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KTaO3 presents a rich hyper-Raman spectrum originating from two-phonon processes at the Brillouin zone
boundary, indicating the possibility of driving these phonon modes using intense midinfrared laser sources. We
obtained the coupling of light to the highest-frequency longitudinal optic phonon mode QHY at the X (0, 0, 1

2 )
point by first principles calculations of the total energy as a function of the phonon coordinate QHY and electric
field E . We find that the energy curve as a function of QHY softens for finite values of electric field, indicating
the presence of Q2

HYE 2 nonlinearity with negative coupling coefficient. We studied the feasibility of utilizing this
nonlinearity to transiently break the translation symmetry of the material by making the QHY mode unstable with
an intense midinfrared pump pulse. We also considered the possibility that nonlinear phonon-phonon couplings
can excite the lowest-frequency phonon coordinates QLZ and QLX at X when the QHY mode is externally driven.
The nonlinear phonon-phonon couplings were also obtained from first principles via total-energy calculations as
a function of the phonon coordinates, and these were used to construct the coupled classical equations of motion
for the phonon coordinates in the presence of an external pump term on QHY. We numerically solved them for a
range of pump frequencies and amplitudes and found three regimes where the translation symmetry is broken:
(i) rectification of the lowest-frequency coordinates due to large amplitude oscillation of the QHY coordinate
about its equilibrium position, (ii) rectification of only the QHY coordinate without displaced oscillations of
the lowest-frequency coordinates, and (iii) rectification of all three coordinates. Due to the small magnitude of
the coupling constant between the QHY mode and the electric field, the smallest value of the pump amplitude
that manages to transiently break the the translation symmetry of KTaO3 is 270 MV/cm. Such a large value of
electric field will likely cause a dielectric breakdown of the material. However, our paper shows that light-phonon
coupling with negative sign can exist in real materials and motivates the search of other materials with a larger
magnitude of the coupling.

DOI: 10.1103/PhysRevB.108.064302

I. INTRODUCTION

Light-induced amorphous-crystalline phase change in
Ge2Sb2Te5 [1] and transition to a hidden state in 1T -TaS2

[2] are notable examples of structural control of materials
using light. Recently, it has been realized that a cubic-order
nonlinear coupling between a fully symmetric Raman and an
infrared phonon mode at the Brillouin zone center can be
used to displace the crystal structure of a material along the
Raman phonon coordinate when the infrared phonon mode is
externally driven [3]. First principles calculation of nonlinear
phonon couplings has been used to propose ultrafast switch-
ing of ferroelectrics using this mechanism [4]. Subsequent
experiments have observed pump-induced transient reversal
of electrical polarization [5,6], although it has not been clar-
ified whether this is caused by a long-period oscillation of a
soft phonon mode or its oscillations at a displaced position.
Nonetheless, recent theoretical studies support the nonlinear
phonon coupling as a mechanism to explain this transient
reversal of ferroelectricity [7–9].

Density functional theory based calculations show that
quartic-order Q2

1Q2
2 nonlinearity with negative coupling coef-

ficients can occur between two phonon modes Q1 and Q2 [10],
and this has been used to show that a light-induced transition
to a transient ferroelectric state in paraelectric materials is

possible [11]. Interestingly, it has been shown that cubic-
order couplings can also be used to cause oscillations of a
symmetry-breaking Raman mode at a rectified position when
it couples to a doubly degenerate infrared mode [12]. There is
experimental indication of a transient symmetry breaking in
Bi2Se3 after a midinfrared pump [13]. Furthermore, several
theoretical studies have highlighted coupling of magnetism
to phonon coordinates of a material [14–21], and there are
multiple experimental studies that show light-driven phononic
alteration of magnetic behavior [22–26]. The aforementioned
studies have explored novel pathways for structural control
of materials via nonlinear phononics, but they do not involve
changes in the size of the crystalline unit cell caused by
breaking the translation symmetry of the material.

In our previous work [27], we studied a method to tran-
siently break the translation symmetry of a crystal by pumping
the highest-frequency transverse optic (TO) phonon mode
at the Brillouin zone boundary via a second-order Raman
process. We found that the pumped mode can soften the
lowest-frequency phonon mode also at the zone boundary
due to a quartic-order phonon-phonon coupling with negative
coupling constant. When the amplitude of the oscillations of
the pumped mode was large enough, the lowest-frequency
mode became unstable, thereby breaking the translation
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symmetry. The role of light in this symmetry-breaking process
was limited to the excitation of the highest-frequency TO
phonon.

