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Nonergodic one-magnon magnetization dynamics of the antiferromagnetic delta chain
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We investigate the one-magnon dynamics of the antiferromagnetic delta chain as a paradigmatic example of
tunable equilibration. Depending on the ratio of nearest and next-nearest exchange interactions the spin system
exhibits a flat band in one-magnon space—in this case equilibration happens only partially, whereas it appears
to be complete with dispersive bands as generally expected for generic Hamiltonians. We provide analytical as
well as numerical insight into the phenomenon.
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I. INTRODUCTION

Recent theoretical investigations on the foundations of
thermodynamics focus on equilibration as well as thermaliza-
tion in closed quantum systems under unitary time evolution.
The road to a deeper understanding was paved by the sem-
inal papers of Deutsch, Srednicki, and many others [1–12].
In simple words, the accepted expectation is that generic
Hamiltonians, i.e., Hamiltonians that are not special but rather
represent a class of similar Hamiltonians, lead to equilibration
for the vast majority of initial states [13]. In this context it
appears interesting to understand the untypical behavior seen
for special Hamiltonians or special states such as quantum
scar states [14–19].

For numerical studies, spin systems are the models of
choice both since they are numerically feasible due to the
finite size of their Hilbert spaces as well as they are experi-
mentally accessible for instance in standard investigations by
means of electron parametric resonance (EPR), free induction
decay (FID), or in atomic traps (see, e.g., Refs. [20–25]). In
such systems, observables assume expectation values that are
practically indistinguishable from the prediction of the diag-
onal ensemble for the vast majority of all late times of their
time evolution under very general and rather not restrictive
conditions (see, e.g., Refs. [7,26–32]).

In the present paper we investigate the paradigmatic spin
delta chain in the Heisenberg model which becomes special
for a certain ratio of the two defining exchange interactions
J1 and J2 (see Fig. 1). For J2/J1 = 1/2 the system exhibits
a flat band in one-magnon space or equivalently independent
localized one-magnon eigenstates of the Hamiltonian, a phe-
nomenon that has been attracting great attention for more
than 20 years now (see, e.g., Refs. [33–45]). In the context
of equilibration, flat bands are interesting since they give
rise to zero group velocity and thus result in a special form
of (partial) localization, sometimes also termed disorder-free
localization [17].

Since the one-magnon space of the delta chain hosts only
two energy bands (two spins per unit cell) the quantum
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problem can be solved analytically. We will present both an-
alytical as well as numerical solutions of the time-dependent
Schrödinger equation and in particular investigate the mag-
netization dynamics with and without a flat band. We will
provide analytical insight into which parts of an initial state
will not participate in the process of equilibration. Our results
can be qualitatively transferred to other flat-band systems such
as kagome, square kagome, or pyrochlore spin systems.

The paper is organized as follows. In Sec. II we introduce
the model, the concept of independent localized magnons, as
well as the major results. Section III provides the technical
details. The paper closes with a discussion in Sec. IV.

II. ONE-MAGNON DYNAMICS OF THE DELTA CHAIN

The antiferromagnetic delta chain is displayed in Fig. 1
(top). It is modeled by the Heisenberg model where the spin
sites are enumerated as 0, 1, . . . , N − 1 and the N th site is
equivalent to the zeroth site, N ≡ 0, assuming periodic bound-
ary conditions

H∼ = −2J1

N−1∑
i=0

�s∼i · �s∼i+1 − 2J2

N
2 −1∑
i=0

�s∼2i · �s∼2i+2, (1)

where �s∼i denote spin vector operators and J1 < 0 as well

as J2 < 0 are antiferromagnetic exchange interactions. The
model can be treated analytically in one-magnon space, i.e.,
when the total magnetic quantum number is given by M =
N (sa + sb)/2 − 1. Since the chain hosts two spins per unit
cell the eigenenergies are split into two bands of which one
is flat for α = J2/J1 = 1/2 [compare Fig. 1 (bottom)]. In the
latter case, one can transform the states of the flat band into
independent localized one-magnon states [see Fig. 1 (top) and,
e.g., Refs. [34,42]],

