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Topological edge states in nanoparticle chains: Isolating radiative heat flux
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Recent advancements in the field of topological band theory have significantly contributed to our understand-
ing of intriguing topological phenomena observed in various classical and quantum systems, encompassing
both wave and dissipative systems. In this study, we employ the notion of band theory to establish a profound
connection between the spatiotemporal evolution of temperatures and the underlying topological properties
of radiative systems. These systems involve the exchange of energy through radiation among a collection of
particles. By utilizing the eigenstates of the response matrix of the system, we establish a robust framework for
the examination of topological properties in radiative systems, considering both symmetric and asymmetric
response matrices. Our formalism is specifically applied to investigate the topological phase transition in
a one-dimensional chain composed of an even number of spherical nanoparticles. We provide compelling
evidence for the existence and robustness of topological edge states in systems characterized by an asymmetric
response matrix. Moreover, we demonstrate that by manipulating the arrangement and volume of particles, it is
possible to control the system’s structure and achieve desired topological features. Interestingly, we showed that
the radiative heat transfer can be controlled and prevented by topological insulation. Additionally, we conduct an
analysis of the temperature dynamics and the associated relaxation process in the proposed system. Our research
findings demonstrate that the interplay between bulk states and localized states is pivotal in the emergence of
distinct eigenstates and provides significant insights into the spatiotemporal dynamics of temperature and the
process of thermalization within a system. This interplay holds the potential to be leveraged for the development
of structures, facilitating efficient heat transfer even in the presence of perturbation. Consequently, it enables
precise experimental measurements of heat transfer and serves as a platform for the exploration of thermal
topology, offering new avenues for scientific inquiry in this field.
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I. INTRODUCTION

It is widely recognized that when two objects are in
close proximity (compared to the thermal wavelength λT =
2π h̄c/kBT ), the radiative heat exchange between them is sig-
nificantly larger than what is predicted by Stefan-Boltzmann’s
law [1]. As a result, the thermal transport and thermalization
processes in a system of nanoparticles (NPs) are intricately
linked to factors such as their geometrical arrangement, shape,
composition, and inter-particle separation distances [2–10].

Theoretical advancements and experimental measurements
have spurred significant efforts in thermal management and
regulation within particle ensembles [11–15], as well as struc-
tures with planar geometries [16–18]. Over the past few years,
numerous studies have focused on developing mechanisms
to control the magnitude and direction of radiative heat ex-
change. The recent progress in passive and active control of
radiative heat transfer has generated considerable interest in
phenomena such as thermal rectifiers [19–22], magnetoresis-
tance [23,24], persistent heat fluxes [25,26], thermal barriers
[27], heat shuttling [28], orientation-based regulators [29,30],
material-based regulators [29,31–33], heat pumping [34,35],
and thermal switching [36–39].
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Recent studies have provided valuable insights into the
influence of topology on dipolar interactions, topological in-
variance, and the resilience of localized modes in systems
composed of particles with dipolar interaction. Downing and
Weick conducted research on the topological properties of
collective plasmonic excitations in bipartite chains of spher-
ical metallic nanoparticles, shedding light on the interplay
between topology and dipolar interactions [40,41]. Ling et al.
investigated the existence of topological edge plasmon modes
in diatomic chains consisting of identical plasmonic nanopar-
ticles, further elucidating their emission rate [42]. Pocock
et al. performed a comprehensive analysis of wave systems,
emphasizing the longitudinal and transverse modes, as well
as the significance of disorder on the topological properties
[43]. Wang and Zhao focused on the topological phases exhib-
ited by one-dimensional dimerized doped silicon nanoparticle
chains, providing crucial insights into the interplay between
topology and material properties [44]. Nikbakht and Mahdieh
examined the localization of dipolar modes in fractal struc-
tures [45]. In addition to the conventional studies mentioned
earlier, recent research endeavors are also investigating the
influence of topology on radiative heat exchange in the static
regime. For instance, Nikbakht investigated the localization
of thermal modes in fractal structures [46]. Additionally, Ott
and Biehs investigated the thermal topology in plasmonic
InSb nanoparticles [47,48]. Luo et al. proposed a topological
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insulator analog in radiative systems [49]. Ott et al. studied
the local density of states in topological plasmonic nanos-
tructures. [50]. Herz and Biehs proposed thermal radiation
and near-field thermal imaging of a plasmonic Su-Schrieffer-
Heeger chain [51]. However, it is important to note that these
nontrivial topological behaviors, arising from the localization
of dipolar modes in the systems, may not have a signifi-
cant impact on transient or steady-state heat transfer in the
system.

On the basis of recent theoretical studies, the temporal
evolution of temperatures in collection of particles can be
simplified by linearizing the energy balance equation [52–54].
In these approaches, the dynamic of temperatures becomes a
simple eigenvalue problem. From the dynamical perspective,
in addition to the features we mentioned earlier, the radiative
heat transfer between NPs will be affected by spatiotemporal
coupling of the temperatures. Thus the temporal evolution of
temperatures is not solely determined by the radiative heat
exchanges, but also by the history dependent dynamics. Sev-
eral theoretical and experimental works based on topological
band theory have revealed that most of the unusual behaviors
in the dynamics of wave systems can be governed by their
topological properties [55–58]. Unlike quantum mechanical
or classical wave systems, thermal evolution in radiative sys-
tems is of dissipative nature. Recent studies have suggested
that asymmetric analogues of the Su-Schrieffer-Heeger (SSH)
model are relevant in describing one-dimensional topological
behavior in dissipative systems [59–62]. Ultimately, it will be
of interest to propose a system showing topological features
like insulation in radiative systems.

In this study, we apply the concept of band topology, which
is traditionally used in classical and quantum wave systems,
to investigate heat transfer in radiative systems. We demon-
strate how the utilization of the response matrix allows for an
understanding of the topological behavior exhibited by these
systems. Our calculations are carried out within the theoretical
framework of fluctuational electrodynamics, specifically in
the dipolar approximation regime. By employing a lineariza-
tion approach, we determine the eigenvalues and eigenstates
of the response matrix, which govern the temporal evolution
of temperatures in the underlying radiative system. The topo-
logical phases observed are then interpreted in terms of these
eigenstates. We utilize this methodology to illustrate a topo-
logical phase transition and the emergence of localized states
with topological robustness in a chain of spherical nanoparti-
cles. Subsequently, we investigate the thermalization process
in the presence of localized states and unveil the existence of
a simple topological insulator in radiative systems.

II. THEORETICAL MODEL

Consider a bipartite chain of spherical NPs along the x axis
with lattice constant d , as depicted in Fig. 1(a). The intracell
separation distance between NPs A and B is βd , and volume
of NPs are Vi(β ). Here, the number of particles is taken to be
even and β ∈ [0.45, 0.55] is used as topological tuning param-
eter. Particles are initially at temperatures Ti and immersed in
a thermal bath at constant temperature Tb = 300 K. Follow-
ing previous studies, the differential equation governing the

FIG. 1. (a) A schematic representation of a bipartite chain of
spherical nanoparticles (NPs) aligned along the x axis with a lattice
constant of d . The NPs are divided into A and B sublattices, with an
intracell separation distance of βd . The chain is immersed in a ther-
mal bath at a temperature of Tb = 300 K. (b) Eigenvalue spectrum of
the SSH chain with a symmetric response matrix, showcasing typical
values of β ∈ {0.46, 0.5, 0.54}. The lattice constant is d = 500 nm,
the number of particles is N = 60, and the volumes of the NPs are
constant at Vi = V0 = 4π

3 (50)3 nm3. (c) Eigenvalue spectrum of the
SSH chain with an asymmetric response matrix. The parameters are
the same as in panel (b), except for the volume of particles 1 and 60,
which depend on β according to V1(β ) = V60(β ) = 4π

3 (1 250 000β −
561 000) nm3.

evolution of temperatures is [3,63]

γi
dTi

dt
= Pi (i = 1, 2, . . . , N ), (1)

where Pi refers to the radiative power dissipated in particle
i, respectively. Moreover, γi = ciVi is the heat capacity of
the particle, with volumetric specific heat capacity ci. Within
the linear approximation we get a Schrödinger like equation,
which takes an elegant form when written in compact notation

d

dt
�T(t ) = −Ĥ�T(t ), (2)

where �T = (�T1,�T2, . . . , �TN )ᵀ is the column vector
representing the temperature state, with elements �Ti = Ti −
Tb that describe the temperature deviation of the NPs with
respect to the environment. Moreover, Ĥ = −�̂−1F̂ is N ×
N static response matrix with elements Hi j = −Fi j/γi, and
�̂ is a diagonal matrix with heat capacities along the diago-
nal, i.e., �̂ = diag{γ1, γ2, . . . , γN }. Following previous works
[52–54], the elements of the conductance matrix are given by

Fi j =
∫ ∞

0

dω

2π
τi j (ω)

∂�(ω, T )

∂T

∣∣∣
Tb

. (3)
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In this equation, �(ω, T ) = h̄ω/[exp(h̄ω/kBT ) − 1] is the
mean energy of a Planck harmonic oscillator in ther-
mal equilibrium at frequency ω and temperature T .
Moreover, τi j = 2ImTr[Âi jIm(χ̂ j )Ĉ

†
i j] represents the radia-

tive energy transmission coefficient between ith and jth
NPs, which includes many-body effects (for more de-
tails see Refs. [12,14,15]). In this expression, 3N × 3N
block matrices are defined as A = [1 − α̃W ]−1, χ̂ = α̃ +
α̃Ĝ†

0 α̃
†, and Ĉ = [W + Ĝ0]A. Here, 1 stands for the iden-

tity matrix, Ŵ is the dipole-dipole interaction matrix, Ĝ0 =
i(k3/6π )1, and α̃ = diag{α̂1, α̂2, . . . , α̂N } is the polarizabil-
ity matrix. Furthermore, the 3 × 3 block matrices in W
represent the dipolar interaction between particles i and
j. This interaction is described by the free space Green’s

tensor Ĝi �= j = k3

4π
[ f (kri j )1 + g(kri j )

ri j⊗ri j

r2
i j

]. In this equa-

tion, f (x) = [x−1 + ix−2 − x−3] exp(ix) and g(x) = [−x−1 −
3ix−2 + 3x−3] exp(ix), where k = ω/c and ri j represents the
distance between the ith and jth nanoparticles, which are
located at positions ri and r j , respectively.