In this paper, we investigate the possibility of transiently
breaking the translation symmetry of a material by softening
the pumped phonon mode itself. Our first principles calcula-
tions show a αQ2

HYE2 nonlinear light-phonon coupling with
negative coupling constant between the highest-frequency
longitudinal optic (LO) mode QHY of KTaO3 and external
electric field E , which implies that it is in principle possible
to break the translation symmetry of this material by pumping
this mode. To identify the peak electric field of the pump pulse
required to cause the symmetry breaking, we numerically
solved the coupled classical equations of motion of the
QHY and lowest-frequency transverse acoustic (TA) phonon
coordinates QLZ and QLX. The equations of motion were
constructed using the nonlinear light-phonon and phonon-
phonon couplings extracted from first principles total-energy
calculations. The numerical solutions of these equations yield
a set of dynamics of the phonon coordinates that is distinct
from our previous study where the highest-frequency TO
mode was pumped. We find that the rectification of the driven
LO coordinate QHY requires a pump amplitude of at least
370 MV/cm. Additionally, the rectification of the TA coor-
dinates occurs when the QHY mode is pumped with a lower
pump amplitude of 270 MV/cm. These are very high values
of pump intensities that are at least an order of magnitude
larger than what can be produced using currently available
midinfrared laser sources. Furthermore, such intense sources
may physically damage the samples. Nevertheless, our paper
shows that a quartic-order negative light-phonon coupling can
occur in real materials, and this can in principle be utilized to
break the translation symmetry of a material by softening the
pumped mode.

II. THEORETICAL APPROACH

We are interested in the light-induced dynamics of three
phonon modes of KTaO3 at the X (0, 1

2 , 0) point of its
Brillouin zone: the highest-frequency LO mode QHY that is
externally pumped and the two components of the lowest-
frequency doubly degenerate TA mode QLZ and QLX. The
nonlinear light-phonon and phonon-phonon couplings were
obtained from density functional theory based first principles
calculations, and the light-induced dynamics of the system
was studied using the methodology presented in Ref. [10].
This approach requires the calculation of the phonon eigen-
vectors, which are then used to compute the total-energy
surface V (QHY, QLX, QLZ) as a function of the LO and TA
phonon coordinates (see Ref. [28] for a review). The phonon
anharmonicities and phonon-phonon nonlinear couplings are
then obtained by fitting the total-energy surface with a poly-
nomial. We used the approach previously used by Cartella
et al. [29] to obtain the coupling between the pumped phonon
mode and the laser pulse by calculating the total energy
as a function of the QHY mode and fitting it with a poly-
nomial. The phonon anharmonicities, the phonon-phonon
nonlinear couplings, and the light-phonon coupling are used
to construct the coupled equations of motion for the phonon
coordinates in the presence of an external force term on the

highest-frequency QHY mode. These are then solved numer-
ically to obtain the structural evolution of the material as a
function of time.

First principles calculations of the phonon frequencies and
eigenvectors and the total-energy surfaces as a function of
the phonon coordinates and electric field were done using
the QUANTUM ESPRESSO [30] (QE) package. These were per-
formed within the PBEsol generalized gradient approximation
[31] using the ultrasoft pseudopotentials with the valence
orbitals 3s23p64s1 (K), 5s25p65d36s1 (Ta), and 2s22p4 (O)
from the GBRV library [32]. The plane-wave cutoffs for the
basis set and charge density expansions were set to 60 and
600 Ry, respectively. We used the relaxed lattice parameter of
a = 3.987 84 Å in our calculations. The phonon frequencies
and eigenvectors at the Brillouin zone boundary point X were
calculated using density functional perturbation theory [33]
as implemented in QE. The computation of the dynamical
matrix requires a previous self-consistent field calculation,
which was performed using an 8 × 8 × 8 Monkhorst-Pack
k-point grid.

We then used the calculated phonon eigenvectors to gen-
erate modulated structures as a function of the QHY, QLX,
and QLZ coordinates in 1 × 2 × 1 supercells and calculated
their total energies to extract the phonon anharmonicities and
phonon-phonon nonlinear couplings. For the total-energy sur-
faces calculated as a function of two phonon coordinates, we
sampled values ranging from −2.4 to 2.4 Å

√
u with a step size

of 0.08 Å
√

u for the TA phonon coordinates QLX and QLZ, and
from −1.0 to 1.0 Å

√
u with a step size of 0.05 Å

√
u for the LO

coordinate QHY. In the calculations of the total-energy surface
as a function of the three phonon coordinates, we sampled val-
ues of the TA coordinates ranging from −3.0 to 3.0 Å

√
u with

a step size of 0.1 Å
√

u, and for the LO coordinate values from
−1.0 to 1.0 Å

√
u with a step size of 0.05 Å

√
u. These values

were chosen to modify the shortest distance between atoms of
the crystal at most 10% of their original values, allowing us
to explore the anharmonicities of the material while remain-
ing below the Lindemann stability limit [34]. An 8 × 4 × 8
Monkhorst-Pack k-point grid was used in these calculations.
The calculated total-energy surfaces were fit with polynomials
having only the symmetry-allowed nonlinear terms using the
GLM [35] package as implemented in JULIA. Thus obtained
phonon anharmonicities and phonon-phonon couplings are
given in Appendix B.

