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Quantum phase transitions have long been studied in their relation to quantum fluctuations. These fluctuations
can be quantified as the degree of spin squeezing in spin models, where one of the two noncommutative
observables breaks the standard quantum limit of measurement by minimizing its uncertainty. However, the
understanding of their role in dynamical quantum phase transitions (DQPTs) is still incomplete. In this work,
we combine the Loschmidt amplitude, which detects DQPTs, and the spin-squeezing parameter (SSP), the
quantification of spin squeezing, to study the spin dynamics in a quenched interacting spin model around
DQPT. We show that the extremum, mostly maximum, of SSP occurs near DQPTs when the system is quenched
between different phases. These phenomena further unveil the spin correlations during DQPTs, for which the
highest contribution aligns with the preferred direction of spin interactions in the postquenched phase. We also
demonstrate that the time evolution of SSP differs for various quench scenarios. These findings provide us with
physical insights into the dynamics of quantum fluctuations around DQPTs and their relation to the equilibrium
phase diagrams.
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I. INTRODUCTION

Dynamical quantum phase transitions (DQPTs) have been
serving as a theoretical framework on far-from-equilibrium
physics of quantum many-body systems. The theory origi-
nates as an analogy to the equilibrium statistical mechanics
about the phase transitions [1–3]. DQPTs can be triggered
through a sudden quench protocol from the initially prepared
Hamiltonian Hi in one phase or at phase boundary to the
final Hamiltonian Hf in another phase. DQPTs occur at times
when the dynamic quantity the Loschmidt amplitude (LA),
defined as

G(t ) = 〈
ψ i

0

∣∣ψ (t )
〉 = 〈

ψ i
0

∣∣e−iHf t/h̄
∣∣ψ i

0

〉
, (1)

the overlap of the time-evolved state |ψ (t )〉 onto the initial
ground state |ψ i

0〉, vanishes, or equivalently the dynamic free
energy or Loschmidt rate (LR)

λ(t ) = − lim
N→∞

1

N
ln[L(t )], (2)

where L(t ) = |G(t )|2 is termed the Loschmidt echo (LE),
behaves nonanalytically [1–3]. This is the definition of type-II
DQPTs. On the other hand, the type-I DQPT is defined under
the long-term dynamics of a system’s order parameter on a
sudden quench [4–8]. Supported by the realization of DQPTs
in experiments for various quantum systems via quantum
simulators [9–18], the establishment of the DQPT theories
thrives. There has been research on the fundamental properties
of DQPTs and the theoretical studies of DQPTs in various
quantum models [1–8,19–72]. DQPTs are also substantially
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shown to have deep connections to the entanglement spectrum
and correlation matrix [2,26–31,46,68].

The wealth of linkage to the entanglement motivates the
investigation of a more experimentally accessible quantity
regarding spin dynamics, the spin-squeezing parameter (SSP).
The SSP quantifies the quantum fluctuation when one mea-
sures one of two noncommutative spin observables and it has
various definitions fitting the purpose of studies [73–75]. The
idea of using SSP as a tool to study quantum phase transitions
was introduced in the past twenty years [76–78]. A recent
paper showed that a certain definition of SSP can be a probe
to detect the type-I DQPT, where the SSP behaves nonan-
alytically against the tunable parameter of a Bose-Einstein
condensate after a sudden quench across a certain phase
boundary [79]. A similar effect is also observed in experi-
ment for another model between different dynamical phases
[16]. A recent work on SSP in the one-dimensional (1D) XY
model, where the authors showed the possibility to generate
the spin-squeezed state from an originally unsqueezed system
by quenching, also stated the nonanalyticities found in long-
time-averaged SSP against the postquenched Hamiltonian for
an arbitrary prequenched Hamiltonian, and suggested a poten-
tial linkage to equilibrium phase transitions [80]. These works
seem to suggest a potential connection between type-I DQPTs
and quantum fluctuations, while the short-term physical na-
ture behind the type-II DQPTs is not well addressed.

Inspired by the extensive use of spin squeezing in the
mentioned research, we investigate the spin dynamics by ob-
serving the spin squeezing of a spin- 1

2 model around DQPTs
under different quench protocols in this work. We adopt the
definition of SSP by Ueda and Kitagawa [81],

ξ 2
S = 4(�Jn̂⊥ )2

N
, (3)
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where (�Jn̂⊥ )2 denotes the variance of the spin operators
orthogonal to the mean-spin direction (MSD) of the system,
with the spin operators defined as

Ja = 1

2

N∑
j=1

σ a
j , a = x, y, z. (4)

The state is considered to be squeezed if ξ 2
S < 1, and the larger

the SSP is, the less the state is squeezed.
In this work, we combine the conventional LA analysis

under a sudden quench and the study of time evolution of SSP
defined by Eq. (3) in the XY model. Along with extracting
explicitly the two-point correlation functions in the analytical
expression of SSP, we demonstrate how the evolution of quan-
tum fluctuation unveils the spin correlations during DQPT.
Namely, our results show the SSP attains local maximum near
DQPT in most of the cases. Furthermore, we show the cause
of this increase aligns with the physical properties of the un-
derlying equilibrium phase the system is quenched to. We also
distinguish the evolution pattern of SSP for different types
of quench, namely quenches across and from the equilibrium
phase boundary, and within one phase, in the regime around
the first critical time. We believe our study provides insights
on filling the knowledge gap of spin fluctuation in DQPTs as
well as the physical essence of DQPTs.