In the case of identical particles, the heat capacity ma-
trix simplifies to �̂ = γ1, where γ represents the heat
capacities. Furthermore, since F̂ is symmetric, the response
matrix becomes symmetric. However, in a system of NPs
with different volumes, the heat capacity matrix takes the
form �̂ = c diag{V1,V2, . . . ,VN }. As a result, the response
matrix becomes asymmetric. Nonetheless, the response ma-
trix remains diagonalizable, allowing us to express it in
biorthonormal form as Ĥ = ∑N

μ=1 λμψμφᵀ
μ. Here, ψμ and

φμ represent the right and left eigenvectors of Ĥ , respec-
tively, corresponding to the eigenvalue λμ. They satisfy the
equations Ĥψμ = λμψμ and φᵀ

μĤ = λμφᵀ
μ. Throughout the

paper, the vector ψμ along with its corresponding eigenvalue
is referred to as the μth mode. Additionally, for convenience,
we use indices {i, j, m, n} to label the nanoparticles (i.e.,
lattice sites), and Greek indices μ and ν to denote the mode
numbers.

It is important to emphasize that in general, ψμ are not
mutually orthogonal, and ψμ �= φμ. However, due to the
diagonalizability of the response matrix, its left and right
eigenvectors satisfy biorthogonality, i.e., φᵀ

μ · ψμ = δμν . Ad-
ditionally, it can be shown that these eigenvectors are related
by φμ = �̂ψμ/(ψᵀ

μ�̂ψμ).
To examine the temporal changes in temperatures, it is

valuable to examine the continuum basis denoted by ψμ(x),
where ψμ(x) represents the eigenstate of the Hamiltonian
operator Ĥ in the spatial representation. Likewise, the tem-
perature distribution �T (x, t ) can be referred to as the state
of temperature. Through meticulous calculations [outlined in
Sec. A 1 of the Appendix], the solution to Eq. (2) is derived as
follows:

�T (x, t ) =
N∑

μ=1

Cμ(0)e−λμtψμ(x), (4)

where Cμ(0) = φᵀ
μ · �T(0) represents the initial weight of the

temperature state in the μth mode. This equation provides
the temperature state as a function of spatial and temporal
coordinates. By knowing the initial temperature state, we
can calculate the initial weight distribution as Pμ = |φᵀ

μ ·

�T(0)|2/[�T(0)ᵀ · �T(0)]. In the Supplemental Material
[64], we discussed how the weight of the initial temperature
state vector plays a significant role in the thermalization pro-
cess of the system.

III. LOCALIZED MODES IN RADIATIVE SYSTEMS

The topological properties of the SSH chain shown in
Fig. 1(a) are determined by the eigenvalue spectrum of its
response matrix. In the case of reciprocal nanoparticles,
the eigenvalues of the response matrix are real and de-
pend solely on the tuning parameter β. In this study, we
focus specifically on the thermal topology of systems consist-
ing of reciprocal nanoparticles. As a concrete example, we
consider Silicon-Carbide (SiC) as a typical material, charac-
terized by a volumetric specific heat capacity of c = 2.4075 ×
106 J K−1 m−3. The polarizability of the nanoparticles is given
by αi = 3Vi(ε − 1)/(ε + 2), where ε represents the scalar per-
mittivity defined as ε = ω∞(ω2

L − ω2 − iγω)/(ω2
T − ω2 −

iγω). Here, we adopt specific values for the SiC material,
namely, ε∞ = 6.7, ωT = 1.495 × 1014 rad/s, ωL = 1.827 ×
1014 rad/s, and γ = 0.9 × 1012 rad/s.

A simple example of the radiative analog of the SSH
model is a chain of nanoparticles with identical volumes.
In this case, the parameter β only affects the intracell
separation distance, resulting in a symmetric response matrix.
In Fig. 1(b), we present the eigenvalue spectrum of the
system for N = 60 nanoparticles with a lattice constant of
d = 500 nm. The nanoparticles have a constant volume
Vi = V0 = 4

3π (50)3 nm3, and the results are shown for
typical values of β in the range β ∈ {0.46, 0.5, 0.54}. The
eigenvalue spectrum reveals a prominent gap at β = 0.46,
indicating a substantial separation between relaxation rate
levels. However, at the critical value β = βc = 0.5, the
band gap in the spectrum closes, suggesting a transition
in the system’s states. Subsequently, for values of β > βc,
as exemplified by β = 0.54, the gap reopens, indicating a
similar relaxation configuration. To comprehensively assess
the topological properties of the system, we calculate the
Zak phase and winding number (refer to Sec. A 3 b in the
Appendix). Our calculations demonstrate that the structure
undergoes a topological phase transition across the critical
value of β = 0.5. Importantly, this transition does not
coincide with the emergence of localized temperature states
within the system. To explore the potential of localized
states in one-dimensional radiative systems exhibiting
topological features, we investigate systems characterized by
an asymmetric response matrix (refer to Sec. A 3 c for the
conditions under which localized states exist). Specifically,
our focus lies on systems possessing mirror reflection
symmetry, commonly referred to as P symmetry. For
simplicity, we assume that the volumes of particles m and n
in the chain are dependent on β, denoted as Vm = Vn = V (β ),
where n = N + 1 − m. Through the appropriate selection of a
function V (β ), it becomes possible to construct an asymmetric
response matrix that facilitates the description of the
emergence of localized states as influenced by the coupling
parameter β. In our study, we consider a simplified scenario
where the volumes of both the mth and nth nanoparticles
are given by Vm = Vn = 4π

3 (1 250 000β − 561 000) nm3,
while all other nanoparticles have constant volumes
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FIG. 2. The eigenvalue spectrum of the response matrix H is
shown as a function of β for an SSH chain consisting of N = 60 SiC
nanoparticles with a lattice constant of d = 500 nm. The volume of
the first and last nanoparticles depends on β according to V1(β ) =
V60(β ) = 4π

3 (1 250 000β − 561 000) nm3, while all other nanopar-
ticles have constant volumes Vi �=1,60 = 4π

3 503 nm3. The modes are
sequentially labeled using Greek indices, and the key bands include
S (slowest band), F (fastest band), U (higher localized band), and
D (lower localized band). The color bar on the right represents the
Inverse Participation Ratio (IPR) of the eigenstates.

Vi �=m,n = 4π
3 503 nm3. This choice results in a linear

dependence of the particle volumes m and n on the
intracell distance factor β. The specific form of V (β ),
detailed in Sec. A 3 c of the Appendix, is designed to
maintain flat bands associated with localized states for
β < 0.5. Figure 1(c) displays the eigenvalue spectrum of the
response matrix for a specific configuration (m, n) = (1, 60),
employing the same parameters as in Fig. 1(b), except for
Vm = Vn = 4π

3 (1 250 000β − 561 000) nm3. At β = 0.54,
the spectrum closely resembles the previous case, exhibiting
a discernible gap. However, at β = 0.46, a band gap also
emerges, effectively dividing the spectrum into lower and
upper bands. Notably, within this band gap, the presence of
edge states becomes apparent. As subsequently demonstrated,
these edge states exhibit localization at the boundaries of
the chain and showcase resilience against perturbations.
The existence of these edge states signifies the nontrivial
topological nature of the system, which we will further
elucidate.

The full eigenvalue spectrum of the response matrix of the
system with an asymmetric response matrix is depicted in
Fig. 2. The spectrum reveals distinct features depending on
the value of the intracell distance factor, β. For values of β

below 0.5, localized states can be observed in the spectrum.
These localized states coexist with the bulk states, giving rise
to a rich and diverse eigenvalue spectrum. The bulk state refers
to the thermal modes that could mainly be excited in the
system within its bulk or bulk region, away from any surfaces,
interfaces, defects, or edges. These state form allowed allowed

relaxation time levels that represents the thermal properties
of the system asa whole. In contrast, edge state, localized
state, or defect states refers to a unique state that arises at
the boundary, or defected position in a system with nontrivial
topological properties. Due to their localized nature, they are
often confined to a narrow region in the system. They exhibit
unique properties such as unidirectional transport, robustness
against disorder, and the presence of relaxation time levels
within the band gap. We designate this regime as the topo-
logically nontrivial phase (TNP). Conversely, for values of β

above 0.5, the spectrum exhibits a different behavior, devoid
of distinct localized states. We refer to this regime as the
topologically trivial phase (TTP). In the eigenvalue spectrum,
the eigenstates are denoted by subscripts F and S, represent-
ing the eigenstate with the largest and smallest eigenvalue,
respectively. These eigenstates are commonly referred to as
the fast and slow modes, respectively, based on their contri-
butions to the decay rate and thermalization process in the
chain. The presence of both bulk states and localized states
in the spectrum highlights the complex interplay between the
topological properties of the system and the tuning parameter
β. This interplay governs the emergence of different types
of eigenstates and provides insights into the system’s thermal
dynamics and behavior.