∣∣φ0
μ

〉 = 1√
6

(
1√
2sa

s∼
−
μ−1 − 2√

2sb
s∼

−
μ + 1√

2sa
s∼

−
μ+1

)
|�〉,

|�〉 = |m0 = sb, m1 = sa, . . . , mN−1 = sa〉, (2)

where μ is the position of the basal spin about which the
localized magnon is centered, and |�〉 denotes the magnon
vacuum, i.e., the fully polarized state. These states are
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FIG. 1. Top: Structure of the delta chain with apical spins sa

and basal spins sb as well as exchange interactions J1 and J2. The
spins are numbered 0, 1, . . . , N − 1. Periodic boundary conditions
are applied, i.e., N ≡ 0. An independent localized one-magnon state
is highlighted. It is a superposition of spin states with reduced
magnetization [compare (2)] that extends over three neighboring
sites as indicated. Bottom: Energy eigenvalues in one-magnon space
for N = 40, J1 = −2, J2 = −1, and sa = sb = 1

2 . The momentum
quantum number k (wave number) runs from 0 to N/2 − 1.

eigenstates of Hamiltonian (1) with the same energy as the
states of the flat band. Recently, localized independent one-
magnon states have also been termed “compact localized
states” [43,46,47], so often we will refer to them simply as
localized states in this paper.

One expects that the dynamics is different in the case of a
flat band compared to the generic case of dispersive bands.
Qualitatively, the argument can be expressed in two ways:
(1) Since one band is flat, the group velocity of these states
is strictly zero, and therefore parts of a wave function be-
longing to the flat band will not move and therefore never
equilibrate or thermalize. (2) Likewise, one can argue that
the independent localized one-magnon states are stationary
and contributions of them to a wave function stay localized
where they started initially. Technically, the details are a bit
more intricate since the localized one-magnon states are not
mutually orthogonal; we will elaborate on this in Sec. III.

The following figures demonstrate the discussed dynam-
ics by showing the local magnetization for all sites i =
0, . . . , N − 1, i.e.,

〈
s∼

z
i

〉
t = 〈�(t )|s∼

z
i |�(t )〉, (3)

|�(0)〉 = 1√
2s j

s∼
−
j |�〉, (4)

FIG. 2. N = 16, sa = sb = s = 1/2, |�(0)〉 = 1√
2s

s
∼

−
8 |�〉: Mag-

netization dynamics for α = 0.5 (top) as well as α = 0.48 (bottom).
The legend shows 0.5 − 〈s

∼
z
i 〉t .

starting with a single spin flip at site j at t = 0. We evaluated
the dynamics both numerically as well as analytically, and the
latter is shown [48,49].

We start our discussion by looking at single spin flips at a
basal site j. One expects that these spin flips differ somewhat
from flips at apical sites since they overlap only with one lo-
calized magnon whereas the latter overlap with two localized
magnons (compare Fig. 1).

Figure 2 shows the magnetization dynamics for N = 16
and sa = sb = s = 1

2 for the flat-band case α = J2/J1 = 1/2
(top) as well as for a nearby Hamiltonian with α = 0.48
(bottom), i.e., a dispersive band. As the initial state we choose
|�(0)〉 = 1√

2s
s∼

−
8 |�〉. One can see that in the case of a flat band

a large fraction of the magnetization remains localized at the
position of the respective independent localized one-magnon
state to which the site of the excitation belongs (sites 7–9
in the example) whereas for the (only slightly) dispersive
band the magnetization delocalizes across the system. Since
the system is rather small one observes to a small extent
waves that run around the system due to periodic boundary
conditions; they give rise to interferences.