The paper is organized as follows: Section II covers the
analytical details necessary for the study, including the ex-
pression of LA and SSP. Section III demonstrates the findings
in different quench scenarios, with subsections divided as
follows: Section III A contains the analysis on quenches
between Ising ferromagnetic (FM) and paramagnetic (PM)
phases, Sec. III B analyzes the results for quenches between
anisotropic phases, and Sec. III C is the analysis of quenches
from the multicritical point of the XY model. Finally, a con-
clusion and some future perspectives regarding this work are
given in the last section.

II. FORMULATION AND 1D XY MODEL

We demonstrate our analysis on the 1D XY model which
is an integrable model and has proven the existence of DQPTs
[38,69]. The Hamiltonian is the following,

H (δ, g) = − h̄

2

N∑
j=1

[
J

(
1+ δ

2
σ x

j σ
x
j+1 + 1− δ

2
σ

y
j σ

y
j+1

)
+ gσ z

j

]
,

(5)

where N specifies the system size, J is the coupling strength,
δ governs the anisotropic coupling between spins along the
x and y directions, g is the external magnetic field strength
along the z direction, and the periodic boundary condition is
adopted. Below we set h̄ = J = 1 for convenience. The model
exhibits competitions between anisotropic and magnetic cou-
pling which results in the existence of multiple phases. In
particular, g < 1 gives rise to the FM phase, where it is fur-
ther divided into the x-spin dominant FMx phase and y-spin
dominant FMy phase depending on the sign of δ. When g > 1,
the model transits to the PM phase with the ground-state MSD
aligning parallel to the external magnetic field. Figure 1 shows
the equilibrium phase diagram of the 1D XY model. We will

FIG. 1. Schematic drawing of the ground-state phase diagram of
the equilibrium 1D XY model.

perform quenches across and from different phase boundaries
and critical points.

We study the quench dynamics of the model by first per-
forming Jordan-Wigner transformation σ+

j = exp[iπ
∑

l< j

c†
l cl ]c j and σ z

j = 1 − 2c†
j c j , followed by a Fourier transfor-

mation c j = (1/
√

N )
∑

k e−i jkck [82–84], and turn the
Hamiltonian into

H (δ, g) =
∑
k>0

η
†
k H (k)ηk, (6)

where ηk = (ck, c†
−k )T and H (k) = �d (k) · �σ is the Bloch

Hamiltonian with the Bloch vector �d (k) = (0,−δ sin k, g −
cos k)T and �σ = (σ x, σ y, σ z ) are the Pauli matrices [35].
For the sake of analysis, we concern the unit Bloch vectors
d̂ (k) = �d (k)/| �d (k)|. We restrict our calculations to the
even-parity subspace and N is even with the k’s of the form
k = (2m − 1)π/N , where m = 1, 2, . . . , N/2. Performing the
Bogoliubov transformation ck = cos[θk (δ, g)]βk +
i sin[θk (δ, g)]β†

−k , the diagonalized Hamiltonian reads

H (δ, g) =
∑
k>0

εk (δ, g)(β†
k βk − β−kβ

†
−k ), (7)

where εk (δ, g) = | �d (k)| =
√

(cos k − g)2 + (δ sin k)2 is the
quasiparticle eigenenergy, and θk (δ, g) ∈ [0, π/2] is the
Bogoliubov angle defined such that tan[2θk (δ, g)] ≡
δ sin k/(cos k − g).

Consider the system initially prepared in Hi = H (δi, gi )
and quenched to Hf = H (δ f , g f ). Using the vacuum state
as the initial state, LA in Eq. (1) can be decomposed into
momentum-wise form, namely G(t ) = ∏

k>0 Gk (t ), where

Gk (t ) = cos2 φkeiεk (δ f ,g f )t + sin2 φke−iεk (δ f ,g f )t (8)

with φk = θ i
k − θ

f
k being the difference between the initial and

the final Bogoliubov angles. The nonanalyticities in LA occur
when φk = ±π/4 at critical times

t p
c = π

ε
f
k∗

(
p − 1

2

)
, p ∈ N, (9)

where k∗ is the critical momentum when the corresponding
initial and final unit Bloch vectors d̂i(k∗) and d̂ f (k∗) are or-
thogonal to each other, i.e., d̂i(k∗) · d̂ f (k∗) = 0.
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The behavior of the momentum-wise LA can be visualized
by the vector introduced by Ding [52]:

�rk (t ) = (xk, yk ) = |Gk (t )|eiφG
k (t ), (10)

where φG
k (t ) = φG

k (t ) − φ
dyn
k (t ) is the Pancharactnam geomet-

ric phase (PGP) [85,86], defined by the difference between
the phase of LA φG

k (t ) = Arg[Gk (t )] and the dynamical phase
φ

dyn
k (t ) = − ∫ t

0 dt ′ 〈ψk (t ′)|Hf (k)|ψk (t ′)〉 = ε
f
k cos(2φk )t . The

PGP characterizes the dynamical topological order parameter
(DTOP) [35]