IV. PROFILE OF THE EIGENSTATES FOR A CHAIN
WITH ASYMMETRIC RESPONSE MATRIX

The temporal evolution of temperatures, as described by
Eq. (4), is influenced not only by the eigenvalues but also
by the eigenstates of the response matrix. In this section, we
focus on examining the eigenstates of a chain of nanoparticles
(NPs) with an asymmetric response matrix in its topologically
nontrivial phase. To illustrate this, we consider a specific case
with β = 0.46, and present the profiles of the eigenstates in
Fig. 3. The chain of NPs under investigation is the same as in
the previous section, but with an extended length of N = 100.

As described in Appendix, the system demonstrates par-
ity preservation, characterized by the commutation relation
[�̂, Ĥ ] = 0, where �̂ represents the parity operator. Conse-
quently, the eigenstates can be classified as either even or
odd with respect to l/2, where l = xN − x1. The profiles of
selected modes are displayed in Fig. 3. We observe that the
eigenstates exhibit a distinct pattern of even or odd symmetry
with respect to the center of the chain. Notably, the slowest
mode ψ1(x) exhibits an even-parity profile. Furthermore, the
lower and upper edge states exhibit symmetric and asymmet-
ric profiles, respectively, with both states localized at sites
i = 1 and i = 100. As described in Sec. A 3 d of the Appendix,
these modes exhibit topological robustness against perturba-
tions that preserve the mirror reflection symmetry within the
system.

V. L-TYPE AND R-TYPE EIGENSTATES

Upon calculating the eigenstate profiles, we can con-
struct L-type and R-type eigenstates as ψL(x) = [ψD(x) −
ψU (x)]/

√
2 and ψR(x) = [ψD(x) + ψU (x)]/

√
2, respectively.

These L-type and R-type states exhibit the characteristics of
maximum localization and have a significant influence on
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FIG. 3. The eigenmode profiles are shown for selected modes of the response matrix in a chain of N = 100 nanoparticles with an
interparticle distance of d = 500 nm. These profiles specifically correspond to the case of β = 0.46, representing the system in its topologically
nontrivial phase. In this setup, the volumes of the nanoparticles, except for the first and last ones, are kept constant at Vi �=1,100 = 4

3 π (50)3 nm3.
However, the first and last particles, denoted as V1(β ) and V100(β ) respectively, exhibit volume dependence on the parameter β. The volume of
these specific nanoparticles is given by V1(β ) = V100(β ) = 4π

3 (1 250 000β − 561 000) nm3.

the thermalization process, particularly in the topologically
nontrivial phase of the system. Therefore we conduct a com-
prehensive investigation of their properties.

In Fig. 4, we present the profiles of these hybridized eigen-
states for a chain of N = 60 nanoparticles, considering the
special cases of (m, n) = (1, 60) and (m, n) = (15, 46). The
figure depicts the profiles for a specific value of β = 0.46,
representing the TNP of the chain. It is evident that the L-type
state is fully localized at site m, while the R-type state is
localized at site n. It is important to emphasize that the L-type
and R-type states are pure states, serving as simultaneous
eigenstates of the response matrix in the limit of β � βc (for
the definition of pure, mixed, and random states, refer to the
Sec. S 1 of the Supplemental Material [64]). However, since
the L-type and R-type states do not possess even or odd parity,
they are not parity eigenstates.

In Fig. 5(a), we illustrate the weight distribution of the
L-type states in the topologically nontrivial phase for β =
0.46 and (m, n) = (15, 46). The weight is equally distributed
over the localized modes ψU and ψD, i.e., Pμ = 0.5[δμ,D +
δμ,U ], where D = N/2 + 1 and U = N/2 + 2. However, as we
slightly increase β, both the L-type and R-type states extend
over neighboring sites, no longer remaining eigenstates of the
response matrix. This behavior indicates that they become
delocalized. In Fig. 5(b), we show the profile of |ψL(xi )|2 for
different values of β. It is observed that this mode gradually
extends as β increases and eventually becomes completely

FIG. 4. The profiles of the L-type and R-type modes are shown
for a chain of N = 60 nanoparticles with an asymmetric response
matrix in the topologically nontrivial phase of the system, where
β = 0.46. The specific cases depicted are (a) (m, n) = (1, 60) and
(b) (m, n) = (15, 46).

delocalized over the entire chain beyond the critical point.
Similar arguments apply to the localized states ψU and ψD.
For more detailed information, please refer to Sec. S 2 of
Ref. [64].

The inverse participation ratio (IPR) is a valuable metric
for characterizing the localization properties of a given state.
In our study, where we have established the presence of edge
states or localized states, we utilize the IPR defined as IPRμ =∑

i |ψμ(xi )|4/(
∑

i |ψμ(xi )|2)2 [65]. Here, ψμ(xi ) represents
the amplitude of the μth eigenstate at the ith nanoparticle
location. The inverse of the IPR provides an estimate of the
number of nanoparticles involved in the thermalization pro-
cess through that particular mode. To illustrate the variation
in localization quality among the eigenstates, we present the
eigenstate spectrum in Fig. 2 using a color scale. The color
bars on the right side of the figure indicate the IPR values

FIG. 5. Key features of the L-type eigenstate, specifically for the
case of (m, n) = (15, 46), in an asymmetric SSH chain of nanopar-
ticles are presented. (a) The weight distribution of |ψL (x)|2 is shown
for a chain of N = 60 nanoparticles at β = 0.46. (b) The probability
distribution of ψL (x) is displayed for β values ranging from 0.46
to 0.54 in a chain with an asymmetric response matrix and N = 60
nanoparticles. (c) The inverse participation ratio (IPR) of ψL (x) is
plotted as a function of β for chains of nanoparticles with different
lengths N . The inset exhibits the scaling behavior of IPR vs N in the
topologically trivial phase (TTP).
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for the eigenstates. It can be observed that most eigenstates
exhibit extended behavior, except for two localized modes
around λe when β < 0.5. Notably, as β decreases, the local-
ization of eigenstates in the upper localized band (UEB) and
lower localized band (DEB) significantly increases.

To demonstrate the delocalization of the L-type state at
the critical point, we analyze the IPR of ψL(x) for various
system sizes in Fig. 5(c). From this plot, it can be observed
that IPRL is relatively large (∼1) at β = 0.46 and decreases
as β increases. The minimum value of IPRL occurs at the
critical point βc = 0.5 for different system sizes N , indi-
cating the transition between edge and bulk states. In the
topologically trivial phase, the IPR of ψL(x) remains approx-
imately constant, suggesting complete delocalization of this
state throughout the chain. It is evident from the figure that,
in this phase, the state ψL(x) becomes more delocalized with
increasing system size. Additionally, we observed a decrease
in IPRL following a scaling law of IPRL ∼ N−0.9 with respect
to the chain length N , as shown in the inset of Fig. 5(c).

VI. DYNAMIC OF TEMPERATURES IN TOPOLOGICALLY
TRIVIAL AND NONTRIVIAL PHASES

We are now ready to explore the dynamics of temperature
in the presence of a localized state. To achieve this, we in-
vestigate the temporal evolution of temperatures by exciting
edge or bulk states in a chain of N = 60 nanoparticles with
(m, n) = (1, 60). The initial condition for temperatures is de-
fined such that only one of the particles (either particle 1 or
particle 30) is heated up to 350 K, denoted as �T = 50 K,
while all other particles are initially at room temperature of
300 K, denoted as �T = 0 K. The thermalization process
is presented in Fig. 6 for both the topologically nontrivial
phase (e.g., β = 0.46) and the topologically trivial phase (e.g.,
β = 0.54). The inset in the figures represents the weight dis-
tribution of the initial temperature state over modes.

The temporal evolution of temperatures in case where only
particle 1 is heated up to 350 K is shown in Fig. 6(a) for
β = 0.46. Initially we may think the initial temperature state
vector �Ti(0) ≡ �T (xi, 0) = 50δi1 is a mixed state. However,
we observe the weight distribution of the initial tempera-
ture state is highly localized on edge state modes, i.e., Pμ 

0.5[δμD + δμU ], see the inset in Fig. 6(a). Comparing this
distribution with that in Fig. 5(a), we can conclude that the
initial temperature state is similar to ψL(x), i.e., �T (xi, 0) 

50ψL(xi ), and therefore it is semipure. As a result, we expect a
relatively isolated thermalization (compared to the following
cases) with decay rate ∼λe in this case.