The question is how larger systems behave. To this end
we show results for N = 40 in Fig. 3 as well as N = 200
in Fig. 4. One clearly sees (top panel of both figures) that a
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FIG. 3. N = 40, sa = sb = s = 1/2, |�(0)〉 = 1√
2s

s
∼

−
20|�〉: Mag-

netization dynamics for α = 0.5 (top) as well as α = 0.48 (bottom).
The legend shows 0.5 − 〈s

∼
z
i 〉t .

remanent magnetization persists at the site of the localized
magnon overlapping with the single-spin excitation for the
case of a flat band. In the case of dispersive bands the initially
maximally localized magnetization fluctuation redistributes
over the entire system (bottom panel of the figures).

The situation changes somewhat if the spin flip is executed
at an apical site. Such a site belongs to two independent
localized one-magnon states, therefore the magnetization re-
mains dominantly localized across both states. It should also
be somewhat smaller since it is now distributed over five sites.

Figures 5–7 display the cases of N = 16, N = 40, and
N = 200, respectively. Again, the main insight we gain is
that for the flat-band cases there is a remanent magnetization
distributed about the site of the single spin flip whereas for the
(only slightly) dispersive band the magnetization redistributes
over the entire system.

We summarize our results graphically in Fig. 8 where we
plot the time-averaged local magnetization, Eq. (3), at suffi-
ciently late times for various sizes of the spin system, i.e.,

〈
s∼

z
i

〉
t
= 1

nt�t

nt∑
n=1

〈�(t + n�t )|s∼
z
i |�(t + n�t )〉. (5)

We restrict ourselves to single-spin flips at a basal site. As
one can see in Fig. 8 (top), the local magnetization at the

FIG. 4. N = 200, sa = sb = s = 1/2, |�(0)〉 = 1√
2s

s
∼

−
100|�〉:

Magnetization dynamics for α = 0.5 (top) as well as α = 0.48
(bottom). The legend shows 0.5 − 〈s

∼
z
i 〉t .

site of the flip drops from one to 1/2 above background.
At the neighboring sites that belong to the localized magnon
|μ = j〉 the local magnetization approaches roughly 0.1 above
background. This means that out of the initial magnetization
fluctuation about 70% remain localized at the respective lo-
calized magnon, a substantial fraction that never equilibrates.
The precise contributions of a local spin flip that do not par-
ticipate in an equilibrating dynamics will be exactly evaluated
in Sec. III.

For the case of a dispersive band, shown in Fig. 8 (bottom),
one immediately realizes that the magnetization fluctuation
due to the single spin flip is practically evenly redistributed
over the entire system. All late-time single-spin expectation
values approach the background value of the magnon vacuum
(set to zero) plus 1/N for the redistributed single spin flip.

Finally, since this is not the focus of the paper at hand, we
refer readers interested in the question how exactly the system
approaches its long-time limit to the existing extensive wealth
of papers on that topic [26,28–32,50–53].

III. ANALYTICAL SOLUTION FOR THE DELTA CHAIN

All results discussed in Sec. II can be obtained either
numerically or even analytically. An analytical solution for
the delta chain can be achieved using the symmetries of
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FIG. 5. N = 16, sa = sb = 1/2, |�(0)〉 = 1√
2s7

s
∼

−
7 |�〉: Magneti-

zation dynamics for α = 0.5 (top) as well as α = 0.48 (bottom). The
legend shows 0.5 − 〈s

∼
z
i 〉t .

the Hamiltonian. One-magnon space is spanned by N states
1√
2si

s∼
−
i |�〉, and thus has got a dimension of N . A unit cell of

the chain hosts two spins, one sa and one sb spin, respectively,
with a translational symmetry given by the operator T∼ , i.e.,

T∼|m0, m1, . . . , mN−1〉 = |mN−2, mN−1, m0, . . .〉. (6)

This leads to two bands of energy eigenvalues, each
with N/2 states with momentum quantum numbers k =
0, 1, . . . , N/2 − 1 [compare Fig. 1 (bottom)]. The energy
eigenvalues εk,τ=±1 as well as eigenstates |εk,τ=±1〉 can be
obtained analytically since the Hamiltonian matrix is only of
size 2 × 2 for each value of k,