νD = 1

2π

∮ π

0

∂φG
k (t )

∂k
, (11)

which changes its value at DQPTs.
On the other hand, we adopt the formulation in Ref. [80]

regarding the spin dynamics analysis. The MSD of the XY
model is along the z direction as a result of the Z2 symme-
try which guarantees 〈Jx〉 = 〈Jy〉 = 0. The factor (�Jn̂⊥ )2 in
Eq. (3) is then taken to be [(cos α)Jx + (sin α)Jy]2. Setting
〈O〉 ≡ 〈ψ (t )|O|ψ (t )〉 for any operator O for simplicity, the
SSP reads

ξ 2
S (t ) = 2

N
min

{ 〈
J2

x + J2
y

〉 + J (α, t )
}
, (12)

where

J (α, t ) = cos(2α)
〈
J2

x − J2
y

〉 + sin(2α) 〈JxJy + JyJx〉 . (13)

The angle which yields the minimum of Eq. (12) is termed the
squeezing angle and is denoted as αs in the following. This
quantity has been studied in the context of qubit systems re-
lating its time evolution to the energy spectrum of the systems
[87]. In this paper, we will demonstrate how it embeds the

competition between the net parallel-spin contribution and the
cross-spin contribution over time. With transitional symmetry
of the chain, the time evolution of SSP can be written as

ξ 2
S (t ) = 1 + 2

N−1∑
n=1

[
Gxx

n (t ) + Gyy
n (t )

]

− 2

{[ N−1∑
n=1

[
Gxx

n (t ) − Gyy
n (t )

]]2

+
[ N−1∑

n=1

[
Gxy

n (t ) + Gyx
n (t )

]]2} 1
2

, (14)

where Gab
n (t ) = 〈σ a

1 σ b
1+n〉 /4 is the correlation function along

directions a and b and Gaa
0 (t ) = 〈σ a

1 σ a
1 〉 /4 = 1/4.

The calculation of the correlation functions involves com-
puting strings of operators of the forms [88]

Gxx
n (t ) = 1

4
〈B1A2B2 · · · AnBnAn+1〉 ,

Gyy
n (t ) = (−1)n

4
〈A1B2A2 · · · BnAnBn+1〉 ,

Gxy
n (t ) = i

4
〈B1A2B2 · · · AnBnBn+1〉 ,

Gyx
n (t ) = i(−1)n−1

4
〈A1B2A2 · · · BnAnAn+1〉 ,

(15)

where A = c†
j + c j and B = c†

j − c j in the Jordan-Wigner ba-
sis. By Wick’s theorem, the expectation values turn into sums
of all possible permutations of products of operator pairs,
which turns out to be a problem of calculating Pfaffians of
2n × 2n skew-symmetric matrices

Gab
n (t ) ∼ Pf

⎛
⎜⎜⎜⎜⎝

〈O1O2〉 〈O1O3〉 〈O1O4〉 · · · 〈O1O2n〉
〈O2O3〉 〈O2O4〉 · · · 〈O2O2n〉

〈O3O4〉 · · · 〈O3O2n〉
. . .

...
〈O2n−1O2n〉

⎞
⎟⎟⎟⎟⎠. (16)

Note that at t = 0 for parallel-spin correlation a = b = x, y,
the Pfaffians reduce to Toeplitz determinants known for the
analytical works of Lieb et al. in correlation function calcula-
tions in the XY model [88]. The elements of the Pfaffians are
four types of two-point functions as follows:

〈AjAj+n〉 = 〈BjBj+n〉

= −i
2

N

∑
k>0

sin(2φk ) sin(nk) sin
(
2ε

f
k t

)
,

〈AjBj+n〉 = 2

N

∑
k>0

[
cos(2φk ) cos

(
2θ

f
k + nk

)

− sin(2φk ) sin
(
2θ

f
k + nk

)
cos

(
2ε

f
k t

)]
,

〈BjAj+n〉 = − 2

N

∑
k>0

[
cos(2φk ) cos

(
2θ

f
k − nk

)

− sin(2φk ) sin
(
2θ

f
k − nk

)
cos(2ε

f
k t )

]
. (17)

In the next section, we study the spin dynamics in terms
of the SSP and the correlation functions in relation to DQPT
under three scenarios:

(1) quenches between Ising phases, where we fix the δ and
alter along g;

(2) quenches between anisotropic phases, where we fixed
g and quench along δ in the region bounded by −∞ < δ < ∞
and 0 � g < 1;

(3) quenches from the multicritical point (δc, gc) = (0, 1).
Alternatively we use the shorthand notation (δi, gi ) →

(δ f , g f ) for any quench when necessary. All quenches were
performed on an N = 100 system, and we concentrate our
discussion around the first critical time.