Figure 6(b) illustrates the scenario corresponding to the
topologically trivial phase (β = 0.54) with the same ini-
tial condition: �Ti(0) = 50δi1. Upon examining the inset of
Fig. 6(b), we observe that the distribution of Pμ extends across
several modes, primarily μ � U . Consequently, this initial
temperature state can be regarded as a mixed state. In this par-
ticular case, the slowest mode ψS (x) dominates the temporal
evolution of temperatures, leading to an increased thermal-
ization time. To further elucidate the thermalization process,
Figs. 6(c) and 6(d) present the evolution when the 30th parti-
cle is heated to 350 K initially, denoted as �Ti(0) = 50δi30.
Irrespective of the system’s topological phase, the initial

FIG. 6. Temperature evolution in a chain with asymmetric
response matrix comprising N = 60 nanoparticles in both the topo-
logically trivial and nontrivial phases. The volume of particles
is determined as follows: Vi �=1,60 = 4

3 π × (50)3 nm3 and V1(β ) =
V60(β ) = 4π

3 (1 250 000β − 561 000) nm3. The initial temperature
condition is set such that only the jth particle is heated to 350 K,
while all other particles are initially at room temperature of 300 K. It
should be noted that the edge state is localized at sites 1 and 60 in the
topologically nontrivial phase. (a) Temperature evolution for j = 1
in the topologically nontrivial phase with β = 0.46. (b) Temperature
evolution for j = 1 in the topologically trivial phase with β = 0.54.
(c) Temperature evolution for j = 30 in the topologically nontrivial
phase with β = 0.46. (d) Temperature evolution for j = 30 in the
topologically trivial phase with β = 0.54.

temperature state in this scenario is mixed, with contributions
from almost all modes, as depicted in the insets of Figs. 6(c)
and 6(d). Similar to the previous case, the thermalization pro-
cess is primarily determined by the eigenvalue of the slowest
mode, resulting in �T (x30, t > λ−1

S ) ∝ exp(−λSt ). Conse-
quently, the thermalization time is significantly prolonged.
A thorough comparison of the obtained results with those
derived from a system with symmetric response matrix, as
detailed in Sec. S 3 of Ref. [64], highlights an important ob-
servation. The absence of localized states in chian of identical
nanoparticles yields a distinctive long-range characteristic in
the propagation of heat flux along the chain. This finding
implies that the presence or absence of localized states sig-
nificantly impacts the transport properties and dynamics of
temperatures in the system.

VII. THERMALIZATION TIME

To gain a deeper understanding of the impact of structural
topology on the transient regime of temperature dynamics, we
conducted calculations to determine the thermalization time
of the system. Similar to the approach in the previous section,
we utilized an initial temperature state to excite the desired
states. For this purpose, the bulk states were excited by heating
up particle j in the chain, where j /∈ {m, n} in the topologi-
cally nontrivial phase. Likewise, the edge states were excited
by heating up particle j ∈ {m, n} in topologically nontrivial
phase. In both scenarios, particle j was heated to 350 K, while
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FIG. 7. (a) Thermalization time of a chain with a length of
N = 60, representing the same setup as shown in Fig. 1(c), but with
different initial temperature states, specifically �T (xi, 0) = 50δi, j

for j ∈ {1, 2, 30}. (b) Thermalization time for the initial temperature
state �T (xi, 0) = 50δi,1 in a chain of nanoparticles with different
lengths, N ∈ {20, 40, 60, 80, 100}. [(c)–(e)] Color map depicting the
weight distribution Pμ for the initial temperature state �T (xi, 0) =
50δi, j , where j is equal to 1, 2, and 30, respectively.

all other particles were initially at room temperature of 300 K.
Subsequently, we tracked the thermalization process until the
system reached its equilibrium state, known as the stable state.
To quantify the results, the thermalization time τ in each case
was defined as the time at which �T (x, τ ) < 10−12 K.

In Fig. 7(a), we present the thermalization time in a chain
consisting of N = 60 NPs with (m, n) = (1, 60) for selected
values of j, specifically j ∈ {1, 2, 30}. The thermalization
time for j = 1 exhibits a sharp increase for β � βc, followed
by a more gradual rise in the topologically trivial phase. Inter-
estingly, the thermalization times τ2 and τ30 are approximately
equal and do not significantly depend on the topological phase
of the system. They exhibit a slow decrease and approach the
value of τ1 as β � βc. Notably, this behavior is consistent for
chains with localized states at arbitrary positions (m, n).

The impact of chain length on the thermalization time is il-
lustrated in Fig. 7(b) for the specific case of j = 1. Heating up
particle 1 in topologically nontrivial phase, particularly when
β � βc, excites the L-type edge state. Consequently, the ther-
malization time exhibits little dependence on the chain length
in this limit. On the other hand, in the topologically trivial
phase, we observe that the thermalization time is enhanced
compared to topologically nontrivial phase and reaches a sat-
uration point for longer chain lengths.

To gain insights into the underlying physics of the ther-
malization process, we examine the color maps of the weight

distribution Pμ for the initial temperature state �T (xi, 0) =
50δi, j as a function of β. Figures 7(c)–7(e) present these color
maps, displayed in a logarithmic scale for clarity. Notably,
heating up particle 1 efficiently excites the edge state in the
topologically nontrivial phase, as depicted in Fig. 7(c). The
weight distribution of this initial temperature state, partic-
ularly for β � βc, exhibits localization around λe, similar
to the behavior of ψL(x) shown in Fig. 5(a). Consequently,
the initial temperature state can be regarded as semipure,
primarily exciting the localized L-type state. As a result, we
expect a rapid and nearly isolated temperature decay for the
excited edge site, characterized by �T (x1, t ) ∼ 50 exp(−λet ),
while �T (xi �=1, t ) 
 0. This finding excellently agrees with
the results in Figs. 7(a) and 7(b) and confirms the small values
of τ1 for β � βc. However, as β increases beyond βc, other
modes in the bulk become populated. This is attributed to
the transition of the initial temperature state from semipure to
mixed as β increases. Figure 7(c) demonstrates that the states
in the lower bulk band are fully excited, leading to a longer
thermalization time for β > βc.

From Fig. 7(d), it is evident that heating up particle 2
results in a slight excitation of the edge states in TNP. This
is expected since particle 2 is located in close proximity to
the localization site at m = 1. Simultaneously, a significant
portion of the modes in the lower bulk band is also excited.
Consequently, the contribution of the slowest mode μ = S is
sufficient to explain the longer thermalization time observed
in TNP. In the topologically trivial phase, for any value of β,
heating up particle 2 approximately populates all bulk states
in both the upper and lower bands. Once again, the thermal-
ization time is primarily determined by mode μ = S, resulting
in an approximately equal value of τ2 as in TNP.

The weight distribution of the initial temperature state for
�T (xi, 0) = 50δi,30 is considerably extended, as depicted in
Fig. 7(e). Regardless of the value of β, heating up this particle
leads to excitation of all bulk states. As in the previous cases,
the slowest mode dominates the thermalization time, thus sug-
gesting a similar τ2 = τ30 
 constant behavior, as observed in
Fig. 7(a).

VIII. RADIATIVE INSULATOR

To investigate the concept of topological insulation in ra-
diative systems, we present the spatiotemporal evolution of
the temperature field �T (x, t ) in a chain of N = 60 nanopar-
ticles with localized modes located at (m, n) = (15, 46) and
β = 0.45, as depicted in Fig. 8. In Fig. 8(a), we fix the tem-
perature of particle j = 5 at 350 K, while initially all other
particles are at room temperature 300 K. Similarly, the time
evolution of the temperature field for j = 30 is displayed
in Fig. 8(b). Since β = 0.45, the system is in the topologi-
cally nontrivial phase with localized modes positioned at x15

and x46.
Interestingly, we observe that the localized states exhibit

topological insulation behavior, effectively blocking the flow
of radiative energy within the system. This leads to the for-
mation of a sharp temperature gradient at the positions of
the localized modes, with the insulation strength decreasing
as β increases. In Fig. 8(a), where the hot source is located
at x5, the localized state at x15 prevents the radiative energy
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FIG. 8. Spatiotemporal evolution of the temperature field
�T (xi, t ) in a chain of N = 60 nanoparticles for the same setup
as shown in Fig. 1(c). The localized states positioned at (m, n) =
(15, 46) are indicated by arrows. Particle j is maintained at a constant
temperature Tj = 350 K, while all other particles are initially at room
temperature 300 K. (a) j = 5. (b) j = 30.

from flowing across it. The same feature is observed when
the hot source is positioned between the localization points
of the localized states. Figure 8(b) clearly demonstrates that
topological insulation hinders the transport of radiative energy
across x15 and x46. It is important to note that since radiative
heat transfer has a long-range nature, the insulation is not per-
fectly 100%. However, the localized modes effectively block
the diffusive component of the thermal flow in the limit of
β � βc.

To further explore the influence of structure topology and
the presence of localized states on the radiative heat flux,
we analyze the spatiotemporal evolution of the temperature
field in chains with localized states positioned at the middle
of the chain, i.e., (m, n) = ( N

2 , N
2 + 1). Figure 9 illustrates

the results for chains with N = 20 and 30 NPs, showcasing
the spatiotemporal evolution of the temperature field for var-
ious values of β. In both cases, the first and last particles in
the chain are maintained at constant temperatures T (x1, t ) =
350 K and T (xN , t ) = 300 K, respectively, while all other
particles initially have a temperature of 300 K and are allowed
to vary with time.

Remarkably, we observe that for β = 0.45, thermal energy
is not permitted to flow across the localized sites, resulting in
a sharp temperature gradient at the positions of the localized
modes. However, as β increases towards the trivial topo-
logical phase, the localized modes become more extended,
enabling the thermal energy to freely diffuse throughout the
system. This behavior is evident in both panels (a) and (b)
of Fig. 9, corresponding to chains with N = 20 and 30 NPs,
respectively.