The modern theory of polarization [36] as implemented in
QE was used to calculate the total-energy surface of KTaO3

as a function of the highest-frequency QHY coordinate and
electric field E . We sampled the electric field using values
ranging from −14.54 to 14.54 MV/cm with a step of 3.635
MV/cm and QHY ranging from −1.0 to 1.0 Å

√
u with a step

of 0.1 Å
√

u. A slightly denser 8 × 8 × 8 Monkhorst-Pack k
grid was used to sample the Brillouin zone in these calcula-
tions. We then fit the resulting energy surface to the following
polynomial:

H (QHY, E ) = 1
2�2

HYQ2
HY + d4Q4

HY + d6Q6
HY + d8Q8

HY

+ rE + sE2 + tE4 + αQ2
HYE2, (1)

where the frequency �HY and anharmonic coefficients di

of the QHY mode are those extracted from the previous
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total-energy calculations and s = −1.5386 e Å2/V, t =
−0.258 e Å4/V3, and α = −0.205 e/(V u) are the coeffi-
cients for the terms allowed by symmetry between the electric
field and the QHY coordinate. We get a finite value of r =
−259.21 e Å for the coefficient of E in H (QHY, E ), which
occurs due to the use of periodic boundary conditions. To
validate this method of obtaining light-phonon coupling, we
noted in our previous work that the coupling of the electric
field to the highest-frequency phonon of KTaO3 at the Bril-
louin zone center � extracted using this method agrees well
with that obtained using the perturbation theory approach,
which is implemented in density functional theory codes for
phonons at � [27]. We are also aware that the largest electric
field that we have used in the total-energy calculations is more
than an order of magnitude smaller than the values that cause
rectification of the phonon coordinates in the numerical solu-
tion of the equations of motion. Larger values of the electric
field caused oscillations of the total energy during the self-
consistent field iterations of density functional calculations.
This is a limitation of the currently available computational
method.

The DIFFERENTIALEQUATIONS [37] package from the JU-
LIA language was used to integrate the coupled differential
equations of motion, which was carried out using the strong
stability preserving method of Ruuth. The time range for the
propagation was from 0 to 8 ps, and the peak amplitude of
the laser pulse was reached at 4 ps. The initial conditions
were set such that QHY = QLX = QLZ = 0.1 Å

√
u and their

first derivative with respect to time equal to zero. We added
a stochastic term in the form of white noise from the start of
the propagation until the peak of the pump pulse to simulate
the thermal fluctuations of the phonons [38,39]. To implement
this, we picked a random value from a flat distribution going
from −1 to 1 and then multiplied it by a scaling factor to
make it comparable to the amplitude of the initial conditions
for each mode. This scaling factor is different for the high-
and low-frequency modes, as their damping coefficients are
also different. For QHY we used 300/N and for QLX and QLZ

100/N , where N = 106 is the number of steps in the propa-
gation. We added this number to the corresponding phonon
coordinate at the end of the propagation step. The presence of
the stochastic term will cause the solutions of the equations of
motion to be dependent on the random values generated for
each run. We found that solving the equations of motion
five times for the same pump amplitude and frequency was
enough to asses the probability of each type of solution, and
thus we picked as the solution the one that appeared at least
three times for each pair of pump amplitude and frequency
values.

In the solutions of the equations of motion, we need to
distinguish the translation symmetry breaking due to rec-
tification of the zone-boundary phonon modes from their
long-time-period oscillations. Furthermore, since our pump
pulses have a finite duration, the dynamics of the phonon
coordinates eventually revert to oscillations about their initial
equilibrium positions due to the presence of damping terms
in the equations of motion. Our criterion for the breaking of
translation symmetry is the presence of at least two peaks
in the oscillations of QHY, QLX, or QLZ about a displaced
position.

FIG. 1. Atomic displacements due to the phonon modes of
KTaO3 at the X (0, 1

2 , 0) point considered in the present paper. Top:
The lowest-frequency TA mode component QLZ that moves Ta ions
along the z direction. The other degenerate component of this mode
QLX has the same atomic movements but is directed along the x axis.
Bottom: The highest-frequency LO mode QHY that causes atomic
movements along the y direction.

III. RESULTS AND DISCUSSION

The lowest-frequency mode of KTaO3 at X is doubly de-
generate. (Check Ref. [40] for the phonon band structure
of KTaO3.) We follow the notation used in Ref. [41] and
call it a TA mode. At a slightly higher frequency, there
is a nondegenerate mode that is denoted as longitudinal
acoustic. Additionally, there are four doubly degenerate TO
and four nondegenerate LO modes, accounting for all 15
phonon modes at X . Figure 1 shows the atomic displacements
corresponding to the lowest-frequency TA mode QLZ and
highest-frequency LO mode QHY, respectively. The calculated
frequencies of these modes are �LX = �LZ = 61 cm−1 and
�HY = 843 cm−1, respectively. They agree well with the
values inferred from the Raman experiments of Nilsen and
Skinner, where these modes appear as peaks at 123 and 1748
cm−1 due to the doubling of the respective phonon frequencies
in second-order Raman processes [41]. The two components
QLZ and QLX of the doubly degenerate TA mode belong to
the irreducible representation (irrep) X +