III. DYNAMICS OF SPIN SQUEEZING

A. Quenches between Ising phases

We performed quench cases involving the Ising boundary
gc = 1 while fixing δ = 0.8. The quench dynamics of forward
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FIG. 2. Scaled time plots of LR, DTOP (top panels), and SSP
(bottom panels) at δ = 0.8 for (a) gi = 0.4 → gf = 2, (b) gi = 2 →
gf = 0.1, (c) gi = 1 → gf = 2, and (d) gi = 1 → gf = 0.5. Red and
blue dashed lines indicate the first peak of LRs and SSPs, respec-
tively. Black dashed horizontal lines indicate ξ 2

S (t ) = 1.

quench (gi < g f ), backward quench (gi > g f ), and quench
from the critical point (gi = gc = 1) are shown in Fig. 2.
The DTOPs show the discontinuous jumps at critical times
as expected. Note that all the extra spikes on the DTOPs in
this paper are finite-size effects as confirmed numerically and
they would vanish to give the true DTOP evolution pattern
shown in Ref. [35] for larger systems. The vectors �rk plotted
in Figs. 3(a) and 3(b) swipe a full circle passing through the
origin for quenches across the equilibrium phase boundary.
The momentum at which the vector is zero is the critical
momentum, where Gk∗ (tc) = 0. �rk’s only swipe half a circle
for quenches from the critical point, which is consistent with
the observation in Ref. [52], and this leads to the half-integer
jump in DTOP.

From Fig. 2, we observe that the peaks of SSPs in
whichever case occur slightly sooner than the DQPTs. Note
that the critical times indicated in the figures are calculated
by Eq. (9) in the thermodynamic limit. For system sizes
N � 100, the peak times extracted from SSP do not change
significantly, suggesting this time discrepancy remains in
larger systems. Nevertheless, the SSP is a local maximum,
which implies that the state is the least spin-squeezed, in
the vicinity of DQPT. The difference between forward and
backward quenches is that the SSP keeps increasing for for-
ward quenches (left column of Fig. 2) while it stays near and
below 1 for backward quenches (right column of Fig. 2), but
they both have some revival effects during DQPT where the
spin-squeezing parameter falls following its peak, decreasing
in parallel to the Loschmidt rate. This suggests that the system
is around its most uncertain spin state along the direction
perpendicular to the MSD around the critical time.

The evolution pattern of SSPs can be qualitatively un-
derstood via the summed time-evolved correlation functions

FIG. 3. Trajectories of �rk’s at the corresponding critical times for
the same quench cases as in Fig. 2. Black dots indicate the origin at
which the vectors are located. The color scale shows the progression
of �rk’s from k = 0 to π .

and squeezing angle, which are plotted in Figs. 4 and 5,
respectively. For forward quenches including quenches from
the Ising boundary [Figs. 4(a) and 4(c)], the x-direction corre-
lation dominates initially as expected. As one approaches the
first critical time, the y-direction correlation functions surpass
the x-direction correlations. At the same time, the effect of
cross-direction correlations Gcross

n (t ) = Gxy
n (t ) + Gyx

n (t ) grows
rapidly. In the vicinity of the first DQPT, this surpassing effect
is among the highest while the contribution from the cross-
direction correlations sinks to near zero. After the DQPT,
Gxx

n (t )’s revive partly, and both Gxx
n (t )’s and Gyy

n (t )’s have
small but nonzero contributions while the cross-spin correla-
tions oscillate around zero in the later time. This phenomenon
resonates with the fact that the quench is from the FM phase,
which is xx-correlation dominant, to the PM phase, in which
none of the x and y correlations dominate. Around DQPT,
the system not only stays temporarily least spin-squeezed,
but also the farthest away from the original phase where yy
correlations thrive and surpass xx correlations.

In terms of the squeezing angle, we see from Eq. (13) that
J (αs, t ) exhibits dynamics resembling the rotation of a vector
during quenching. In particular, we define a squeezing vector
with x component 〈J2

x − J2
y 〉 and y component 〈JxJy + JyJx〉

and an angle 2αs between them. By observing the evolution
of the squeezing angle αs as indicated by the gray dots in the
plots, the vector has “rotated” in the clockwise direction for
about half a circle before reaching the first critical time. The
change of αs seems to be the most rapid across DQPT. After
one revival of the LE where the LR attains a local minimum
(at t/tc ≈ 2), the vector has completed about a full revolution.

On the other hand, from Figs. 4(b) and 4(d), backward
quenches seem to align with our observation to the spin nature
of the system established before: The correlation functions
along the x direction are the strongest alongside with a local
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FIG. 4. Scaled time plots of sums of correlation functions Gxx
n (t )

(top panels), Gyy
n (t ) (middle panels), and Gcross

n (t ) (bottom panels)
for the same quench cases as in Fig. 2. Red and blue dashed lines
indicate the first peak of LRs and SSPs, respectively.

minimum of y-direction correlations in the vicinity of DQPT,
marking the temporary transition to a state with FMx char-
acter. Apart from that, the contribution from the cross-spin
correlations briefly vanishes. In fact, in all quenches except
those from the Ising boundary the Gcross

n (t )’s change their sign
when passing the critical time. The sign change is opposite to
that for forward quenches. Another qualitative difference from
forward quenches is the rotation direction of the squeezing
vector, where it rotates anticlockwise initially and the motion
oscillates around α = π/2 [see Figs. 5(b) and 5(d)]. Like the
forward quenches, the rate of change of αs around DQPT is
the strongest and the features are more apparent for “longer”
(�g = g f − gi is large) quenches.