IX. CONCLUSION

In summary, we have provided a theoretical investigation
of topological phase transitions and the presence of topologi-
cal modes, including edge states and conventional bulk states,
in radiative systems. Using the response matrix formalism
within the framework of fluctuational electrodynamics, we
have explored the topological behavior of these systems. By
examining the eigenvalue spectrum, we have observed dis-
tinct behaviors in systems with symmetric and asymmetric
response matrices. Specifically, for systems with a symmetric
response matrix, which corresponds to identical nanoparticles,
we have identified topological phase transitions. However, we
have not observed the existence of edge states in this case.

FIG. 9. Spatiotemporal evolution of the temperature field
�T (xi, t ) in a chain of N nanoparticles (NPs) for the same setup
as depicted in Fig. 1(c). The positions of the localized states, indi-
cated by dashed rectangles, are located at (m, n) = (N/2, N/2 + 1).
The first and last particles are maintained at constant temperatures
T1 = 350 K and TN = 300 K, respectively, while all other particles
are initially at room temperature 300 K. (a) Chain length N = 20.
(b) Chain length N = 30.

On the other hand, by considering systems with an asym-
metric response matrix and mirror reflection symmetry (P
symmetry), we have discovered the emergence of localized
states within the band gap for certain parameter values. This
finding indicates the presence of a topologically nontrivial
phase in the system. These localized states, known as edge
states or defect modes, are confined to the boundaries and
demonstrate robustness against perturbations that maintain the
mirror reflection symmetry of the system.

Additionally, we examined the temporal evolution of tem-
peratures in the presence of a localized state by exciting
either edge or bulk states in a chain of nanoparticles with an
asymmetric response matrix. Our observations of temperature
dynamics for the topologically nontrivial and topologically
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trivial phases highlighted the influence of the system’s topol-
ogy on thermal behavior.

Furthermore, our investigation of the spatiotemporal evolu-
tion of the temperature field in the presence of localized states
revealed the topological insulation characteristics of these
states. The localized states effectively blocked the flow of
radiative energy within the system, resulting in the formation
of sharp temperature gradients at their positions.

Overall, our research enhances the understanding of heat
transfer in radiative systems from a topological perspective. It
provides valuable insights into topological phase transitions,
the existence of localized states, and the impact of topology on
the thermalization process. The approach we propose has the
potential to inspire future research in nanoparticle ensembles,
both in two-dimensional and three-dimensional settings, as
well as in structures with planar geometry that rely on radi-
ation for energy transfer. Furthermore, our approach can be
extended to investigate the active control of topological fea-
tures using external electric or magnetic fields. We believe that
our findings reveal new and fascinating aspects of topological
phases in radiative systems and offer valuable insights into
the topological insulation of thermal energy, which may find
applications in the field of radiative heat transfer.

APPENDIX: TOPOLOGICAL FEATURES IN
ONE-DIMENSIONAL RADIATIVE SYSTEMS

In this Appendix, we present a scientific formulation of
temperature dynamics in a system of particles interacting
through radiation. Our approach successfully describes the
observation of edge states and topological phase transitions
in many-body systems. The calculations are conducted within
the theoretical framework of fluctuational electrodynamics,
specifically employing the dipolar approximation. By ap-
plying linear response theory, we introduce a theoretical
framework to analyze the temporal evolution of temperatures
in a system of spherical nanoparticles (NPs). This formalism
allows us to describe the dynamics in terms of eigenstates
of the response matrix. Consequently, we can classify the
system’s dynamical properties based on their initial tempera-
ture state. To demonstrate the occurrence of topological phase
transitions, we utilize the introduced eigenmode represen-
tation in a chain of particles with an asymmetric response
matrix. Additionally, we explore techniques for manipulating
the spatial position of localized states within the chain.

To investigate the localization of modes and the impact
of chain size on the localization of topological edge states,
we employ the inverse participation ratio (IPR) as a use-
ful tool. Finally, we analyze the thermalization process in
the NPs chain and compare the thermalization time between
topologically trivial and nontrivial phases of the system. Our
formalism establishes a strong foundation for exploring the
topology and related phenomena in radiative systems.

1. Theory and model

Let us consider a system comprising N spherical nanopar-
ticles, each characterized by its volume Vi, volumetric
specific heat capacity ci, and initial temperatures Ti(0). These
nanoparticles are immersed in a thermal bath maintained
at a temperature of Tb = 300 K, as depicted in Fig. 10(a).

FIG. 10. (a) Sketch of a radiative system of N spherical NPs with
initial temperature Ti(0) (i = 1, 2, . . . , N ) immersed in a thermal
bath at Tb. (B) A schematic illustration of bipartite chain of spherical
NPs along the x axis with lattice constant d and immersed in a
thermal bath at Tb = 300 K. The volume of particles is Vi(β ), (i =
1, 2, . . . , N ) and the intracell separation distance between NPs A and
B is βd .

Following previous studies, the evolution of nanoparticle tem-
peratures can be described by a set of coupled differential
equations given as follows:

γi
dTi

dt
= Pi (i = 1, 2, . . . , N ). (A1)

Here, γi = ciVi represents the heat capacity of the ith
nanoparticle, and Pi denotes the total power dissipated in
that particular nanoparticle. To calculate Pi, we utilize the
fluctuation-dissipation theorem and the dipole approximation,
yielding

Pi =
∫ ∞

0

dω

2π

N∑
j=1

[τi j�(ω, Tj ) − τi j�(ω, Tb)]. (A2)

In linear approximation, we can expand �(ω, Tj ) in Eq. (A2)
about Tb by writing Tj = Tb + �Tj to get [52–54]

Pi =
N∑

j=1

Fi j�Tj, (A3)

where

Fi j =
∫ ∞

0

dω

2π
τi j (ω)

∂�(ω, T )

∂T

∣∣∣
Tb

. (A4)

By substituting Eq. (A3) into Eq. (A1), we get

d

dt
�Ti(t ) = γ −1

i

N∑
i=1

Fi j�Tj . (A5)

Now, by defining temperature state vector �T =
(�T1,�T2, . . . ,�TN )ᵀ, we can write Eq. (A5) as

d

dt
�T(t ) = −Ĥ�T(t ). (A6)

In the provided equation, the linear response matrix is de-
noted as Ĥ = −�̂−1F̂ [53], where �̂ represents a diagonal
matrix with heat capacities along the diagonal, given by �̂ =
diag{γ1, γ2, . . . , γN }. In a system where all particles are of the
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same material, i.e., c1 = c2 = · · · = cN ≡ c, we can express
�̂ as c diag{V1,V2, . . . ,VN }. Furthermore, the conductance
matrix F̂ is always real and symmetric, irrespective of whether
the particles are identical or not.

Notice the similarity in structure between Eq. (A6) and
the Schrödinger equation in quantum mechanics, given by
|ψ̇〉 = −ih̄−1Ĥ |ψ〉. To establish the Hamiltonian for dissipa-
tive systems, we can define Ĥ ′ = −iĤ with purely imaginary
eigenvalues. However, for simplicity and without loss of gen-
erality, we present the theory in terms of the response matrix
with real eigenvalues.

In the case of identical particles, where �̂ is diagonal and
F̂ is a symmetric matrix, the response matrix Ĥ is symmet-
ric. However, in general, the heat capacity of particles may
differ (γm �= γn), especially when the volumes (Vm �= Vn) are
unequal. This nonidentical nature renders the response matrix
asymmetric, represented as [H, H†] �= 0.

Our approach involves determining the eigenvalues and
eigenvectors of the response matrix Ĥ and constructing the
propagator Û (t ) using these eigenvalues and eigenvectors.
Since the response matrix is time-independent, this step is
relatively straightforward. After obtaining Û (t ), we express
the state vector �T(t ) as Û (t )�T(0). To proceed, we expand
the vector representing the initial temperature state using the
set of eigenvectors ψμ:

�T(0) =
N∑

μ=1

ψμ

[
φᵀ

μ · �T(0)
]
. (A7)

Here, “·” denotes the inner product, and we assume the linear
independence of the eigenvectors ψμ while considering that
the corresponding left eigenvectors φμ are normalized such
that φᵀ

μ · ψμ = 1. In our formalism, Cμ(0) = φᵀ
μ · �T(0) rep-

resents the weight of the initial temperature state in the μth
mode. Expanding �T(t ) in a similar manner:

�T(t ) =
N∑

μ=1

Cμ(t )ψμ. (A8)

By substituting Eqs. (A7) and (A8) into Eq. (A6), we can
obtain the expression for Û (t ) as follows:

Û (t ) =
N∑

μ=1

e−λμtψμφᵀ
μ. (A9)

Therefore the time evolution of the temperature state is given
by

�T(t ) = Û (t )�T(0) =
N∑

μ=1

Cμ(0)e−λμtψμ, (A10)

which leads to the equation

Cμ(t ) = Cμ(0)e−λμt . (A11)

The temporal behavior of temperatures can be effectively de-
scribed using continuous notation. Let us consider a linear
chain of nanoparticles positioned along the x axis, with a
total length of l = xN − x1. The one-dimensional temperature
field, denoted as �T (x, t ), represents the variation in temper-
ature within the chain relative to the thermal bath, given by

�T (x, t ) = T (x, t ) − Tb. Thus the evolution of the tempera-
ture field over time can be expressed as

�T (x, t ) =
N∑

μ=1

Cμ(0)e−λμtψμ(x). (A12)

In this equation, ψμ(x) corresponds to the right eigenstate
of the response matrix associated with the eigenvalue λμ.
The probability density of mode μ is defined as ρμ(x) =
|ψμ(x)|2. Additionally, we introduce the inverse participation
ratio (IPR), which is defined as

IPRμ =
∑

i = 1N |ψμ(xi )|4[∑N
i=1 |ψμ(xi )|2

]2 , (A13)

to quantify the spatial localization of the eigenstates. It is
worth noting that the IPR of the eigenstates lies within the
range of [1/N, 0.5], where the lower limit corresponds to a
completely extended mode and the upper limit corresponds
to a completely localized mode. As we will demonstrate,
the first eigenmode ψ1(x) is completely extended, resulting
in IPR1 = 1/N . Moreover, if we construct a combination of
eigenstates, the IPR of the constructed state will fall within
the range of [1/N, 1].