5 , while the LO mode
QHY has the irrep X −

3 . The QLZ mode involves displacement
of the Ta ions against the O octahedra along the z direction.
The QHY mode displaces the pair of O ions situated on the
faces of the unit cell parallel to the xy plane against the K ion
in the y direction (though the displacement of the K ion is so
small that it is not perceptible in the figure), while the rest of
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FIG. 2. Total energy as a function of the highest-frequency QHY

phonon coordinate for electric field E = 0 and 380 MV/cm.

the O ions remain stationary. The atomic displacements within
the adjacent unit cells are out of phase along the y direction
because these modes have the wave vector (0, 1

2 , 0). They thus
break the translation symmetry of the crystal.

Previously, we found that the energy curve of the highest-
frequency TO mode at X of KTaO3 stiffens in the presence
of a finite electric field, indicating the presence of a Q2

HYE2

nonlinear coupling with a positive coefficient between the
phonon coordinate and electric field [27]. When we performed
similar total-energy calculations as a function of the highest-
frequency LO mode QHY for different values of the electric
field E , we found a softening of the energy curve of the
phonon coordinate. This softening is symmetric with respect
to the sign of both the phonon coordinate (QHY → −QHY)
and the electric field (E → −E ), which shows the presence
of a Q2

HYE2 nonlinear coupling with a negative coupling
coefficient α. The presence of a Q2

HYE2 nonlinearity is con-
sistent with the fact that this is the lowest-order coupling
term between an electric field and finite-wave-vector phonon
allowed by symmetry [42]. However, the negative sign of
the coupling coefficient α is surprising. A fit of the total-
energy surface H (QHY, E ) by a polynomial gives a relatively
small value for the coupling constant α = −0.205 e/(V u).
Although the magnitude of the coupling constant is small,
this in principle makes it possible to break the translation
symmetry of the crystal by destabilizing the pumped phonon
mode itself. This is illustrated by Fig. 2, which shows the
development of symmetrical minima at QHY �= 0 for an ex-
trapolated electric field of E = 380 MV/cm. In order to break
the translation symmetry for values of the electric field around
10 MV/cm, we need α ≈ 150 e/(V u). When the QHY coordi-
nate is externally pumped, it experiences a force −∂H/∂QHY

that leads to a pump-induced renormalization of its frequency
�2

HY → �2
HY(1 + 2αE2). Since the correction due to the elec-

tric field has an even power, the softening is not averaged
out over time, and the QHY coordinate becomes unstable
for E > 1√

2α
.

The pumped energy to the QHY coordinate should also
flow to the lowest-frequency phonon mode at X . To make our
paper more realistic, we include the dynamics of the QLZ and
QLX components of the TA mode in our simulations. Figure 3

FIG. 3. Calculated total energy as a function of the lowest-
frequency TA coordinate QLZ for different values of the highest-
frequency LO coordinate QHY. For visual clarity, the zero energy
point has been chosen so that the curves coincide at QLZ = 0.

shows five energy curves from the calculated energy surface
V (QHY, QLX = 0, QLZ). We can again see that the energy
curves are symmetric upon the transformations QLZ → −QLZ

and QHY → −QHY, which implies that the energy surface
is an even function of both QLZ and QHY. Therefore, only
terms with even powers of these coordinates occur in the
polynomial fit of the total-energy surface. The fact that these
modes belong to different irreps imposes this constraint. Since
both the QLX and QLZ TA components have the same irrep,
the same reasoning can be applied to the energy surface
V (QHY, QLX, QLZ = 0) and its polynomial fit.

The energy curve of the QLZ coordinate softens and de-
velops a double-well shape as the magnitude of the QHY

coordinate is increased. Accordingly, the fit of V (QHY, QLX =
0, QLZ) yields negative sign for the coefficients of the non-
linear coupling terms h1Q2

HYQ2
LZ, h2Q4

HYQ2
LZ, and h4Q6

HYQ2
LZ

(see Appendix B). The total force experienced along the QLZ

coordinate is given by −∂V/∂QLZ, and the nonlinear terms
cause a renormalization of its frequency as �2

LZ → �2
LZ(1 +

2h1Q2
HY + 2h2Q4

HY + 2h4Q6
HY + · · · ). Only even powers of

QHY appear in this correction. Hence, the softening of the
frequency of the QLZ coordinate due to the oscillation of
the QHY coordinate will not be averaged out over time. The
same softening should also occur for the QLX coordinate
because both components of the lowest-frequency TA mode
have the same irrep.