εk,1/2 = −2J1(Nsasb − sa − sb) − 2J2

{
N

2
s2

b − sb

×
[

1 − cos

(
4πk

N

)]}

±
{

J2
1 s2

a + 2J1J2sasb + (J1 − J2)2

+ sb cos

(
4πk

N

)[
2(J1 − J2)(J1sa + J2sb)

+ J2
2 sb cos

(
4πk

N

)]}1/2

, (7)

FIG. 6. N = 40, sa = sb = s = 1/2, |�(0)〉 = 1√
2s

s
∼

−
19|�〉: Mag-

netization dynamics for α = 0.5 (top) as well as α = 0.48 (bottom).
The legend shows 0.5 − 〈s

∼
z
i 〉t .

where εk,1 corresponds to the “+” sign and εk,2 to the “−”
sign, respectively. For J2 = J and J1 = 2J one obtains

εk,1 = −Jsb

{
N (4sa + sb) − 4

[
1 − cos

(
4πk

N

)]}
, (8)

εk,2 = −J{4sa(Nsb − 2) + sb(Nsb − 8)}, (9)

where εk,2 constitutes the flat band. The local magnetization at
site j as displayed in Figs. 2–7 can analytically be evaluated
as [48]

〈ψ (t )|s∼
z
j |ψ (t )〉 = 〈ψ (0)|e

i
h̄ H∼ ·t

s∼
z
je

− i
h̄ H∼ ·t |ψ (0)〉

=
∑
k,τ

∑
k′,τ ′

〈ψ (0)|εk,τ 〉〈εk,τ |s∼
z
j |εk′,τ ′ 〉

×〈εk′,τ ′ |ψ (0)〉e i
h̄ (ετ

k −ετ ′
k′ )·t . (10)

A deeper insight of the magnetization dynamics can be ob-
tained by using a new basis in one-magnon space that consists
of the localized magnons introduced in Eq. (2) and Fig. 1
complemented by analogous states constructed from the upper
band,

∣∣φ1
μ

〉 = 1√
6

(
1√
2sb

s∼
−
μ−1 + 2√

2sa
s∼

−
μ + 1√

2sb
s∼

−
μ+1

)
|�〉.

(11)
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FIG. 7. N = 200, sa = sb = s = 1/2, |�(0)〉 = 1√
2s

s
∼

−
99|�〉:

Magnetization dynamics for α = 0.5 (top) as well as α = 0.48
(bottom). The legend shows 0.5 − 〈s

∼
z
i 〉t .

We term the latter nonstationary localized magnon states; they
are depicted in Fig. 9. For these states we find 〈φ0

μ|φ1
ν 〉 = 0,

but otherwise they are not orthogonal. Although this compli-
cates their use for easy (handwaving) interpretations of the
results a little bit, the typical arguments we used in Sec. II
resting, e.g., on overlaps are dominantly correct, i.e., up to
small technical corrections.

A technically correct decomposition of the initial spin flip
at site j,

1√
2s j

s∼
−
j |�〉 =

∑
μ=0,2,4,...

c( j)
μ

∣∣φ0
μ

〉 + ∑
μ=1,3,5,...

c( j)
μ

∣∣φ1
μ

〉
,

(12)

has to be performed, e.g., by a Householder QR decompo-
sition. The coefficients c( j)

μ are not given by dot products
(overlaps) between the spin-flip state and the basis states as
would be the case for an orthonormal basis. However, the easy
(handwaving) interpretation used in Sec. II that the spin-flip
state has got an overlap with a localized magnon (or two)
and thus remains partially trapped at the site of the localized
magnon remains true.

