space-
time scaling limit. For finite-size systems, one needs to modify
Eq. (11) by carefully tracking quasiparticles on a circle leav-
ing and re-entering the interval, which leads to the final
formula [72,73]

S�(t ) =
∫

frac(
2vk t

L )< �
L

dk

2π
skLfrac

(
2vk t

L

)

+ �

∫
�
L �frac(

2vk t
L )<1− �

L

dk

2π
sk

+
∫

1− �
L �frac(

2vk t
L )

dk

2π
skL

(
1 − frac

(
2vk t

L

))
, (14)

where frac denotes the fractional part, e.g., frac(1.42) = 0.42.
Solid lines in Fig. 1 and Fig. 2 are obtained using Eq. (14); it
matches brilliantly with our finite-size numerical results. It is
evident from our numerical study and also from the quasipar-
ticle formalism, for the tight-binding model Eg grows linearly
in time and is followed by a saturation. Similar behavior is
conjectured in the quantum gravity studies for random unitary
operators [41] and has been recently proved [42].

It is important to emphasize that given the Eg is related to
the growth of a particular measure of entanglement, this result
is naturally limited to the early-time regime in which entan-
glement is not yet saturated. It is well known that complexity
is expected to grow beyond this entanglement saturation time.
The tight binding model [Eq. (9)] on an L sites lattice can
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FIG. 3. Entanglement dynamics starting from different initial
states for long-range model α = 0.5, L = 100, and � = 50. Inset
shows the growth for Neel state is Eg ∼ t1/2.

be expressed with the L − 1 traceless Hermitian operators
h j = ĉ†

j ĉ j+1 + ĉ†
j+1ĉ j that are supported on two qubits

H =
L−1∑
j=1

h j . (15)

Hence, an automatic consequence is y j = 1, ∀ j in Eq. (2). The
unitary operator acting on two qubits will have the form U =
e−iHt . Using Eq. (3) as an upper bound for Eg(U ) can be calcu-
lated and reads as Eub

g = c(L − 1)t . The top left inset in Fig. 2
demonstrates the variation of the upper bound with time. Here
we choose c to be 2 as suggested in Refs. [39,64,65]. This
upper bound keeps growing with time until it reaches t = 4L.
The saturation is followed by the fact that any unitary operator
U of dimension d = 2L can be simulated using utmost 4L two-
qubit gates [74,75]. Remarkably, we find that the difference
between the upper and lower bound of the complexity is not
that significant until the lower bound gets saturated. However,
the upper bound keeps on growing even beyond this point.

B. Long-range hopping model

Next, we investigate the long-range hopping model. Unlike
the Hamiltonian Eq. (9), the entanglement growth for the
long-range hopping model cannot be explained within the
quasiparticle picture. Moreover, with the fact that the initial
state acts as a source of quasiparticle excitations which move
ballistically through the system with opposite velocities, this
assumption breaks down. That could lead to potential sub-
linear growth of entanglement instead of linear growth as
predicted by Eq. (11). Figure 3 shows the bipartite entan-
glement growth (where � = L/2) for initial Neel and other
random states. Inset shows the growth is not linear in time; in
contrast, S(t ) ∼ t1/2 for α = 0.5. Remarkably, similar to the
tight-binding Hamiltonian, even for the long-range models,
the entanglement growth for the initial Neel state turns out to
be maximum compared to other states. The GEC also shows
similar behavior as shown in Fig. 4. Moreover, the inset of
Fig. 4 shows data collapse in a Eg/L2 vs t/L plot for different
values of L, which was also observed for the tight-binding

FIG. 4. Time evolution of Eg for different initial states, where
α = 0.5, L = 100, and � = 50. Inset shows the data collapse in
Eg/L2vst/L plot. The blue double dot-dashed line corresponds to the
upper bound of Eg/L2.

Hamiltonian earlier. Finally, we show in Fig. 5 the time evolu-
tion of Eg for the initial Neel state for different values of α. We
find that for small values of α, the growth of Eg is sublinear
Eg ∼ tγ in time, as α increases the γ → 1.

V. CONCLUSIONS

In this work, we investigate the gate complexity of the one-
dimensional lattice Hamiltonians of noninteracting fermions.
While calculating the complexity is a tedious job, we focus
on the lower bound, more specifically we study the quantity
called GEC for such models. First, we focus on the short-
ranged tight-binding model and show that the growth of GEC
is linear in time and followed by a saturation. We also find
numerical evidence that the growth is maximum for the Neel
state, not only that the thermodynamic limit for GEC saturates
its upper bound, i.e., L2/4. We also investigate the long-range
hopping model. Interestingly, we find numerical evidence that
even for these models the growth of GEC is maximum for
Neel state. However, given the entanglement dynamics for

FIG. 5. Variation of GEC with time for the initial Neel state for
different values of α and Eg ∼ tγ .
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long-range models is sublinear in time (in contrast to short-
ranged tight-binding Hamiltonian where the growth is linear
and can be explained within quasiparticle picture), followed
by saturation, GEC also showed similar behavior. Finally,
we show for both short-ranged and long-ranged models from
the data collapse, GEC increases as L2 for a fixed t/L. The
entanglement saturates in an early time regime, and hence
any complexity measure based on the particular entanglement
measure has to be saturated quickly, but the complexity may
still be growing. We found the upper bound for the nonin-
teracting fermionic lattice model, and it increases linearly
and saturates. We would like to emphasize that there have
been many studies regarding entanglement growth of nonin-
teracting systems. The validity of Eq. (11) has been tested
both analytically and numerically in free-fermion, free-boson
models [68,69,76,77] and in many interacting integrable mod-
els [66,78–80]. On the other hand, the mechanism for the
entanglement evolution in chaotic systems is different, not
as well understood as in integrable models; nevertheless, the
entanglement entropy grows linearly in early time before sat-
urating to a value that is extensive in subsystem size [80–83],
exactly as in integrable systems. Our goal here is to study the
lower bound of the circuit complexity. Though the formula
for lower bound involves calculating entanglement entropy for
initial product states, it also involves a maximization over all
such product states, which technically is a very daunting task.

One of the most important results of our work is the numerical
evidence that the growth of the GEC is the fastest for Neel
state compared to any other possible random initial product
states for free fermionic lattice models, hence that reduces the
job of maximizing entanglement over all the product states to
just calculating GEC for only the Neel state.

While in this paper we restrict ourselves to the models
of noninteracting fermions, GEC calculations within quasi-
particle pictures can be extended for interacting integrable
systems, e.g., XXZ spin chain [66] and Spin-1 Lai Sutherland
model [78–80]. It will be interesting to explore the com-
plexity bounds for interacting systems both integrable and
nonintegrable in further studies. Recently, other measures of
complexity are defined by various groups [84–87], and it is
interesting to see how our results can be extended with these
measures.
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