We used the calculated total-energy surfaces as the
potential energy of the QHY, QLX, and QLZ coordinates and
used them to construct their coupled equations of motion,
which read

Q̈HY + γHYQ̇HY + �2
HYQHY = −∂V NH(QHY, QLX, QLZ)

∂QHY

+ F (t ),

Q̈LX + γLXQ̇LX + �2
LXQLX = −∂V NH(QHY, QLX, QLX)

∂QLX
,

Q̈LZ + γLZQ̇LZ + �2
LZQLZ = −∂V NH(QHY, QLX, QLZ)

∂QLZ
.

(2)
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Here V NH(QHY, QLX, QLZ) is the nonharmonic part of the
polynomial fit to the calculated total-energy surfaces as a
function of the three coordinates. Its full expression is given
in Appendix B. The damping coefficients γi are set to 10% of
the value of their corresponding natural frequency. The exter-
nal force F (t ) experienced by the QHY coordinate due to its
coupling with the electric field of the pump pulse is given by

F = −∂H (QHY, E )

∂QHY
= −2αQHYE2. (3)

Since pulsed laser sources with finite time duration are used
in most pump-probe experiments, we studied the dynamics
using Gaussian-enveloped single-frequency pulses for the
electric field

ESF(t ) = E0 sin(ωt )e−t2/2(σ/2
√

2 log 2)2
. (4)

Here E0, ω, and σ are the amplitude, frequency, and duration
(full width at half maximum) of the pulse, respectively. We
used σ = 2 ps in all our simulations. Chirped laser sources are
also used in pump-probe experiments, and we have repeated
our simulations with Gaussian-enveloped chirped pulses.
These results are presented in Appendix A, as they were
analogous to those obtained with the single-frequency pulse
but with a slightly lower threshold for the pulse amplitude that
manages to achieve rectification of the phonon coordinates.

For a given value of pump frequency, we solved the
coupled equations of motion of the QHY, QLX, and QLZ co-
ordinates given in Eq. (2) for a range of pump amplitude E0.
When the pump amplitude is small, the pumped mode QHY

oscillates at its natural frequency �HY without getting ampli-
fied and decays at a rate determined by γHY. Hence, the energy
transferred to the QLZ and QLX coordinates is also small, and
they also briefly oscillate at their natural frequencies �LZ =
�LX without getting amplified. At the other extreme, all three
modes diverge at very large values of the the pump amplitude,
which corresponds to the dielectric breakdown of the material.
In between these uninteresting scenarios, we searched for a
range of pump frequency and amplitude where at least one of
the three coordinates oscillates at a displaced position.

We find that for very low pump frequencies the effect of
the pump pulse is no different from applying a constant elec-
tric field, driving the pumped QHY mode close to its natural
frequency �HY for the duration of the pulse. Above pump
frequency of ω > 0.50�HY, we were able to find pump am-
plitudes for three different types of rectification of the phonon
coordinates, which is shown in Fig. 4. For 0.50�HY < ω <

0.85�HY, the lowest-frequency TA coordinates QLZ and QLX

get rectified while the pumped QHY mode oscillates at its
equilibrium position. Interestingly, in the range 0.85�HY <

ω < 1.40�HY, the pumped mode QHY itself oscillates at a dis-
placed position while the oscillations of the lowest-frequency
TA coordinates occur about their equilibrium positions. Fi-
nally, at ω > 1.40�HY all three coordinates get rectified.

The rectification of the lowest-frequency QLZ and QLX

coordinates for values of pump frequencies in the window
0.50�HY < ω < 0.85�HY is similar to the behavior obtained
by us in our previous work where the highest-frequency TO
mode was externally pumped [27]. The rectification occurs
because they experience a time-averaged double-well poten-
tial while the high-frequency LO coordinate QHY oscillates
around its equilibrium position with a large enough ampli-

Rectification of QHY
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Rectification of QLZ
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FIG. 4. Pump amplitudes and frequencies of the single-
frequency pulse driving the QHY phonon coordinate that induce
rectification of the QHY (top) and QLZ (bottom) coordinates. As both
components of the lowest-frequency TA mode have the same irrep,
the results for the QLX coordinate are analogous to those of QLZ.

tude. At a pump frequency of ω = 0.50�HY, we find that the
earliest onset of the rectification of the TA modes occurs for
a pump amplitude of 335 MV/cm. Smaller amplitudes do
not excite the LO mode enough to induce the rectification
of the TA modes, and amplitudes larger than 350 MV/cm
cause the TA modes to quickly oscillate between the two wells
of the potential with a time average of zero. As the pump
frequency is increased within the window of this regime, the
TA modes start getting rectified at lower pump amplitudes,
while the solution of the equations of motion starts to diverge
as the pump amplitude is increased above 380 MV/cm. As a
result, the range of amplitudes that induce the rectification of
the TA coordinates broadens with the frequency of the pump
pulse until a new regime is reached above pump frequency of
ω > 0.85�HY. This behavior is reflected in the left areas of
Fig. 4. The left column of Fig. 5 shows the time evolutions of
the three coordinates for a pump frequency of ω = 0.80�HY

and amplitude of 300 MV/cm, which is a representative so-
lution of the equations of motion in this regime. They exhibit
rectification of the TA coordinates with 〈QLZ〉 and 〈QLX〉 �=
0, while the LO coordinate oscillates about the equilib-
rium position with 〈QHY〉 = 0. Surprisingly, we find that that
the time-averaged position about which the TA coordinates
oscillate at a displaced position does not change as a function
of the pump amplitude in this regime.