To investigate the topological phase transition in radiative
systems, we examine a bipartite chain of spherical nanopar-
ticles arranged along the x axis, with volumes Vi for i =
1, 2, . . . , N . These NPs are immersed in an external ther-
mal bath at a temperature of Tb = 300 K. As illustrated in
Fig. 10(b), the separation distance between cells remains con-
stant at d = 500 nm, while the intracell distance factor β is
employed to manipulate the system’s topological properties.
We begin by emphasizing key aspects of the introduced for-
malism, which aid in comprehending the temporal evolution
of temperatures in the topological edge modes.

2. Temporal evolution of temperatures
in the presence of constraint

In the previous section, we examined the temporal evolu-
tion of temperature in the absence of external power, where
the temperature in the phase space always reached a steady
state of �Ti(t → ∞) = 0, regardless of the initial temperature
state. Now, let us consider a scenario where we want to main-
tain the temperature of certain particles at a constant value
and study the temporal evolution of the temperatures of the
remaining particles. Therefore Eq. (1) can be expressed in a
more general form as

γi
dTi

dt
= Pi + F e

i (t ) (i = 1, 2, . . . , N ), (A14)

where F e
i (t ) is in general a time-dependent external power

applied to particle i to keep its temperature fixed. For sake
of simplicity, we assume that the temperature of pth particle
is taken to be fixed at Tp(t ) = Tp(0). Equation (A15) then can
be written as

γi
dTi

dt
= Pi + F e

p(t )δi,p (i = 1, 2, . . . , N ). (A15)

The functionality of F e
p (t ) is not known at this stage but it

certainly depend on time. In order to calculate the temporal
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evolution of temperatures as well as the functionality F e
p (t ),

we develop a formalism in this section that can simply ex-
tend for case where more than one object’s temperature is
kept fixed. The number of dynamical variables in our system,
specifically temperatures, is reduced to N − 1. This reduc-
tion is achieved by defining a rearranged temperature state
denoted as �T′ = (T − Tb)ᵀ = (�T ′

1 ,�T ′
2 , . . . ,�T ′

N−1)ᵀ,
where �T ′

p is excluded. By making this adjustment, Eq. (A6)
can be expressed as follows:

d

dt
�T′(t ) = −Ĥ ′�T′(t ) + F. (A16)

In this equation, Ĥ ′ is an (N − 1) × (N − 1) dimensional
matrix that represents the reduced response matrix obtained
by eliminating the pth row and pth column of the original
matrix Ĥ . The matrix Ĥ ′ can be represented in a biorthogonal
form as Ĥ ′ = ∑N−1

μ=1 λ′
μψ′

μφ′ᵀ
μ , where λ′

μ are the eigenvalues
of Ĥ ′, and ψ′

μ and φ′
μ are the corresponding right and left

eigenvectors, respectively. The eigenvectors ψ′
μ and φ′

μ play a
crucial role in the analysis of the system dynamics. They are
orthogonal to each other and provide insight into the specific
modes of behavior in the reduced system. The eigenvalues
λ′

μ represent the associated frequencies or rates of change
for each mode. Furthermore, in the given system, the power
received by particles from particle p can be mathematically
expressed as Fi = Hpi�T ′

p(0), where �T ′
p(0) represents the

temperature difference between Tp(0) and Tb.
To obtain the general form of Eq. (A12) while considering

the maintained constraint, we expand �T′(t ), �T′(0), and
F using the basis vectors of Ĥ ′. By utilizing Eq. (A16), the
resulting equation is as follows:

�T ′
i (t ) =

N−1∑
μ=1

[
CF

μ

λ′
μ

+
(

C′
μ(0) − CF

μ

λ′
μ

)
e−λ′

μt

]
ψ ′

μ(xi ). (A17)

In Eq. (A17), C′
μ(0) represents the initial weight of the

temperature state in the μth mode, given by C′
μ(0) = φ′ᵀ

μ ·
�T′(0). The quantity CF

μ is determined as CF
μ = φ′ᵀ

μ · F. By
computing the values of �T ′

i (t ), the power required to main-
tain the temperatures of particle p fixed can be obtained using
the unused equation in Eq. (A15) as F e

p (t ) = ∑N
i=1 Hpi�T ′

i (t ).
Equipped with the appropriate formalism described above,

we are now ready to investigate the topological behaviors of
the radiative system. The fundamental question is: under what
circumstances does a topological phase transition occur in a
chain of nanoparticles?

3. Existence of the edge state

The presence of spectrally fixed edge states at the midgap
value of the spectrum requires the presence of parity sym-
metry. In the case of identical particles, we have �̂ = γ1,
which implies that both �̂−1 and F̂ exhibit even parity. As
a result, the response matrix Ĥ remains invariant under parity.
Consequently, we can observe that Ĥ�̂ = +�̂Ĥ , and it is
evident that [Ĥ, �̂] = 0, where Ĥ = Ĥ†. Here, �̂ represents
the parity operator relative to the middle of the chain. What
happens if the particles are not identical? In general, the re-
sponse matrix will be asymmetric, Ĥ �= Ĥ†. However, with

a properly designed structure, there is a possibility for the
system to preserve parity symmetry. Once again, F̂ remains
invariant under parity. However, for �̂−1 and, consequently,
the response matrix Ĥ to be even under parity, we must satisfy
the condition

γi = γN+1−i. (A18)

On the other hand, there must be a mirror reflection sym-
metry with respect to the middle of the chain. Thus �̂ will
be symmetric (with respect to its minor diagonal), leading
to Hii = HN+1−i,N+1−i. This condition is trivially satisfied for
symmetric response matrices. Since γi = ciVi, in the special
case of particles with the same material, we must have

Vi = VN+1−i. (A19)

It is important to emphasize that even in this case, the
eigenvalues are real and positive. Moreover, ψμ are simulta-
neous eigenkets of Ĥ and �̂, just like in the symmetric case.
This situation also applies to the expected edge states ψD and
ψU , where the indices D and U refer to the localized band (as
discussed in the next section). As we will see, ψD and ψU are
orthogonal, and we can affirm with certainty that one of them
is even while the other is odd.

In order for the system to exhibit topological edge states,
we require the response matrix to be degenerate, in addition
to possessing parity symmetry. Furthermore, to achieve a flat
spectrum of edge states in the topologically nontrivial phase,
the degenerate eigenvalues must remain constant within a cer-
tain range of β. The first condition necessitates the existence
of at least two states that are simultaneous eigenvectors of
Ĥ with the same eigenvalue λe, namely ĤψD = λDψD and
ĤψU = λU ψU , where λD = λU = λe. The latter condition
establishes the presence of an edge in the system, provided
that dλe/dβ 
 0 within the desired range of β (referred to as
the “flatness rule”).

Considering localized modes that are localized at lattice
sites m and n, with the special case of (m, n) = (1, N ) rep-
resenting the edge state, we can utilize mirror reflection
symmetry to derive the following relationships: n = N + 1 −
m, γm = γn, Hmm = Hnn. As a result, the weight distribution
of the edge states is expected to be localized on both of these
sites, i.e., |ψD(x)|2 = |ψU (x)|2 
 [δ(x − xm) + δ(x − xn)]/2.

In an extremely dilute system, the response matrix takes
on a diagonal form, with diagonal elements Hii ∝ Vi/γi.
This accounts for the interaction with the thermal bath but
does not include the effects of interparticle interactions.
For a chain of particles composed of the same material,
we can express Hii ∝ c−1

i ≡ A, where A is a positive con-
stant. The diagonal structure of Ĥ implies that λe = Hmm =
Hnn = A. However, beyond the dilute limit of particles, the
interactions between cells and the interparticle interactions
(many-body effects) become significant, leading to deviations
from the diagonal form of the response matrix. Nonethe-
less, in the diagonal representation, we can approximate the
eigenvalues of Ĥ as λe ≈ A + fm(β,V1,V2, . . . ,VN )/Vm =
A + fn(β,V1,V2, . . . ,VN )/Vn, where f (β,V1,V2, . . . ,VN ) in-
corporates the interactions among the particles. Since fm =
fn ≡ fe and Vm = Vn ≡ Ve, we can write λe ≈ A + fe/Ve.
Therefore, assuming that U and D are localized modes located
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FIG. 11. Eigenvalue spectrum of a chain composed of SiC
nanoparticles with a lattice constant of d = 500 nm and a total
of N = 60 nanoparticles. The system characterized by a symmet-
ric response matrix Ĥ , where V1 = V2 = · · · = VN = V0 with V0 =
4
3 π503 nm3.

on both sites m and n within the desired range of β (e.g., below
the critical point β < βc), the degeneracy and flatness rules
discussed above imply that we must have

λe 
 A + fe(β, V)/Ve 
 cte, (A20a)

dλe

dβ

 0,[(

dfe

dβ
+

∑
i

∂ fe

∂Vi

dVi

dβ

)
Ve − dVe

dβ
fe

]/
V 2

e 
 0. (A20b)

a. Symmetric versus asymmetric response matrix

Let us now consider a specific scenario involving a chain
composed of identical particles, where the volume of each par-
ticle, denoted as Vi, remains constant throughout the chain. We
will refer to this constant volume as V0. As discussed earlier, in
this case, the response matrix is symmetric. We can simplify
Eq. (A20a) to λe 
 ge(β ), where ge(β ) = A + fe(β )/V0. The
condition for the flatness of the edge band in a topologically
nontrivial phase can be reduced to dfe

dβ

 0.