B. Quenches between anisotropic phases

The dynamics of the system in quenches between the
anisotropic phases behaves differently from that between Ising
phases. One major difference is that there will be two crit-
ical momenta k∗

1 and k∗
2 whenever one quenches across the

anisotropic boundary, which in turn give two critical times
tc,1 and tc,2. Budich and Heyl showed that at the two critical
momenta, the Bloch vectors rotate in opposite direction when
passing through the respective critical time [35]. Here we
demonstrate this idea through the vector defined in Eq. (10)

FIG. 5. Color map of J (α, t ) for the same quench as in Fig. 2.
Gray dots emphasize the squeezing angle αs. Red and blue dashed
lines refer to the first peak of LRs and SSPs, respectively.

and further explore the system’s dynamics through the spin-
squeezing parameter.

The anisotropic boundary is at δc = 0, separating two
phases: the x-spin dominant FMx phase (δ > 0) and the y-spin
dominant FMy phase (δ < 0). We fix g to 0.5 and quench
from FMy to FMx phase (upward quench), FMx to FMy phase
(downward quench), and also from the equilibrium phase
boundary. Their dynamics are shown in Fig. 6. Clearly from
the DTOPs in Figs. 6(a) and 6(b), we can observe the negative
and positive jumps at tc,1 and tc,2, respectively. For each crit-
ical time, there is an SSP peak slightly before it, which is the
same as those quenches in the case involving the Ising phases
in Sec. III A. Notice that the upward and downward quenches
are similar for a fixed g, unlike the forward and backward
quenches in Ising scenarios.

The existence of two critical momenta can be realized in
the trajectory of �rk . Namely, there are two “loops” in the
trajectory plot. At whichever critical time, the corresponding
vector �rk∗ vanishes. Figures 7(a) and 7(b) demonstrate the
phenomena at tc,1, the critical time for k∗

1 . When the system
keeps evolving, the blue loop would expand further and it
touches the origin at tc,2, the critical time for k∗

2 [as shown
in Figs. 7(c) and 7(d)]. The opposite circular motion of the
trajectories provides a visualization of the integer jumps in
DTOP when passing through critical times.

On the other hand, the dynamics of quench from the
anisotropic boundary is qualitatively very different from other
quenches. The DTOP does not behave as expected [see the
top panels of Figs. 6(c) and 6(d)]; it has nonanalyticities at
critical times, yet it does not jump between adjacent DQPTs.
This can be seen by the �rk in Figs. 7(e) and 7(f), where the
trajectory does not change smoothly at DQPT when crossing
the critical momentum, but the angles do. The evolution of
SSP goes from a very high value to a minimum around DQPT.
Unlike other quench scenarios, the system is among the most
squeezed state near DQPT. The cause of this might be that

064305-5



WONG, CHERAGHI, AND YU PHYSICAL REVIEW B 108, 064305 (2023)

FIG. 6. Scaled time plots of LR, DTOP (top panels), and SSP
(bottom panels) at g = 0.5 for (a) δi = −1.2 → δ f = 0.8, (b) δi =
0.8 → δ f = −0.8, (c) δi = 0 → δ f = 0.8, and (d) δi = 0 → δ f =
−1.2. Red and blue dashed lines indicate the first peak of LRs
and SSPs, respectively. The second red dashed lines in (a) and
(b) represent the second critical time tc,2 for each quench. Black
dashed horizontal lines indicate ξ 2

S (t ) = 1. The inset plots in (c) and
(d) display the zoomed SSP around the first critical time.

the equilibrium SSP in the domain δ = 0, g ∈ [0, 1) diverges.
When quenched out of the phase boundary, the SSP falls
rapidly and reaches its minimum near DQPT.

Since anisotropic phases involves competition between
x- and y-spin interactions, a more direct interpretation about
what is happening during DQPT via the time evolution of
the summed correlation functions can be observed in Fig. 8.
In particular, the upward quenches in Fig. 8(a) do show
an increase in Gxx

n (t ) and a decrease in Gyy
n (t ), and they

reach maximum and minimum, respectively, in the vicinity
of the first DQPT. The downward quenches in Fig. 8(b) show
the opposite phenomenon. In both cases, the contribution of
cross-spin correlations vanishes at the first critical times. One
observes the same effect for quenches from the anisotropic
boundary, where the xx correlations reach a higher value while
yy correlations drop to near zero [see Fig. 8(c)]. The feature
appearing only in quenches from the anisotropic boundary is
that at DQPT, the effects of cross-direction correlation func-
tions reach their extrema [Figs. 8(c) and 8(d)], which differs
from all other quenches studied.