For values of pump frequency in the window 0.85�HY <

ω < 1.40�HY, we find a regime where the pumped LO mode
QHY is rectified but the lowest-frequency TA components
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FIG. 5. Examples of the three rectification regimes of the QHY, QLX, and QLZ phonon coordinates for pump pulses with frequencies of
ω = 0.80�HY (left), ω = 1.30�HY (center), and ω = 1.80�HY (right) and amplitudes of 300, 400, and 460 MV/cm respectively.

remain oscillating around their equilibrium position. Inter-
estingly, the amplitude of the pumped coordinate QHY drops
significantly upon entering this regime. An example of the
time evolutions of the three phonon coordinates in this regime
is shown in the middle column of Fig. 5, which was obtained
for a pump frequency ω = 1.30�HY and amplitude E0 =
400 MV/cm. Instead of oscillating about the equilibrium po-
sition, the pumped mode gets rectified because of the negative
sign of the coefficient α of the quartic-order Q2

HYE2 light-
phonon coupling term. For a pump frequency ω = 0.85�HY

that is near the beginning of this window, the rectification of
the LO mode happens for pump amplitudes from 405 to 415
MV/cm. As the pump frequency is increased, the range of the
pump amplitude that rectifies the QHY mode broadens. For a
pump frequency of ω = 1.40�HY, this range goes from 375 to
440 MV/cm, as we can see on the top panel of Fig. 4. Larger
values of pump amplitude cause the equations of motion to
diverge, signaling the breakdown of the material. However,
until the divergence occurs, the new position about which the
rectified oscillations of the QHY mode occur increases with the
amplitude of the pump in approximately linear fashion. This
is illustrated in Fig. 6, which shows the time evolution of QHY

for four increasing values of pump amplitude. This change in
the displaced position of the QHY coordinate is different from
the almost unchanged rectified position of the TA coordinates
discussed in the previous paragraph.

When pump frequency is in the range 0.85�HY < ω <

1.40�HY, the values reached by the rectified QHY coordinate

are not large enough to induce a rectification of the TA modes
through their phonon-phonon coupling before the divergence
of the equations of motion. However, for pump frequencies
ω > 1.40�HY, the values reached by the pumped coordi-
nate QHY start to be comparable to that reached by it in

FIG. 6. Growth of the rectified position of the QHY phonon coor-
dinate as a function of the amplitude of the pump. The frequency of
the pulse was set to ω = 1.80�HY, where �HY = 843 cm−1. Inset:
The average position 〈QHY〉 during the rectification as a function
of the peak amplitude of the applied electric field E0. The line
connecting the dots is a guide for the eye.
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the first regime, and we enter a distinct regime where we
can find pump amplitudes that can rectify the three modes
at the same time. At pump frequency ω = 1.45�HY, pump
amplitudes between 370 and 440 MV/cm cause rectifica-
tion of the LO mode without rectifying the TA mode, as
discussed above. But when the pump amplitude is increased
above 440 MV/cm, the oscillation about the transient dis-
placed position of the QHY coordinate is large enough to
induce rectification of the QLZ and QLX TA coordinates.
This behavior has an activation threshold for the pump am-
plitude of 440 MV/cm, but the maximum amplitude that
manages to induce this triple rectification without causing
the breakdown of the material grows linearly with the fre-
quency until reaching a plateau of around 530 MV/cm
starting at ω = 1.90�HY. An example of the time evolu-
tion of the three coordinates in this regime is shown in
the right column of Fig. 5. One notable feature of this
regime is that the QHY mode beats at the same frequency
as the QLZ and QLX modes, suggesting that the energy that
flows to the TA coordinates dominates the dynamics of the
system.

IV. SUMMARY AND CONCLUSIONS

In summary, we have discovered using first principles total-
energy calculations that a quartic-order αQ2

HYE2 coupling
with a negative coefficient α occurs between the highest-
frequency LO phonon coordinate QHY of KTaO3 at the
Brillouin zone boundary point X and electric field E . This
implies that the QHY mode softens when it is driven by
an external laser source. We investigated the feasibility of
transiently breaking the translation symmetry of KTaO3 by
driving the QHY mode to instability using pump pulses with
high electric field. We also considered the coupling of the
QHY mode with the lowest-frequency TA phonon modes QLZ

and QLX at X . The nonlinear couplings between these modes
were also obtained from first principles by calculating the total
energy as a function of the phonon coordinates. We find that
the energy curves of the TA coordinates QLZ and QLX develop
a double-well shape for finite values of the QHY coordinate,
suggesting that these modes could also become unstable when
the QHY is externally pumped. We used the calculated nonlin-
ear couplings to construct the coupled equations of motion for
the three coordinates in the presence of a Gaussian-enveloped
pump pulse term on the QHY mode. These were then numeri-
cally solved for a range of pump frequencies and amplitudes.