However, as depicted in Fig. 11, we find that this equa-
tion holds true only at the critical point βc = 0.5. In the figure,
we present the eigenvalue spectrum of a chain composed
of N = 60 SiC nanoparticles, all having the same volume
V0 = 4

3π (50)3 nm3 and a lattice constant d = 500 nm. It is
evident that no edge states can be found in this case, and
the flatness condition is satisfied only at the critical point
βc = 0.5 for N − 1 modes. Furthermore, none of these modes
reside in the midgap region, which is consistent with our
theoretical prediction. Moreover, the bulk states we observe
in the spectrum remain gapless only at βc.

This conclusion applies in general, suggesting that we
should not expect the presence of edge modes or localized

modes in a chain consisting of identical nanoparticles. How-
ever, it is important to note that the existence of localized edge
states is not a requirement for a topological phase transition.
It is possible to have a topological phase transition without
the presence of edge states. Therefore, while the absence of
localized edge states in a chain of identical nanoparticles is ex-
pected, it does not undermine the possibility of a topological
phase transition in such systems. The existence of a topo-
logical phase transition is determined by other topological
characteristics and can be captured by appropriate topological
invariants, which we will explore in subsequent section.

b. Topological invariants: Zak phase and bulk winding number

To develop a comprehensive understanding of the topo-
logical phase transition, this section aims to investigate the
topology of the system in reciprocal space. In order to mathe-
matically represent the response matrix in reciprocal space,
it is necessary to define the configuration of the unit cell.
Referring to the configuration depicted in Fig. 12(a), we can
express the response matrix in reciprocal space in a concise
manner as follows:

Ĥ(k) =
[

H11 + 2H13 cos(k) H12 + H23eik + H14e−ik

H12 + H23e−ik + H14eik H22 + 2H24 cos(k)

]
,

(A21)

represented compactly in notation as

Ĥ(k) = hx(k)σ̂x + hy(k)σ̂y + hz(k)σ̂z + h0(k)σ̂0, (A22)

where σ̂i (i = x, y, z) is the Pauli matrix, σ̂0 is 2 × 2 identity
matrix, and �h = hxî + hy ĵ + hzk̂ with

hx(k) = t1 + t2 cos(k) + t4 cos(k), (A23a)

hy(k) = t2 sin(k) − t4 sin(k), (A23b)

hz(k) = t11/2 − t22/2, (A23c)

h0(k) = t11/2 + t22/2 + 2t3 cos(k). (A23d)

Based on the schematic representation of the hopping terms
shown in Fig. 12(a), the parameters t1 = Hi,i+1, t2 = Hi+1,i+2,
t3 = Hi,i+2 = Hi+1,i+3, and t4 = Hi,i+3 = Hi+1,i+4 represent
the hopping parameters that govern the power exchange be-
tween adjacent cells in the chain. These parameters control
both the intercell and intracell hopping processes. Addition-
ally, t11 = H11 and t22 = H22 correspond to the on-site terms
of the response matrix and represent the cooling power con-
tributions from the respective objects.

It is worth noting that the presence of the identity ma-
trix σ0 in Eq. (A22) results in a shift in the eigenvalues of
the matrix Ĥ(k). Additionally, in the given configuration, it
is observed that t11 and t22 have similar magnitudes, resulting
in the negligible contribution of the hz term. Conversely, we
have min{t1, t2} � max{t3, t4}, which can be referred to as
the nearest-neighbor interaction limit. In this limit, the model
exhibits chiral symmetry, which implies that σzĤσ †

z = −Ĥ.
The eigenvalues of the response matrix in Eq. (A22), which

we refer to as thermal relaxation bands, can be expressed as

λ±
k = ±|�h| + h0. (A24)
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FIG. 12. (a) Schematic representation of a periodic chain with
periodic boundary conditions. The intercell hopping is denoted as
t1, while the intracell hoppings are represented by t2, t3, and t4. The
on-site values are denoted as t11 and t22. (b) Dispersion relations of
the model described by Eq. (A24) for typical values of the control
parameter β. (c) Variation of the Zak phase with respect to the control
parameter β. (d) Trajectory of the endpoints of the vector �h(k), which
represents the bulk momentum-space response matrix described by
Eq. (A22), traced on the hx , hy plane as the wavenumber sweeps
across the Brillouin zone, k : −π → π .

Here, |�h| =
√

h2
x + h2

y + h2
z is the magnitude of the vector

�h. In Fig. 12(b), the thermal relaxation bands for typical
values of β ∈ {0.45, 0.5, 0.53} are depicted. The thermal
relaxation bands in the system exhibit a gap, denoted as

� = min
√

h2
x + h2

y + h2
z . This minimum gap condition plays

a crucial role in determining the system’s topological proper-
ties. It can be observed that the two bands touch at (k, β ) =
(±π, 0.5), while a gap appears for β �= 0.5. This information
is significant as it allows us to define a topological invari-
ant and investigate the transition of the system’s topological
phase.

The precise right eigenstate of the infinite system can be
expressed as

|ψ+(k)〉 =
(

cos
(

θ
2

)
e−iϕ

sin
(

θ
2

) )
, (A25a)

|ψ−(k)〉 =
(

sin
(

θ
2

)
e−iϕ

− cos
(

θ
2

) )
. (A25b)

In these equations, θ (k) = arccos(hz/|�h|) and ϕ(k) =
arctan(hy/hx ). Additionally, the left eigenvectors are denoted
as 〈φ±(k)| = |ψ±(k)〉†. The Zak phase provides a character-
ization of the topological properties of Bloch wave functions
within the system. For the upper and lower bands, the geomet-
ric Zak phases are defined as follows:

�±
Z (β ) = i

∫ +π

−π

〈φ±(k)|∂k|ψ±(k)〉dk. (A26)

In Eq. (A26), �±
Z (β ) represents the Zak phase for the

respective upper (+) and lower (−) bands. The integral is
taken over the range −π to +π , and the terms 〈φ±(k)| and
|ψ±(k)〉 denote the left and right eigenvectors, respectively,
associated with the eigenstates of the system. To illustrate the
computation of the Zak phase in our physical system with
respect to the control parameter β, Fig. 12(c) is provided.
It shows how the Zak phase changes as we vary β. This
figure further demonstrates that the Zak phase transitions from
±π/2 to ∓π/2 for the upper and lower bands, respectively,
when β crosses from values less than 0.5 to values greater
than 0.5.

The eigenstates of the chain possess an internal structure
that can be described by the direction of the vector �h(k). In
particular, due to the negligible value of hz, as the momentum
k varies across the Brillouin zone from −π to π , the end-
point of �h(k) traces out a closed circular path on the hx-hy

plane. This circular path has a radius of |t1| and is centered at
(t2 + t4, 0).

The topology of this circular path can be characterized by
an integer known as the bulk winding number, denoted as w.
The bulk winding number counts the number of times the
circular path winds around the origin of the hx-hy plane. In
other words, it quantifies the number of revolutions the path
completes around the origin as k varies. In Fig. 12(d), we
can observe the behavior of the bulk winding number. For
β = 0.53, the winding number w = 0, indicating that the cir-
cular path does not wind around the origin. On the other hand,
for β = 0.46, the winding number w = 1, indicating that the
circular path completes one full revolution around the origin.
However, for β = 0.5, the winding number is undefined, as
the circular path coincides with the origin and does not wind
around it.
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c. Adding defect to the system: Asymmetric responce matrix

The absence of localized modes in this structure indicates
that heat transfer in the system exhibits long-range character-
istics, regardless of the value of β. Consequently, localizing
or inhibiting the flow of heat within the system becomes chal-
lenging. To address this, our primary objective is to investigate
methods that can induce the emergence of localized modes
in the one-dimensional chain of nanoparticles. By achieving
localized modes, we aim to enhance our ability to control heat
transfer and manipulate thermal properties within the system.

To achieve this goal, we propose introducing a perturbation
that breaks the symmetry of the system. This perturbation
can take the form of a local effect or an asymmetry in the
coupling between particles. In particular, we can explore
the effect of varying the volumes of nanoparticles within the
chain. By employing a simple approach, we consider a chain
of nanoparticles with varying volumes. However, it is crucial
to ensure the preservation of parity symmetry, as indicated by
Eq. (A19). To simplify the analysis, we focus on a chain where
the volumes of two specific particles depend on the parameter
β. The volume configuration can be expressed as

Vi(β ) =
{

V0 = const, i �= m, n;
V (β ), i = m, n.

