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Experimental observation of multifractality in Fibonacci chains
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The tight-binding model for a chain, where the hopping constants follow a Fibonacci sequence, predicts
multifractality in the spectrum and wave functions. Experimentally, we realize this model by chains of small
dielectric resonators with a high refractive index (εr ≈ 45) of cylindrical form that exhibit evanescent coupling.
We show that the fractality of the measured local density of state (LDOS) is best understood when the sites
are rearranged according to the similarities in their local surrounding, i.e., their conumbers. This allows us to
deduce simple recursive construction schemes for the LDOS for the two cases of dominant strong and weak
coupling, despite our limited resolution due to nonzero resonance width and size constraints. We measure
the singularity spectrum and the fractal dimensions of the wave functions, and we find good agreement with
theoretical predictions for the multifractality based on a perturbative description in the quasiperiodic limit.
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I. INTRODUCTION

The question of understanding wave propagation phenom-
ena in inhomogeneous media transcends almost all types
of waves (gravitational, seismic, sound, fluid, electromag-
netic, and quantum), ranging from the largest to the smallest
wavelength and frequency scales imaginable. Since the funda-
mental work of Anderson on quantum electrons in disordered
systems [1], it has been well established that interference
effects induced by multiple random elastic scatterings can
strongly modify wave propagation in such a way that, de-
pending on the strength of the disorder, three regimes can be
distinguished. For a “weak disorder,” such that the mean free
path of the scattering � is much larger than the considered
wavelength λ, the waves remain extended and propagate in a
diffuse way. For a “strong disorder” (� � λ), the waves are
“exponentially localized” in real space and cannot propagate
anymore. At the transition between these two regimes, there
is a critical regime characterized by a multifractal distribu-
tion of wave amplitudes in real space and associated with
an anomalous diffusive propagation of wave packets [2–8].
Several recent experiments have succeeded in revealing such
a critical regime with multifractal waves [9–12].

Beyond the disordered systems at the critical point, many
numerical studies have shown that waves propagating in qua-
sicrystalline structures have generically multifractal proper-
ties with the particularity of having tunable fractal dimensions
[13–17]. Several works have linked these fractal properties of
waves to the specific geometrical properties of quasiperiodic
lattices (two-dimensional tilings and one-dimensional chains)
[18–31]. Specifically, although quasicrystalline structures are
not periodic, they exhibit long-range orientational and trans-
lational order and possess properties of self-similarity and
high translational repeatability for domains of all scales.
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Nevertheless, nearly 40 years after the discovery of qua-
sicrystals [32], there is currently no experiment in real or
metamaterials that has clearly demonstrated these multifractal
properties of waves, even in the simplest and most studied
paradigmatic example, i.e., the Fibonacci chain (see the recent
review by Jagannathan [33]). However, a recent experiment
using cavity polaritons propagating in a Fibonacci chain struc-
ture has succeeded in revealing the fractal character of the
eigenfrequency spectrum and also in verifying the gap label-
ing in agreement with theoretical predictions [34].

In this work we present, on the one hand, an experiment
that explicitly demonstrates the existence of a simple recursive
scheme to reconstruct the fractal properties of the local density
of states of the waves on the Fibonacci chain. On the other
hand, we quantitatively characterize these multifractal prop-
erties and show good agreement between the measured fractal
dimensions and those predicted by the simplest modeling of
the experiment.

II. FIBONACCI CHAINS OF COUPLED
MICROWAVE RESONATORS

For our experimental studies, we use a versatile microwave
setup that implements a tight-binding system [35]. It is based
on high-index cylindrical dielectric resonators (TiZrNbZnO,
Exxelia serie E6000, n ≈ 6.7, radius r = 3 mm, height h =
5 mm) sandwiched between two metallic plates and evanes-
cently coupled. The isolated resonators have a resonance
frequency at ν0 ≈ 7.45 GHz with a linewidth of � ≈ 2 MHz.
The variation of ν0 between different resonators is within the
linewidth. For further details on the experimental setup and its
relevance for topological photonics, see [36].