We find three different regimes of light-induced translation
symmetry breaking, which occur for pump frequency ω >

0.5�HY when a Gaussian-enveloped single-frequency pump
pulse is used. Only the TA coordinates QLZ and QLX rectify
when pump frequency is in the range 0.5 < ω < 0.85�HY.
The lowest pump amplitude that can cause rectification in this
regime is 270 MV/cm. When pump frequency is in the range
0.85 < ω < 1.40�HY, only the pumped mode QHY rectifies.
A pump amplitude of at least 375 MV/cm is required to
exhibit this behavior. Finally, all three coordinates can rectify
when the pump frequency is greater than 1.40�HY, which
requires a pump amplitude of at least 440 MV/cm. We find
that the use of chirped pulses only modestly decreases the
threshold required to rectify these modes.

The pump amplitude required to break the translation
symmetry of KTaO3 by pumping its highest-frequency LO
coordinate is well beyond what can be produced by currently
available experimental setups. Even if powerful laser sources
were available, such intense pump pulses would likely cause
dielectric breakdown of the sample. Nevertheless, we have
shown that quartic-order light-phonon coupling with negative
sign can occur in real materials that can be utilized to break the
translation symmetry of the crystal by rectifying the pumped
mode. Our paper motivates the search for materials where the
magnitude of this light-phonon coupling is large.
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APPENDIX A: CHIRPED PULSE

Chirped pulses can be more effective at driving the
phonon modes of a material, especially if the pumped mode
transiently hardens [43]. We also studied the light-induced dy-
namics of the three phonon coordinates described by Eqs. (2)
using Gaussian-enveloped chirped pulses having electric field

Ech(t ) = E0 sin(βt2)e−t2/2(σ/2
√

2 log 2)2
. (A1)

Rectification of QHY

'rect.dat' u ($1*0.1):2:3

 2  3  4  5  6  7
β (Thz/ps)

 250

 300

 350

 400

 450

 500

Pu
m

p 
Am

pl
itu

de
 (M

V/
cm

)

N
o 

re
ct

ifi
ca

tio
n 

   
  R

ec
tifi

ca
tio

n
Rectification of QLZ

'rect.dat' u ($1*0.1):2:4

 2  3  4  5  6  7
β (Thz/ps)

 250

 300

 350

 400

 450

 500

Pu
m

p 
Am

pl
itu

de
 (M

V/
cm

)

N
o 

re
ct

ifi
ca

tio
n 

   
  R

ec
tifi

ca
tio

n

FIG. 7. Pump amplitudes and frequency-growth rate parameters
β of the chirped pulse driving the QHY phonon coordinate that
induce a rectification of the QHY (top) and QLZ (bottom) coordi-
nates. As both components of the lowest-frequency TA mode have
the same irrep, the results for the QLX mode are analogous to
those of QLZ.
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FIG. 8. Examples of the three rectification regimes of the QHY, QLX, and QLZ phonon coordinates for chirped pulses with frequency-growth
rate parameters of β = 2.9 THz/ps (left), β = 4.0 THz/ps (center), and β = 6.0 THz/ps (right) and amplitudes of 250, 390, and 500 MV/cm
respectively.

Here, β is the chirp parameter that describes the linear growth
of the pulse as a function of time.

Figure 7 shows the values of the amplitude and β of the
pump pulse that manage to induce the rectification of the
phonon modes. We find that the effect of the chirped pulse is
similar to applying a constant electric field for the growth rate
of the frequency β < 1.5 THz/ps, the same situation we found
when using single-frequency pump pulses with frequencies
below 0.50�HY. Above β > 1.5 THz/ps, we can distinguish
the same three regimes that we found for the single-frequency
pulse: (i) rectification of the lowest-frequency TA coordinates
QLZ and QLX, (ii) rectification of the pumped LO coordinate
QHY, and (iii) rectification of all three coordinates. The rectifi-
cation of only the TA coordinates happens for 1.5 < β < 3.1
THz/ps. The lowest value of the pump amplitude that causes
rectification in this regime is 235 MV/cm, which occurs for
β = 2.9 THz/ps. This is slightly smaller than the value of
270 MV/cm obtained for a single-frequency pulse. For values
of the chirp parameter β > 3.4 THz/ps, we can find pump
amplitudes that rectify the pumped phonon coordinate QHY.
The lowest pump amplitude that rectifies QHY is 385 MV/cm
at β = 3.4 THz/ps. This threshold decreases as β is increased
until β = 6.1 THz/ps, where it stabilizes at 365 MV/cm. For
comparison, the lowest pump value to cause rectification of
QHY using a single-frequency pulse is 370 MV/cm. Only the

pumped LO coordinate QHY gets rectified for 3.4 < β < 4.4
THz/ps, whereas pump amplitudes that cause rectification of
all three coordinates can be found for β > 4.4 THz/ps. An
example of each regime is plotted in Fig. 8.