Figure 10 demonstrates for an example of a spin-flip
state at a basal site how the coefficients c( j)

μ fall off with
growing distance |μ − j| from the site of the spin flip. The

FIG. 8. Time-averaged local magnetization above background of
magnon vacuum (0.5 − 〈s

∼
z
i 〉t ) at sufficiently late times [compare (5)]

for various sizes of the spin system: α = 0.5 (top) and α = 0.48
(bottom). All systems were time evolved over t = 1 000 000 of our
time units and then averaged over an additional nt�t = 2000 time
units [compare (5)].

overwhelming weight is indeed taken by the localized magnon
at that position, i.e., μ = j. The two nearest localized
magnons, μ = j ± 2, also carry some non-negligible, but al-
ready much smaller, weight. These contributions will also
remain localized for all times. The numbers given in Fig. 10

FIG. 9. Structure of the delta chain with apical spins sa and basal
spins sb as well as exchange interactions J1 and J2. The spin are num-
bered 0, 1, . . . , N − 1. Periodic boundary conditions are applied, i.e.,
N ≡ 0. A localized nonstationary one-magnon state is highlighted. It
is a superposition of spin states with reduced magnetization [com-
pare (11)] that extends over three neighboring sites as indicated.
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FIG. 10. Decomposition of a spin-flip state at a basal site into
localized magnons and nonstationary localized magnons according
to (12).

can be directly related to the long term averages given in
Fig. 8.

The case of a spin-flip excitation at an apical side behaves
very similarly and is therefore not shown. As anticipated, the
contributions of the two localized magnons connected to that
apical site is indeed largest, and contributions from localized
magnons further away again fall off very rapidly.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we demonstrated that certain carefully pre-
pared Hamiltonians show nonergodic dynamics in contrast
to the vast number of generic Hamiltonians nearby in some
parameter space. In our demonstration, the behavior can be
traced back to the influence of a perfectly flat energy band
that is characterized by zero group velocity or equivalently by
independent localized one-magnon states that are eigenstates
of the Hamiltonian and therefore stationary. The latter phe-
nomenon has thus been termed “disorder-free localization.” It
is an interference effect due to the fine-tuned frustration of the
competing interactions J1 and J2 [54].

One important aspect of our investigation is that we can
evaluate all quantities analytically [48], and thus do not rely
on numerics. In addition, our use of nonorthogonal basis states

is technically involved, but offers the prospect of a better
understanding of the phenomenon [55–59]. In particular, it al-
lows us to understand which stationary localized one-magnon
states contribute to a certain initial state, e.g., a single spin flip.

Although we only investigated the time evolution of single
spin flips on the background of a magnon vacuum the results
can be easily transferred to arbitrary initial states in one-
magnon space since these can be written as superpositions of
single spin-flip states. Furtheron, our investigations hold for
general spin quantum numbers; the respective formulas are
expressed in terms of sa and sb.

Flat bands appear for all kinds of Hamiltonians and have
initially been investigated for the Hubbard model [33]. It is
therefore no surprise that observations similar to ours have
been discussed in connection with Hubbard models [60,61].
Many flat-band systems have a realization as a magnetic ma-
terial, for instance, kagome or pyrochlore systems. Recently,
the idea was brought up that Hamiltonians of such systems
can be tuned by electric fields in order to set up a flat-band
scenario [45]. This can potentially be achieved with multifer-
roic materials as, e.g., discussed in Ref. [62].

In an antiferromagnetic delta chain, one-magnon states are
highly excited states close to the upper end of the spectrum.
They can be turned into low-lying states by means of a mag-
netic field. However, for real materials such a field close to
the saturation field might not be small and thus experimen-
tally hard to achieve. Some years ago, a new class of models
with mixed ferromagnetic-antiferromagnetic interaction pat-
terns had been invented that exhibit similar properties at zero
field [63]. For the discussed delta chain chemical compounds
could be synthesized that resemble these properties rather
closely [64,65]. In addition, a second class of spin models
featuring flat bands was suggested. These models are de-
fined by special XXZ couplings [66,67]. This large variety
demonstrates that among the generic Hamiltonians interesting
fine-tuned Hamiltonians exist that show exciting frustration
properties [68], among which nongeneric long-time behavior
is an interesting aspect.
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Z. Papić, Weak ergodicity breaking from quantum many-body
scars, Nat. Phys. 14, 745 (2018).

[15] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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