The experimental chains are built following the cut and
project method (C&P). The C&P method can be used to con-
struct all nth periodic approximates Cn of the Fibonacci chain,
up to its quasiperiodic structure for n → ∞. It consists in
projecting sites in a given interval of a two-dimensional (2D)
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FIG. 1. (a) Example of the cut and project method for the seventh
approximate defined by a slope ω7 = 5/8 and a motif of F7 = 13
sites. The projection on the horizontal axis dictates the arrangement
of the sites of the chain according to strong (black double-line)
and weak (black line) couplings. Each site is reordered according
to its local environment on the perpendicular (vertical) axis; the
resulting conumber c(i) is indicated under each site at position i.
Along the perpendicular axis, “atomic” (in blue) and “molecular” (in
red) sites are clustered in three groups. (b) Photo of an experimental
Fibonacci chain made of 13 resonators. (c) Measured reflection spec-
tra 1 − |S11|2 for each resonator in the chain shown in (b), where the
colors differentiate the atomic (blue) and molecular (red) sites.

regular grid onto a line that is cutting the grid with a slope
ωn = Fn−2/Fn−1, as can be be seen in Fig. 1(a). The Fn are the
Fibonacci numbers defined via Fn = Fn−2 + Fn−1 with F1 = 1
and F2 = 1. Note that in the limit n → ∞, the slope ωn tends
toward the inverse of the golden ratio ω = ω∞ = ( 1+√

5
2 )−1.

Due to the irrational nature of ω, the resulting structure is
quasiperiodic, whereas for any rational approximation ωn, the
Cn chain exhibits an infinite repetition of the same pattern of
Fn sites.

The projected points [black points in Fig. 1(a)] divide the
line in intervals that only have two different lengths A (black
line) and B (black double-line). In a sequence of Fn intervals,
the ratio between the number of B and A is given by ωn. Very
differently, the sites projected onto the perpendicular axis oc-
cupy equally spaced and reordered positions: The sites whose
projection on the horizontal axis are surrounded by two A
intervals (further referred as atomic sites) are clustered around
the center, whereas those embedded in ABA sequences (further
referred to as molecular sites) are grouped at the sides—at the
bottom for the sites between AB, at the top for BA. This way of
referring to the sites not by their index i but by their projection
on the perpendicular axis [see Fig. 1(a)] is called conumbering
and was first introduced by Mosseri [37,38].

From there, different experimental strategies can be fol-
lowed: either the two letters are associated with two different
couplings between resonators, or they are used to account for
two different resonant frequencies. We will implement the first
one here, thus introducing two couplings, tA and tB, or, equiv-
alently, two distances, dA and dB. This experimental choice
offers two scenarios: either ρ = tA/tB > 1, which corresponds
to the dominant strong-coupling scenario, or ρ = tA/tB < 1,
the dominant weak-coupling scenario. The main part of the

study reported here will make the use of the second scenario,
but we show in Appendix D that inverting ρ yields interesting
results, too.

Figure 1(b) shows the experimental realization of a chain
of 13 resonators using the direct pattern created by the C&P
procedure. In this case, the dominant weak-coupling regime
is implemented. For an experimental reason explained below,
the last weak coupling is suppressed. This procedure also has
the advantage that the experimental chain reproducing an ele-
mentary motif of a Cn Fibonacci-approximation generates Fn

collective resonance peaks, as can be seen in the spectra plot-
ted in Fig. 1(c), where each spectrum is measured individually
by a movable loop antenna placed directly over each resonator
[35]. This correspondence between the number of resonators
and resonances was expected from the fact that the experiment
enters into the scope of a tight-binding model with nearest-
neighbor couplings [35]. The spectra measured at molecular
site positions are plotted in red, and in blue for atomic sites.
It is worth noting that the bunching of sites revealed by the
conumbering procedure has its counterpart in the spectrum.
Indeed, one can clearly see that the three resonances within
the central band are mainly localized on atomic sites, while the
two side bands are dominated by states located at the molecu-
lar sites. This correspondence of the frequency index of states
and the conumber index of sites arises from the equivalent
paths of renormalization that are used to describe band-labels
and sites in a perturbative renormalization scheme, when the
chains are constructed by a recursive inflation [30,39].

In a first step, the experimental Fibonacci chains we imple-
ment are limited to a single repetition of an Fn-letter motif,
with an averaging over different allowed permutations. To
reduce finite-size effects, we constrain the experiment to per-
mutations that (i) generate patterns whose infinite repetitions
Cn would be linked by weak coupling, and (ii) impose that
the elementary chain ends on both sides by a strong coupling.
Each chain is thus made of Fn sites and Fn − 1 couplings, as
illustrated in Fig. 1(b) for F7 = 13. In practice, for a motif of
F10 = 55 resonators, in the dominant weak-coupling regime
(ρ < 1), there are eight different permutations that start and
end on a strong coupling.