The results obtained using the chirped pump pulse are anal-
ogous to those found for the single-frequency pulse, except for
the slightly smaller threshold value of the pump pulse ampli-
tude that causes rectification of the phonon coordinates. The
efficiency of the pump increases because the chirped pulse
includes a wider range of frequencies. The frequency of the
pumped LO mode stiffens while it is driven to large-amplitude
oscillations due to the presence of anharmonic terms. Hence,
a pulse that is capable of matching this changing frequency
is more efficient at exciting the phonon mode than the single-
frequency one.

APPENDIX B: EXPRESSION FOR THE
TOTAL-ENERGY SURFACE

As in our previous work [27], the phonon anharmonicities
and phonon-phonon couplings between the three coordinates
QHY, QLZ, and QLX were obtained by fitting the calculated
total-energy surface V (QHY, QLX, QLZ) with the following
expression:

V = 1
2�2

LXQ2
LX + 1

2�2
LZQ2

LZ + 1
2�2

HYQ2
HY + V NH, (B1)
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TABLE I. The harmonic, anharmonic, and nonlinear coupling terms extracted from the polynomial fit of the calculated total-energy surface
V (QHY, QLX, QLZ) of KTaO3. The units are eV/(Å

√
u)i+ j+k , where i, j, and k are the exponents of the phonon coordinates.

Coefficient Order Value Coefficient Order Value

�2
LX Q2

LX 0.013628 e6 Q2
LXQ6

LZ 1.96 × 10−7

�2
LZ Q2

LZ 0.013628 h1 Q2
HYQ2

LX −5.4947 × 10−3

�2
HY Q2

HY 2.612711 h2 Q4
HYQ2

LX −4.27 × 10−4

a4 Q4
LX 7.99 × 10−4 h3 Q2

HYQ4
LX 1.068 × 10−5

a6 Q6
LX −8.6 × 10−6 h4 Q6

HYQ2
LX −5.59 × 10−6

a8 Q8
LX 1.93 × 10−7 h5 Q4

HYQ4
LX 9.9 × 10−7

b4 Q4
LZ 7.99 × 10−4 h6 Q2

HYQ6
LX 2.5 × 10−7

b6 Q6
LZ −8.6 × 10−6 i1 Q2

HYQ2
LZ −5.4947 × 10−3

b8 Q8
LZ 1.93 × 10−7 i2 Q4

HYQ2
LZ −4.27 × 10−4

d4 Q4
HY 0.06897 i3 Q2

HYQ4
LZ 1.068 × 10−5

d6 Q6
HY 7.8 × 10−4 i4 Q6

HYQ2
LZ −5.59 × 10−6

d8 Q8
HY −1.1 × 10−5 i5 Q4

HYQ4
LZ 9.9 × 10−7

e1 Q2
LXQ2

LZ 2.796 × 10−4 i6 Q2
HYQ6

LZ 2.5 × 10−7

e2 Q4
LXQ2

LZ −1.14 × 10−5 k1 Q2
HYQ2

LXQ2
LZ 3.83 × 10−5

e3 Q2
LXQ4

LZ −1.14 × 10−5 k2 Q4
HYQ2

LXQ2
LZ 6.1 × 10−6

e4 Q6
LXQ2

LZ 1.96 × 10−7 k3 Q2
HYQ4

LXQ2
LZ −3.6 × 10−7

e5 Q4
LXQ4

LZ 2.35 × 10−7 k4 Q2
HYQ2

LXQ4
LZ −3.6 × 10−7

where the nonharmonic part V NH(QHY, QLX, QLZ) is given by

V NH = a4Q4
LX + a6Q6

LX + a8Q8
LX + b4Q4

LZ + b6Q6
LZ + b8Q8

LZ + d4Q4
HY + d6Q6

HY + d8Q8
HY

+ e1Q2
LXQ2

LZ + e2Q4
LXQ2

LZ + e3Q2
LXQ4

LZ + e4Q6
LXQ2

LZ + e5Q4
LXQ4

LZ + e6Q2
LXQ6

LZ

+ h1Q2
HYQ2

LX + h2Q4
HYQ2

LX + h3Q2
HYQ4

LX + h4Q6
HYQ2

LX + h5Q4
HYQ4

LX + h6Q2
HYQ6

LX

+ i1Q2
HYQ2

LZ + i2Q4
HYQ2

LZ + i3Q2
HYQ4

LZ + i4Q6
HYQ2

LZ + i5Q4
HYQ4

LZ + i6Q2
HYQ6

LZ

+ k1Q2
HYQ2

LXQ2
LZ + k2Q4

HYQ2
LXQ2

LZ + k3Q2
HYQ4

LXQ2
LZ + k4Q2

HYQ2
LXQ4

LZ. (B2)

The values of the coefficients extracted from the fit are given in Table I.
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