(A27)

Here, V0 represents the volume of the majority of nanoparti-
cles in the chain, while V (β ) represents the volumes of the two
specific nanoparticles located at positions xm and xn. By intro-
ducing this strategy in the volume configuration, we break the
translational symmetry of the system. Consequently, localized
states can emerge around the nanoparticles with modified
volumes. These localized states arise due to the confinement
of the thermal flux within the region affected by the volume
perturbation.

It is important to note that the specific form of the perturba-
tion, V (β ), will determine the characteristics of the localized
states, including their relaxation rate and spatial extent. The
choice of the V (β ) should be made based on the desired
properties of the localized states and the intended symmetry-
breaking effect.

In this case, the response matrix exhibits asymmetric be-
havior. However, we can assess the existence and flatness of
the edge band for β < βc by analyzing the derivative dλe

dβ
. By

evaluating this quantity, we can gain insights into the behavior
and characteristics of the edge mode in the system. From
Eq. (A20a), we find fe(β ) 
 BVe(β ), where B is a constant.
Substituting this into Eq. (A20b) satisfies the flatness con-
dition, as it reduces to B dVe

dβ
Ve − dVe

dβ
BVe = 0. Therefore the

existence of an edge state is possible if Eq. (A20a) holds true
within the desired range of β. The next step is to determine a
suitable function for Ve(β ). In general, we can express fe(β )
as a polynomial for β < βc. Since Ve(β ) is proportional to
fe(β ) within the desired range of β, we can assume, to first
order in β, that Ve(β ) = Vm(β ) = Vn(β ) = aβ + b. Here, a
and b are constants, and we can determine their values by
minimizing the deviation of λe in Eq. (A20a). By incorporat-
ing a properly defined Ve(β ), the conditions mentioned earlier
hold true for β < βc and become invalid for β > βc. Notably,
introducing this asymmetry in nanoparticle volumes ensures
the preservation of parity symmetry. Physically, the adiabatic

FIG. 13. Eigenvalue spectrum of a chain composed of SiC
nanoparticles with a lattice constant of d = 500 nm and a total of
N = 60 nanoparticles. The systerm characterized by a asymmetric
response matrix Ĥ , where Vi �=1,60 = V0 = 4

3 π503 nm3 and V1(β ) =
V60(β ) = 4π

3 (1 250 000β − 561 000) nm3. The modes are sequen-
tially labeled using Greek indices, and the significant bands include:
S (the slowest band with μ = 1), F (the fastest band with μ = N), U
(the higher edge band with μ = N/2 + 2), and D (the lower edge
band with μ = N/2 + 1). The colored inverse participation ratio
(IPR) is depicted to illustrate the extended and localized eigenstates.

change in volume denoted by V (β ), coupled with variations
in the intracell separation distance, introduces a defect in the
system. This defect retains most of the system’s symmetries,
except for translation symmetry. Consequently, two robust
localized states emerge within the energy gap region. Thus
the topological phase transition in a chain of nanoparticles
with an asymmetric response matrix is characterized by the
emergence of localized modes.

Figure 13 depicts the eigenvalue spectrum of the same
nanoparticle chain discussed previously, but with the addi-
tional consideration that the volumes of the first and last
particles are given by V1(β ) = VN (β ) = 4π

3 (−1 250 000β +
689 000) nm3. The coefficients a = − 4π

3 1 250 000 and b =
4π
3 689 000 are chosen to ensure that the constraints in

Eq. (A20) hold true for values of β less than 0.5. It is apparent
from the spectrum that a topological edge band is present,
and a phase transition occurs at the critical point βc = 0.5.
The specific behavior and properties of these localized modes
depend on the details of the defect itself, such as its position,
volume V0, lattice constant d , and the specific form of the
function V (β ) introduced by the variation in β and intracell
separation distance. The function V (β ) controls the adiabatic
change in the system’s parameters, affecting the temperature
field behavior in the vicinity of the defect. The localization
of this modes (known as defect modes) is a result of the
broken translational symmetry caused by the defect, leading
to a modification of the system’s periodicity. This disruption
causes the eigenstates associated with the defect to become
localized within the band gap, resulting in the emergence
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FIG. 14. The eigenvalue spectrum in a chain consisting of 60
nanoparticles at β = 0.46. The spectrum is presented for different
values of Re, representing the radius of the nanoparticle at position
(m, n) = (1, 60), while all other particles maintain a constant radius
of R0 = 50 nm. Initially, the system displays a symmetric response
matrix when Re = R0. However, as the value of Re decreases, the
system undergoes a transition to an asymmetric response matrix.

of the defect modes. As shown in Fig. 13, the edge band
with a higher eigenvalue in the topologically trivial phase
(β > 0.5) is labeled as U , while the other band with a lower
eigenvalue is labeled as D. In the subsequent discussions,
their corresponding eigenmodes are referred to as the “up-
per” edge mode ψU (x) and the “lower” edge mode ψD(x),
respectively. Moreover, the eigenmode in the spectrum with
the lowest (highest) eigenvalue is labeled as S (F ). According
to Ref. [52], the first mode ψS predominates in the thermal-
ization process when excited in a collection of particles. In the
nontrivial topological phase of the system (β < 0.5), the edge
modes become localized at both ends of the chain. However, it
will be demonstrated in the subsequent section that the topo-
logically localized modes can be positioned at any arbitrary
point within the chain, denoted as (xm, xn), with the condition
m = N + 1 − n.

In order to investigate the underlying mechanism behind
the emergence of localized edge states as we transition from
a symmetric to an asymmetric response matrix, we analyze
the eigenvalue spectrum of a chain of length N = 60 with
Ri = R0 = 50 nm for β = 0.46, as shown in Fig. 14. By vary-
ing the radii of particles 1 and 60, denoted as Re, the response
matrix undergoes a transition from symmetric to asymmet-
ric. When Re = R0, corresponding to a symmetric response
matrix, the system exhibits a spectrum with a finite gap and
no localized states as we observed in Fig. 1(b). However,
as Re is decreased below R0, the response matrix becomes
asymmetric.

In this asymmetric regime, two defect modes emerge from
the upper bulk band and move into the gap region. Notably,
these modes reach the midgap for nonzero values of Re. Re-
markably, the introduction of an asymmetric response matrix
enables the existence of localized modes without modifying
the coupling configuration within the bulk of the system.
In our subsequent analysis, we will demonstrate that these

FIG. 15. Effect of (a) diagonal, (b) off-diagonal, and (c) Mirror-
reflection perturbation on the eigenvalue spectrum in a finite chain
with N = 61 particles and (m, n) = (1, 60), as a function of the
perturbation strength σ .

modes are exponentially confined around the defect position,
highlighting their localized nature.

d. Robustness of the edge states

The robustness of topological edge states is a fundamental
characteristic that ensures their protection against perturbation
and imperfections in the system. These edge states emerge
in specific topological phases of matter, such as topological
insulators or topological superconductors, where excitations
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are confined to the boundaries or interfaces of the mate-
rial. As illustrated in Fig. 13, the presence of a gap in the
eigenvalue spectrum of the system with an asymmetric re-
sponse matrix distinguishes the edge states from the bulk
states. This gap serves as a protective barrier, preventing
scattering or hybridization between the edge states and the
bulk states. Consequently, the edge states exhibit resilience
against local perturbations that do not result in the closure of
the gap.

To demonstrate the robustness of topological edge states
in the proposed system, we investigate the effects of pertur-
bation on the eigenvalue spectrum of the response matrix.
The perturbation is introduced by adding uncorrelated random
numbers with a Gaussian distribution and a standard deviation
of σ to the elements of the response matrix in real space.
The parameter σ quantifies the strength of local perturbation,
encompassing various factors such as displacement, removal,
or changes in material or particle volume. In this section,
the presented results are obtained for β = 0.46, and statisti-
cal significance and reliability are ensured by averaging over
500 realizations. As shown in Fig. 15(a), the introduction of
diagonal perturbation breaks the chiral symmetry, leading to
the loss of topological protection for the edge modes within
the system. This disruption results in the mixing of bulk and
edge states, as evidenced by the overlap of their eigenvalues.
Figure 15(b) illustrates the impact of off-diagonal perturbation

on the edge states. In this case, the localized edge states ex-
hibit resilience to the specific perturbation, maintaining their
separation from the bulk states. However, the perturbation
parameter σ noticeably affects the eigenvalues of the bulk
bands. We observe in both cases that as the magnitude of
perturbation approaches the band gap, this effect becomes
more pronounced and can ultimately close the gap, causing
the edge states to merge with the bulk states.

The question at hand is whether there exists a perturbation
that can be introduced into the model without closing the en-
ergy gap between the bulk bands. The model exhibits a distinct
topological phase characterized by the presence of protected
edge states when the relaxation gap is present. To preserve this
gap while introducing perturbations, it is crucial to maintain
the system’s underlying topological properties and preserve
the relevant symmetries. In this context, our focus lies on per-
turbations that preserve the mirror-reflection symmetry of the
system, as illustrated in Fig. 15(c). This specific perturbation
is carefully designed to uphold the mirror reflection symmetry
on the perturbed hoppings, while simultaneously avoiding the
closure of the band gap. Consequently, the introduced per-
turbation safeguards the topological invariant of the system,
which in this case, is represented by the winding number. By
maintaining the mirror-reflection symmetry, the perturbation
effectively preserves the system’s topological phase and en-
sures the persistence of the associated protected edge states.
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