We measure the spectrum over each resonator for all per-
mutations for the coupling strengths tA = 81 MHz and tB =
126 MHz, corresponding to distances dA = 8 mm and dB =
7 mm. The relation between coupling strength t and separation
d between two resonators is extracted from two-resonator
measurements [35,36]. We chose these values in order to have
the least possible overlap between resonances in the spectra,
while keeping ρ = tA/tB = 0.64 reasonably small, for the best
visible contrast. The resonance amplitudes ψ j (i) of each peak
j of the measured spectrum above resonator i are extracted
via a harmonic inversion method [40] and a density-based
clustering algorithm [41]. Additionally, we symmetrize the
results with respect to the central frequency index as the
resonance widths for the higher frequency bands are larger,
and thus stronger overlapping makes it impossible to extract
[36]. Finally, we obtain a discretized form of the local density
of states LDOS(i, j) = |ψ j (i)|2, where |ψ j (i)|2 represents the
wave-function intensity of state j evaluated over resonator
i [35,36]. An example spectrum, a detailed description of
the data analysis and the LDOS for all configurations, can
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FIG. 2. Experimentally extracted LDOS of 55 resonators ar-
ranged according to their conumber index c(i) averaged over all eight
permutations.

be found in Appendix A. Figure 2 shows the experimentally
obtained LDOS(c(i), j) after normalization, rearrangement of
the position index according to the conumbering procedure,
and averaging over the eight permutations. It is exhibiting a
fractal structure, and a symmetry between frequency index j
and conumber index c(i) is clearly visible: The plot is almost
invariant under the exchange of the conumber/frequency axis.

III. MULTIFRACTAL DIMENSIONS

A characterization of the multifractal properties of wave
functions is given by their fractal dimensions Dψ

q ( j), which
can be deduced from the scaling, with the length Fn, of gener-
alized inverse participation numbers [30]:

χ (n)
q ( j) =

∑
i

∣∣ψ (n)
j (i)

∣∣2q ∼
n→∞ F

−(q−1)Dψ
q ( j)

n . (1)

The multifractal parameter q allows a selective visualization
of the systems at different magnitude scales such that varying
q from −∞ to +∞, the dimensions Dψ

q ( j) decrease from

Dψ
−∞( j) = αmax( j) (small intensities) to Dψ

+∞( j) = αmin( j)
(large intensities) [6,7]. We further define the frequency-

averaged fractal dimension Dψ
q by averaging over all

states [30]:

〈
χn

q ( j)
〉

j
= 1

Fn

∑
j

χ (n)
q ( j) ∼

n→∞ F
−(q−1)Dψ

q
n . (2)

As F10 = 55 is far from the limit n → ∞, we extract the
multifractal dimensions using a box-counting algorithm on
the LDOS of Fig. 2(c) [42] (see Appendix B).

In Fig. 3 one can see the extracted frequency-averaged frac-

tal dimension Dψ
q as a function of the multifractal parameter

q (orange points). We compare it with the frequency-averaged

fractal dimension Dψ
q obtained from a theoretical prediction

based on a renormalization-group approach, formulated in

FIG. 3. Spectrally averaged fractal dimension Dψ
q vs the multi-

fractal parameter q, experimentally extracted using a box-counting
method (orange points) compared to theoretical predictions (solid
black line). The gray area highlights the 90% confidence interval
obtained from tight-binding simulations (see Appendix B), and the
dashed line indicates the mean expectation value. The inset shows the
theoretical (solid line) and experimental (orange points) spectrally
averaged singularity spectrum f (α), where the theoretical αmin =
Dψ

+∞ is indicated by a vertical dotted black line.

the limit ρ � 1 and developed until the order ρ4q [30]; in
the experiment, ρ = 0.64. We further estimate a 90% confi-
dence interval for the experiment by performing tight-binding
simulations of the system that account for the variances in
the positioning of the resonators and the fluctuations of their
resonance frequency. Details on the procedure can be found
in Appendix B. Although far from the strong modulation
limit (ρ � 1), a good agreement between experimental and

theoretical values of Dψ
q is obtained, and both curves lie within

the estimated confidence interval (see Fig. 3). For large q,
an offset is noticeable between theory and experiment, which
could eventually be explained by experimental fluctuations,

but even the average value of the simulated Dψ
q (white dashed

line) shows an offset. This is mainly due to the finite system
size, since the theory was formulated in the quasiperiodic limit
(see Appendix B). Note that, although Eq. (2) is invariant to

inverting index c(i) and j, our method to calculate Dψ
q via

a box-counting algorithm is not. Nevertheless, interchanging
the conumbering index c(i) with the frequency index j upon

the calculation of Dψ
q leads to two hardly distinguishable

curves (not shown in Fig. 3), further emphasizing the equiva-
lence between conumbers and frequencies.