The squeezing angle dynamics shown in Figs. 9(a) and
9(b) are similar to the quenches between Ising phases, where
the squeezing vector rotates in the clockwise direction at the
beginning and the decrease of the squeezing angles αs is the
most rapid at DQPT. In between the first and the second
critical times, the squeezing vector turns its rotation direction
and the increase in αs is the fastest at the second critical
time. On the other hand, the squeezing angle evolution for
quenches from the anisotropic boundary [Figs. 9(c) and 9(d)]
reaches its minimum at DQPT, marking the distinction from

FIG. 7. Trajectories of �rk’s at the critical times: (a), (c) upward
quench [Fig. 6(a)]; (b), (d) downward quench [Fig. 6(b)]; quenches
from anisotropic boundary to (e) FMx [Fig. 6(c)]; and (f) FMy

[Fig. 6(d)] phase. Black dots indicate the origin at which the vectors
are located. The color scale shows the progression of �rk’s from
k = 0 to π .

the cross-boundary quench cases. Then the whole evolution
pattern follows what backward quenches have in Ising phases,
where it oscillates around π/2 or π and never turns a full
round.

C. Quenches from multicritical point

We study two cases when quenched from the multicritical
point (δi, gi ) = (0, 1). Figure 10 shows the Loschmidt rate
and spin-squeezing parameter evolutions. Notice the perfect
oscillation of both LR and SSP for quench to (δ f , g f ) =
(1, 0), the case of a classical Ising model, in Fig. 10(a). The
periodicity of SSP is half the periodicity of LR. This can be
understood from the exact expressions of the LR and SSP;
namely the LR is of the form

λ(t ) = 1
2 ln 8 − 1

4 ln[38 + 24 cos(2t ) + 2 cos(4t )] (18)

and the SSP

ξ 2
S (t ) = 1

8

[
9 − cos(4t ) − 1√

2

√
cos(8t ) − 68 cos(4t ) + 67

]
.

(19)
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FIG. 8. Scaled time plots of sums of correlation functions Gxx
n (t )

(top panels), Gyy
n (t ) (middle panels), and Gcross

n (t ) (bottom panels)
for the same quench cases as in Fig. 6. Red and blue dashed lines
indicate the first peak of LRs and SSPs, respectively. The second red
dashed lines in (a) and (b) represent the second critical time tc,2 for
each quench.

The half periodicity of SSP comes from the dominating
cos(4t ) term in SSP as compared to the dominating cos(2t )
term in LR in Eqs. (18) and (19), respectively.

From Eq. (18), we see that the LR is independent of the
system size N. The size independence also holds for SSP due
to there being only a few nonzero correlation functions as
follows:

Gyy
2 (t ) = Gyy

N−2(t ) = 1
16 sin2(2t ),

Gxy
1 (t ) = Gxy

N−1(t ) = Gyx
1 (t ) = Gyx

N−1(t ) = 1
8 sin(2t ), (20)

and all other correlation functions vanish. In other words, in
this quench case, all parallel-spin correlations along x are
zero, whereas the next-nearest-neighbor correlations along y
are finite, resulting in the summed correlation functions in
Fig. 12(a). The observation here is counterintuitive to the fact
that the system is quenched to the point where the y-direction
interaction terms are less involved. Notice however that at
DQPT, the Gyy

n (t )’s drop to zero as expected.
The aforementioned perfect pattern in the LR and SSP evo-

lutions is destroyed when (δ f , g f ) differs from the classical
Ising model. As shown in Fig. 10(b), the SSP evolution is

FIG. 9. Color map of J (α, t ) for the same quench cases as in
Fig. 6. Gray dots emphasize the squeezing angle αs. Red and blue
dashed lines refer to the first peak of LRs and SSPs, respectively. The
second red dashed lines in (a) and (b) represent the second critical
time tc,2 for each quench.

distorted and resembles the pattern for a backward quench
between Ising phases described in Sec. III A. It has twice
as many peaks as the LR, and the major peaks occur near
the respective critical times. Nevertheless, for both quench
scenarios here, although they start from a critical point,
the DTOPs show integer jumps, aligning with the case of
quenches across the phase boundary instead of that from phase
boundaries presented in the previous sections. The trajectories
of the vectors �rk (t ) are also similar to the quenches across the
phase boundary (Fig. 11).

The sums of the time evolution of the correlation func-
tions for the quench to (δ f , g f ) that differs from the classical
Ising model are shown in Fig. 12(b). The distortion emerges
and the x-direction correlations rise a brief moment and then
slowly decrease around DQPT. The perfect oscillation pattern
of yy-correlation functions is deformed and interestingly they

FIG. 10. Scaled time plots of LR, DTOP (top panels), and
SSP (bottom panels) for (a) (δi, gi ) = (0, 1) → (δ f , gf ) = (1, 0) and
(b) (δi, gi ) = (0, 1) → (δ f , gf ) = (0.5, 0.5). Red and blue dashed
lines indicate the first peak of LRs and SSPs, respectively, and the
two lines overlap with each other in (a). Black dashed horizontal lines
indicate ξ 2

S (t ) = 1.
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FIG. 11. Trajectories of �rk’s at the corresponding critical times
for the same quench cases as in Fig. 10. Black dots indicate the
origin at which the vectors are located. The color scale shows the
progression of �rk’s from k = 0 to π .

surpass the xx-correlation functions at the first critical time.
On the other hand, the contribution of cross-spin correlations
mostly vanishes at DQPT, while before and after DQPT they
are of different signs, which resembles the quenches across
the critical boundary to the FMx phase.