IV. SINGULARITY SPECTRUM f (α)
OF THE WAVE FUNCTIONS

An alternative and complementary characterization of the
multifractal properties of wave functions is given by the
so-called singularity spectrum f (α) [15,21,25,27,28,31,43].
Qualitatively, multifractality encodes the fact that for a given
resonance j (for a given resonator i) there exists a distribution
of anomalous power scaling exponents of the LDOS as a func-
tion of the motif length Fn: |ψ j (i)|2 ∝ F−α

n with an exponent
α( j, i) that depends on j and i. For a plane wave α( j, i) = 1,
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therefore when α < 1 it corresponds to anomalous large
wave-function intensities, whereas α > 1 is associated with
anomalous small intensities. For each exponent α one can also
associate a probability F f (α)−1

n to find the exponent α with
0 � f (α) � 1. The singularity spectrum f (α) measures the
fractal dimensions of interwoven sets of points with different
singularity strength α.

While the singularity spectrum f (α) can be directly
obtained from a Legendre transformation of the fractal dimen-
sion Dψ

q ,

α(q) = d

dq

[
(q − 1)Dψ

q

]
, (3)

f (q) = qα(q) − Dψ
q (q − 1), (4)

we decided to extract it experimentally using an independent
box-counting method first proposed by Chhabra and Jensen
[16]. If we recall Eq. (B1), where we define the spatial
distribution of each wave function ψ (i) j by calculating the
probability pb(ψ j, L) inside box b of size L, we can then
construct a family of normalized measures,

μb(q, ψ j, L) = pb(ψ j, L)q

/ B∑
b=1

pb(ψ j, L)q. (5)

From there one can then calculate the Hausdorff dimension of
the support of the measure μb(q, ψ j ),

f j (q) = lim
L→0

F (q, ψ j, L)

ln L
(6)

= lim
L→0

∑B
b=1 μb(q, ψ j, L) ln (μb(q, ψ j, L))

ln L
, (7)

and the singularity strength

α j (q) = lim
L→0

A(q, ψ j, L)

ln L
(8)

= lim
L→0

∑B
b=1 μb(q, ψ j, L) ln (pb(q, ψ j, L))

ln L
. (9)

The singularity spectrum f j (α j ) of a state j can be ob-
tained analogously to the determination of Dψ

q via the
box-counting method by evaluating the quantities F (q, ψ j, L)
and A(q, ψ j, L) for different box sizes L and linearly fit-
ting them against ln L. To calculate the spectrally averaged
singularity spectrum f (α), the formalism has to be slightly
adapted. Averaging over different wave functions represents
a supersampling. To average over the different states j, we
replace the sum over the different boxes

∑B
b=1 in Eqs. (5), (9),

and (7) with the double-sum 1/Fn
∑Fn

j=1

∑B
b=1.

In Fig. 4 one can see the calculated experimental spectrally
averaged singularity spectrum f (α), together with the individ-
ual singularity spectra f j (α j ) of the central state ( j = 27) and
the outmost state of the central atomic cluster ( j = 21) calcu-
lated for the largest system size of F10 = 55. The minimum
value of α, αmin, can be directly linked to the maximal wave-
function intensity αmin = − log(|ψmax|2)/ log(Fn), while the
maximum value of α, αmax, can be linked to the overall mini-
mum wave-function intensity αmax = − log(|ψmin|2)/ log(Fn).
In Fig. 4 the green dotted line highlights the αmin of the central
state, which also corresponds to the αmin of the spectrally

FIG. 4. Spectrally averaged singularity spectrum f (α) calculated
via a box-counting method (orange points), together with the indi-
vidual singularity spectra f j (α j ) of the central state ( j = 27, green
points) and the outmost state of the central atomic cluster ( j = 21,
blue points). The green dotted line highlights the αmin of the central
state, which also corresponds to the αmin of the spectrally averaged
f (α). The blue dotted line highlights the αmax of the outmost state of
the central atomic cluster, which also corresponds to the αmax of the
spectrally averaged f (α).

averaged f (α), since it is this exact state that contains the
overall maximum wave-function intensity. Similarly, the blue
dotted line highlights the αmax of the outmost state of the
central atomic cluster, which also corresponds to the αmax

of the spectrally averaged f (α), since this state contains the
overall minimal wave-function intensity.

One further notices that the spectrally averaged singularity
spectrum f (α) takes negative values, while the f j (α j ) of the
individual wave functions stays strictly positive. This arises
from the supersampling that we perform by averaging over
all different states. Regions with negative f (α) correspond to
rare wave-function intensity values that are encountered only
for a few states. In this context of supersampling, it is actually
the relative frequency with which certain wave-function in-
tensities are appearing, instead of their absolute number, that
scales as F f (α)

n .
For a more quantitative comparison with theoretical pre-

diction [44], the averaged f (α) obtained by averaging over
all j is illustrated in the inset of Fig. 3. For α � 1 (large
wave-function intensities) there is a good agreement between
the theoretical and the experimental f (α). For larger values
of α > 1 there is a growing disagreement between the experi-
mental and theoretical curves. The latter can be explained by
the fact that the region α > 1 is associated to the smallest
intensities, which are necessarily less accurately measured
and sampled because they might be below the experimental
noise level. Note also that because of the averaging procedure,
the averaged f (α) is no longer positive-definite, and it takes
negative values [45,46]. This supersampling effect has already
been observed at the critical point of Anderson transitions
[8,47].

To further give a more graphical representation of the sin-
gularity spectrum, in Fig. 5 we plot different sets of points
whose intensities lay within different intervals defined by
certain α-values for different approximants obtained from
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FIG. 5. (a) Symmetrized LDOS(c(i), j) for the different approximants, where the approximants are ordered from left to right according to
their motif-length Fn: F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, and F10 = 55. The vertical axis of all subplots corresponds to the frequency
index j, while the horizontal axis corresponds to the conumbering index c(i). (b)–(f) Highlighted positions of the pixels in the corresponding
LDOS in red, whose intensities lay within the indicated α-intervals.

the experimentally extracted symmetrized LDOS, which is
presented in the top row. Only for this figure have we ad-
ditionally symmetrized the discretized LDOS( j, c(i)), as the
resulting sets of points presented in the five lower rows are
less affected by experimental fluctuations. The symmetrized
LDOS is obtained by independently symmetrizing along both
the frequency and conumbering axes.

Due to finite-size effects, the same f (α) does not exist for
different approximants. Thus we separate the f (α) into five
distinct intervals and present their support in the five lower
rows. The borders of the intervals are defined by characteristic
points of the f (α) curve to define the intervals. In addition to
using αmin and αmax, we use the point α0, where f (α0) = 1,
associated with q = 0 and the two roots of f (α), α+, and α−,
where α+ is the left root that lies in the region associated with
positive values of q, and α− is the right root that lies in the
region associated with negative values of q [8].

Figure 5(b) highlights the pixels of the discretized LDOS,
which correspond to αmin, which are the points that have
the maximum wave-function intensities. Apart from Fn = 8,
there exists only one pixel with the maximum intensity in
the LDOS, which is the central one. This therefore directly
results in its fractal dimension of f (αmin) = −1, since it is

encountered with a relative frequency of 1/Fn. As Fn = 8 is
the only even system size presented in Fig. 5, it does not have
a central pixel, thus illuminating the central four pixels. This
odd/even difference was already discussed in the previous
section (see also Fig. 12), and it leads here to additional
oscillations when approaching the limiting value.

In Figs. 5(c) and 5(f) associated with the interval α ∈
(αmin, α+]) and α ∈ (α−, αmin], where f (α) < 0, the subsets
are containing a few states, whereas for (d) and (e) corre-
sponding to f (α) > 0 the majority of states contribute.

V. SELF-SIMILARITY

Another aspect often associated with fractality is the self-
similarity of structures [18,19,21–23,29,31]. Similar to the
recursive construction of the Fibonacci numbers Fn, the com-
plete LDOS can be constructed recursively. The procedure
is based on the renormalization of atomic and molecular
sites [30],∣∣ψ (n)

j (ci )
∣∣2 = λ

∣∣ψ (n−3)
j′ (ci′ )

∣∣2
if j is atomic, (10)

∣∣ψ (n)
j (ci )

∣∣2 = λ
∣∣ψ (n−2)

j′ (ci′ )
∣∣2

if j is molecular, (11)
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where λ and λ are renormalization factors that depend
on ρ.

We investigate this recursive construction by experimen-
tally realizing the first periodic approximations (i.e., Fn =
3, 5, 8, 13, 21). Instead of using different permutations of the
periodic motif, as we have done previously, we use circular
chains, where the basic motif with Fn sites is repeated Np

times. The number of repetitions Np is chosen such that a
ring of around 100 resonators is built for each Fn-motif. In
this way, the Fn bands, expected for an infinite chain Cn, are
each populated with Np states, in contrast with the previous
experiment, where a single state was defining the band posi-
tion. Due to the higher density of states inside the bands, an
individual extraction of resonance is not possible anymore and
we extracted the LDOS directly from the reflection spectra,
where we reduced the weaker coupling to tA = 55 MHz and
we enhanced the stronger coupling to tB = 148 MHz, in order
to obtain better isolated bands (for details, see Appendix A).
This allows us to average over equivalent sites and states.