In terms of the squeezing angle, the quench (0, 1) → (1, 0)
acts like the limiting case of backward quenches between
Ising phases shown in Fig. 5, where in Fig. 13(a) the slope
of the squeezing angle approaches −∞ at the first DQPT.
The squeezing vector never completes a full rotation; rather
it zigzags between the fourth and the first quadrants, i.e.,
αs ∈ [3π/4, π ) in 0 < t < tc and αs ∈ (0, π/4] in tc < t <

2tc. Note that in the evolution of αs for the case shown in
Fig. 13(b), the squeezing vector rotates anticlockwise and
completes a full circle for one revival time. Again we observe
the same phenomenon that the change of αs is the maximum
at DQPT.

IV. DISCUSSION

In the previous section, we showed that the time evolution
of the correlation functions matches the physical properties of

FIG. 12. Scaled time plots of sums of correlation functions
Gxx

n (t ) (top panels), Gyy
n (t ) (middle panels), and Gcross

n (t ) (bottom
panels) for the same quench cases as in Fig. 10. Red and blue dashed
lines indicate the first peak of LRs and SSPs, respectively, and the
two lines overlap with each other in (a).

FIG. 13. Color map of J (α, t ) for the same quench cases as in
Fig. 10. Gray dots emphasize the spin squeezing angle αs. Red and
blue dashed lines refer to the first peak of LRs and SSPs, respectively.

the phase that one quenches to in most of the cases. Here we
provide an insight for the whole quench dynamics of an inter-
acting spin model: Once the system is being quenched, the
cross-direction correlations begin either growing or shrink-
ing for around half the critical time for all kinds of quench.
At the same time for quenches between FMx and FMy

phases, the parallel-spin correlations evolve according to what
phase the system is quenched to: when the final phase is
flavored x spin, the Gxx

n (t )’s grow, whereas when the final
phase is flavored y spin, the Gyy

n (t )’s grow. In the vicinity
before the first DQPT, the flavoring parallel-spin correlation
functions reach their maximal values while the contribution
of cross-spin correlations diminishes. In this sense, the system
does appear to “transit” to the final phase at DQPT for a
brief amount of time. For the case of quenching to PM phase,
interestingly, the supposedly low yy-spin correlations rise
and peak just before DQPT. However, the originally flavored
xx-spin correlations shrink to near minimum. This serves as
evidence of “leaving” the original phase. On the other hand,
the cross-spin correlation functions rarely play a role during
DQPT caused by quenching across the critical boundary, but
they do contribute for quenches from critical boundaries, es-
pecially for the quench from the anisotropic boundary, where
the cross-spin correlations contribute a big part in minimizing
SSP around DQPT.

Following this interpretation, perhaps we can provide cru-
cial evidence suggesting the second DQPT for quenches
across the anisotropic boundary is more of a “partial return
transition” to the initial state. Namely, Figs. 7(a)–7(d) show
that the trajectory of the loops including k∗

1 (red loop) and
k∗

2 (blue loop) progresses in opposite direction. The strongest
evidence comes from the sums of correlation functions in
Figs. 8(a) and 8(b). In the summed Gxx

n (t ) and summed Gyy
n (t )

plots, the first DQPTs occur when the corresponding flavoring
correlations of the postquenched Hamiltonian peak, while at
the second critical time tc,2 these correlations become the low-
est. On the contrary, the originally flavored correlations do not
restore their domination, yet the nearest-neighbor as well as
the first few n correlations do rise and peak before the second
DQPT, as shown in Fig. 14, making the summed quantities
rise a little between the two critical times. The cross-spin
correlation functions vanish as expected for DQPTs. The evo-
lution of the squeezing angles also strengthens the argument,
where the squeezing vectors change their rotation directions
after tc,1 and the squeezing angles pass through tc,2 with the
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FIG. 14. Correlation functions for quenches across anisotropic
boundary: (a) (−1.2, 0.5) → (0.8, 0.5) and (b) (0.8, 0.5) →
(−0.8, 0.5). We show here n � 10 from light green to dark green
with increasing n. Correlations for larger n’s converge to the curve in
yellow. The first and the second red dashed lines indicate tc,1 and tc,2,
respectively. Blue dashed lines represents the maximum of SSPs.

greatest slope. After tc,2, the squeezing vectors return back
to the original rotation direction to complete a full turn. In
short, the above evidence suggests the system may partially
and temporarily return to a state having the spin character of
the initial state in the vicinity of the second DQPT.