In Fig. 6 we present the LDOS for the first approximates.
Highlighted for F10 = 55, F8 = 21, and F7 = 13 [Figs. 6(f),
6(e) and 6(d), respectively], the central square (marked in red),
which gathers atomic sites and their corresponding states, of
the LDOS at order n resembles the complete LDOS of order
n − 3, and the four squares in the corners (molecular sites and
frequencies, one marked in green) of the LDOS at order n
resemble the complete LDOS of order n − 2. The recursive
construction is also well visible for smaller n. We calculate
the renormalization factor λ by integrating the central square
(corresponding to atomic sites and states) and λ by integrating
and averaging over the four corner squares (corresponding
to molecular sites and states) in Fig. 6(f). We find λ = 0.51
and λ = 0.42, which are in reasonably good agreement with
theoretical predictions for the quasiperiodic limit λtheo = 0.48
and λtheo = 0.43 for ρ = 0.64. Further information about the
theoretical predictions and the experimental estimation of the
renormalization factors can be found in Appendix C.

VI. CONCLUSION

In this article, we have shown that the multifractal prop-
erties of waves propagating on a quasiperiodic lattice can be
unambiguously observed in our finite-size experimental setup
made of coupled dielectric resonators. Our measurements
were successfully analyzed using a renormalization-group
approach. The robustness of the fractality observed will be
challenged in the near future by introducing controlled dis-
orders in the experiment [48]: either a coupling disorder,
induced by a small variation of distances between microwave
resonators, or a phason disorder, resulting from a local
inversion of short and strong bonds and giving birth to
configuration that cannot be obtained by permutation. Our
microwave experimental platform is also well suited to the
study of 2D lattices [36], and it has already been used to
provide new physical insights into the behavior of waves on a
Penrose tiling [49]. Due to the physical couplings that are not
constrained to the edges of the tiles, the tight-binding model
implemented in the lattice is not the one usually theoretically
and numerically studied. Thus by implementing 2D tiling of
codimension 1 [38] in our experiment, as, for example, the

FIG. 6. Conumber-averaged LDOS for different motif length Fn:
(a) F4 = 3, (b) F5 = 5, (c) F6 = 8, (d) F7 = 13, (e) F8 = 21, and
(f) F10 = 55 (already presented in Fig. 2). For all plots the horizontal
axis corresponds to the conumber index c(i) and the vertical axis to
the frequency index j, and the same colormap as in Fig. 2 is used.
The green and red squares highlight the recursive construction.

Rauzy tiling [50], one can expect to exhibit richer multifractal
properties.

APPENDIX A: EXTRACTING THE LOCAL DENSITY
OF STATES FROM THE MEASURED SPECTRA

A general presentation of our versatile tight-binding mi-
crowave experiment can be found in [35,36]. In the following
section, we briefly point out the link between the mea-
sured reflection spectrum, the local density of states, and
the eigenvectors of the tight-binding system. We consider a
tight-binding Hamiltonian HTB that describes a system of
N coupled resonators with associated eigenvalues {ν j} and
eigenvectors {c j} that are used to describe the wave functions
ψ j (�r) = ∑N

i c j
i ψ0(�r − �ri ) = ∑N

i ψn(i) of the tight-binding
system, where ψ0(�r) is the single resonator wave function and
�ri is the position of the resonators. Assuming a Breit-Wigner
form of the scattering matrix and a constant antenna cou-
pling σ throughout the whole frequency range, the reflection
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FIG. 7. (a) Picture of the experimental chain of one permutation for the case of dominant weak coupling (ρ = tA/tB < 1). The metallic top
plate that is normally placed above the resonators in order to reduce the system to two dimensions was removed in order to take the picture.
Above the resonator at position 33 (counted from the left) we position the loop antenna through which we measure the reflection spectra above
each resonator. (b) Reflection spectrum measured at position 33 and the reconstructed spectrum using the resonances obtained via the harmonic
inversion method. The black vertical lines mark the extracted resonance positions, and the gray arrow marks the central state ( j = 28), above
which we symmetrize the LDOS(i, j) in order to span the whole frequency range. conf 6, index 32 (starting from 0), so 33th resonator.

spectrum is then given by

S(�r, ν) = 1 − iσ
N∑
j

|ψ j (�r)|2
ν − ν j + i� j

, (A1)

where � j is the decay rate associated with state j, and �r is the
position of the measuring antenna. One can then derive the
local density of states

ρ(�r, ν) = 1

πσ
[1 − ReS(�r, ν)] =

∑
j

|� j (�r)|2 fν j ,� j (ν),

(A2)

where fν j ,� j (ν) are normalized Cauchy distributions around

ν j with width � j[
∫ +∞
−∞ fν j ,� j (ν)dν = 1]. Due to the typical

linewidths � of a few MHz, in our case of large N , the reso-
nance peaks in the spectrum, and thus in the density of states,
are strongly overlapping. We therefore define a discretized
version of the local density of states in the frequency as well
in the space domain,

LDOS(i, j) = |� j (i)|2 = |� j (�ri )|2 = lim
{� j}→0

ρ(�ri, ν j ).

(A3)

This quantity is evaluated from the reflection spectra by
extracting all resonance amplitudes measured exactly over
the center of each resonator. The resonance amplitudes are
normalized so that

∑ |ψ j (i)|2 = 1, and they can be directly
associated with the squared eigenvectors |c j

i |2 of the tight-
binding Hamiltonian HTB.

For small system sizes (N � 10), direct fits of the spectra
with a sum of complex Lorentz lines can be implemented [36].
For larger systems, the overlap between resonances becomes
too strong, making the fitting strategy impractical. To extract
the LDOS(i, j), we thus developed two different techniques
depending on whether we work with the linear chains of 55
resonators or the circular chains of around 100 resonators.

1. Harmonic inversion and clustering algorithm

The linear chains are comprised of 55 resonators. A picture
of one configuration, with dominant weak coupling, can be
seen in Fig. 7(a). The resonators are numerated in order to
identify them and choose only resonators whose resonance
frequencies are very close to each other. For the 55 resonators
that we use, the difference between the highest and lowest
frequencies is around 3 MHz, the same order of the single
resonator linewidth �0. The spectrum measured above the
center of the resonator at position i = 33 of the chain can be
seen in Fig. 7(b), where one can clearly see the overlapping
between resonance peaks.

To extract all resonance amplitudes for each configuration,
we use a method based on an algorithm called harmonic
inversion [40,51]. It is based on the fact that in the time
domain, a complex Lorentz line gives rise to an exponential
function. Supposing that the time signal (discrete signal with
2N points) only consists of N exponential functions with
different complex amplitude and exponents, one can establish
a set of nonlinear equations in order to determine all of their
parameters. Since the harmonic inversion tries to describe the
whole spectrum with a sum of Lorentzian functions, we first
have to filter out resonances induced by the nonflat baseline of
the reflection measurements and by the small fluctuations due
to noise. An efficient filtering is obtained by keeping only the
resonances whose widths and amplitudes are within a given
interval. We then perform a clustering in order to follow each
resonance from one antenna position to the other, regrouping
them and associating them with a certain state [41]. For each
configuration, we adjust the parameters of the density-based
clustering algorithm so that we use the same parameters for
all antenna positions to avoid manually clustering/adjusting
states according to our expectations.

Figure 7 shows the partial reconstruction of the spec-
trum using the harmonic inversion algorithm, the black
horizontal lines indicating the frequencies of the extracted
resonances. The quality of the fit is excellent. We limit the
reconstructed spectrum to the lower and central frequency
band only, since, as described in [36], the higher frequency
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FIG. 8. Experimentally extracted LDOS of a single configuration of 55 resonators arranged according to their position index i
(a), rearranged according to the conumber index c(i) (b), and the average over all eight permutations (c).

states have generally greater resonance widths due to dif-
ferent effective antenna couplings and larger Ohmic losses.
If only next-nearest-neighbor couplings are present, the sys-
tem has a CT-symmetry [52] imposing that the spectrum
is symmetric around the eigenfrequency of a single res-
onator. In our experiment, we have a next-nearest-neighbor
coupling of the order of only 5% of the nearest-neighbor
coupling. As a consequence, the latter symmetry is almost
preserved. We thus restrict our analysis to the first 28 states
(the 28th state is the central state and is indicated by a
gray arrow in Fig. 7) and symmetrize the result to expand
over the higher-frequency states. Theoretically, the eigen-
vectors of the tight-binding Hamiltonian are normalized in
both directions (

∑
i |c j

i |2 = ∑
j |c j

i |2 = 1); the experimen-
tally extracted LDOS(i, j) should then also be normalized
along both the frequency and position axis [

∑
i LDOS(i, j) =∑

j LDOS(i, j) = 1]. Since the antenna coupling σ is slightly
dependent on the frequency, and the single-resonance wave
functions are overlapping [36], the sum of the raw resonance
amplitudes over all positions (states) varies about 10% for
different states (positions). We thus normalize the extracted
wave-function intensities in both dimensions by alternatingly
normalizing them along one direction and then the other,
until the difference in normalization along both directions
is of the order of 10−6. We then consider that the extracted
LDOS(i, j) is properly normalized along the two dimensions,
which is especially important for the calculation of the fractal
dimensions.