In studying the dynamics around DQPT, often the time-
evolved SSP peaks around the critical time. This implies the
system is the least squeezed around DQPT. Here we exploit
some possible reasons behind regarding the first critical time.
From the analytical expression of the SSP in Eq. (14), peaked
SSP occurs when Gxx

n (t ) + Gyy
n (t ) is high and Gxx

n (t ) − Gyy
n (t )

and Gcross
n (t ) are minimal. We can immediately see that for

all the quench cases we studied, except quenches from phase
boundary to the ordered phase, the cross-spin correlation func-
tions are near zero, and the difference of x correlations and
y correlations is minimized. This gives a small square-root
term in Eq. (14) around DQPT and thus a relatively high SSP.
In some cases like the backward quenches in Ising phases
and quenches from the multicritical point, some Gyy

n (t )’s are
negative in the transient regime, plus there is the growing
contribution from Gcross

n (t ); the SSP in these cases drops at the
beginning. Shortly after, the quantities get lowered to minimal
and thus SSPs grow to their maxima near critical time. To put
it more generally, when quenched from some phase to the FMx

phase, the sums of Gxx
n (t )’s are around their maxima and sums

of Gxx
n (t )’s would behave such that Gxx

n (t ) − Gyy
n (t ) is low at

DQPT. The opposite is true for quenches to the FMy phase. In
other words, the x and y spins are of the most uncertain around
DQPT. The cross-spin correlations behave in such a way that
they vanish at DQPT while before and after DQPT they evolve
in opposite sign, making the SSP away from critical time
drops.

Besides the different evolutions of spin-related quantities,
the overall spin dynamics relating to the types of quenches
within one quench scenario is also studied and we found a
general relationship between cases with and without success-
ful DQPTs as well as the critical spin dynamics around the

FIG. 15. LR and SSP plots of (a), (b) quenches across Ising
boundary for fixed gf with δ = 0.8 and (c), (d) quenches across
anisotropic boundary with fixed δ f with g = 0.5. Black dashed lines
indicate the line where ξ 2

S (t ) = 1.

first critical time. In Fig. 15, we plot the rate functions and
spin-squeezing parameters for quenches starting from various
points in the equilibrium phase diagram. The case involving
Ising phases shows an apparent distinction from quenches
across the critical point and within one phase. Namely, SSPs
are generally high and growing for forward quenches, while
low and oscillating below 1 mostly for backward quenches.
Quenches within one phase, on the other hand, evolve below
1 for forward quenches and above 1 for backward quenches.
The case when the initial point is at the critical point behaves
between the two, where the SSP oscillates around 1. Special
features can also be observed during successful DQPTs for
quenches across the anisotropic boundary. In Figs. 15(c) and
15(d), quenches across the critical point result in a sharp peak
in SSP at the two critical times, while those peaks are absent
in quenches within one phase where no DQPT occurs. Also
for the quenches within the phase, the SSPs evolve around
and below 1. The critical quench, on the other hand, differs
drastically from other cases, where the SSP falls from infinity
to a minimum at DQPT, as stated in Sec. III B. In either
case, we further confirm the phenomenon that SSP reaches
its local extremum (usually maximum) when approaching
DQPT.

V. CONCLUSION

We analyzed three distinct quench scenarios in the
XY model, for which we successfully detected some phys-
ical properties that an integrable spin- 1

2 model might have
when quenched between different phases. First, the collective
spin of the system tends to fluctuate more when approaching
critical times. This can be observed by the time evolution
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of the spin-squeezing parameter of the system; namely the
SSP peaks, or the system is the least spin-squeezed, just
before DQPT occurs. This phenomenon seems to persist for
longer critical times and for most types of quenches—whether
quenched across or from critical boundaries, except when
the system is initially in the most unsqueezed state where
the SSP diverges. In either case, the system exhibits extreme
spin-squeezing dynamics relative to the initial state, being the
least or the most spin-squeezed situation, in the vicinity of
DQPTs.

By observing the exact analytical expressions for the time
evolution of the spin-squeezing parameter, we also reveal the
spin dynamics by studying the competition between parallel-
and cross-spin correlations. We find that during DQPTs, the
system does appear to evolve in such a way to match the spin
properties of the phase one quenches to. For instance, when
quenched to xx-spin-flavored phase, the x-direction correla-
tion grows to its maximum at DQPTs. This maximum reflects
that the system is in the least unsqueezed state during DQPTs.
Furthermore, we also showed that there is possibly some kind
of “return transition” occurring for models having two critical
momenta during the second DQPTs.

In short, the time evolution of SSP provides us nontrivial
physical insights into the spin correlations around DQPTs,

though we would like to remark that the SSP is not a precise
order parameter of DQPTs and this work is not intended to
address whether the spin correlations are the driver of DQPTs.
Nevertheless, the above-mentioned observations welcome fur-
ther confirmation in experiments, and in other models, for
example, the long-range transverse-field Ising model and
the Lipkin-Meshhov-Glick model, which have been exten-
sively studied for their intriguing dynamical behaviors around
various types of phase transitions [5,51,71,72]. It will be
interesting to understand the role of long-range interactions
in the spin correlation dynamics and the relation to DQPTs.
Moreover, the period halving in the SSP peaks relative to the
LR observed in some cases would also serve as an interesting
future work on how the quenched phases might affect the
evolution of spin correlations.
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