Figure 8(a) shows the local density of states LDOS(i, j)
extracted and normalized according to the procedure de-
scribed above for a single configuration of a chain made
with 55 resonators. Figure 8(b) shows a rearranging of the
LDOSs according to their conumber: LDOS(c(i), j), and (c)
shows the average over the eight permutations identified in
this situation of dominant weak coupling. In Fig. 8(a), the
LDOSs exhibit typical standing-wave interference patterns
due to the finite size of the chain [53], but no hierarchical
structure is visible. Reordering the LDOSs based on the con-
umber index provides insight into fractal structures, which are
completely revealed by the average over all permutations [see
Fig. 8(c)].

2. Averaging each frequency band of circular chains

The circular chains are made up of smaller motifs (i.e.,
Fn = 3, 5, 8, 13, 21) that we repeat Np times while imposing
a weak coupling between two consecutive repetitions. The
number of iterations Np is chosen such that a ring of around
100 resonators is built for each Fn-motif. In this way, the Fn

frequency bands expected for an infinite chain Cn are each
populated with Np states, and they can be individually identi-
fied in each reflection spectrum S11(i, ν) measured over each
resonator i. In Fig. 9, one can see a photo of the circular chain
of resonators for a motif length of Fn = 13 that was repeated
eight times. Compared to the linear chains where the lowest
overlap was sought to identify each state individually, for
the circular chains we really want to create Fn energy bands
as dense as possible. We therefore enhanced the stronger

FIG. 9. Top: Photo of one circular chain, where the basic motif
with length Fn = 13 is repeated Np = 8 times, resulting in a total
of 104 resonators. To emphasize the periodicity, the first resonator of
each repeated motif is marked with a blue arrow. Bottom: Zoomed-in
photo of one motif, where one can identify the “molecules” (dimers)
and “atoms” (single resonator) that make up the chain.
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coupling to tB = 148 MHz and reduced the weaker coupling to
tA = 55 MHz in order to obtain better isolated bands. Experi-
mentally, this was done by increasing the longer distance dA to
9 mm (we keep the shorter distance at 7 mm) and by reducing
the distance between the two metallic plates that sandwich the
resonators from ≈12 mm to 8 mm. This alters the evanescent
decay of the electromagnetic fields outside of the resonators.

Rearranging the sum over the different states, one can
rewrite

ρ(�ri, ν) =
Fn∑

j=1

Np∑
p=1

fν j,p,� j,p (ν)|ψ j,p(i)|2, (A4)

where ν j,p and � j,p are the resonance frequency and resonance
width of the pth state within the jth frequency band, and
|ψ j,p(i)|2 is the corresponding wave-function intensity mea-
sured over resonator i.

Supposing that the bands are sufficiently isolated, by
integrating each frequency band j individually, one can then
find

LDoS(i, j) ∝
∫

band j
[1 − ReS11(i, ν)] dν, (A5)

where we can further average over all indices i that have the
same conumbering c(i).

In Fig. 10 (left column) one can see the measured density of
states DOS(ν) = 〈1 − ReS(i, ν)〉i for all Fn = 3, 5, 8, 13, 21.
Determining the integration borders of each band j is ob-
vious for Fn = 3 and 5, where the Fn frequency bands are
isolated and well separated by clearly visible gaps. While
for Fn = 8 one could eventually still identify eight bands,
although some gaps in between are closing, it becomes impos-
sible for higher n to directly identify all frequency bands. We
therefore calculate the integrated density of states iDOS(ν) =∫ ν DOS(ν ′)dν ′, which we normalize so that when integrat-
ing over all states the iDOS(ν) equals Fn, the total number
of bands [

∫
DOS(ν ′)dν ′ = Fn]. Theoretically in the limit of

� → 0 and perfectly normalized wave functions, we would
obtain a staircase function where we would have Fn big steps
with step height 1 that are comprised of Np smaller steps with
height 1/Np. Since the step corresponding to a single band
has a height of 1, one could think of intersecting the iDOS(ν)
with a set of horizontal lines that have a spacing of 1 in
between them. The found intersecting points ν∗

k [iDOS(ν∗
k ) =

k for all k ∈ (0, 1, 2, . . . , Fn)] could then define the integra-
tion intervals for each band.

Due to the nonzero linewidth of our resonances, the Np

smaller steps within a band are completely blurred, while
only the plateaus corresponding to the well-visible gaps
remain. Since the antenna coupling σ is slightly dependent
on the frequency, and the single resonance wave functions are
slightly overlapping [36], the different states are not properly
normalized in the experiment, which translates to slightly
different step heights in the iDOS. So just intersecting the
experimental iDOS with equally spaced lines does not work
very well, as can be seen for the case of Fn = 3, where the
two clearly visible plateaus are not at iDOS(ν) = 1 and 2,
as expected if properly normalized, but slightly higher. We
thus use a hybrid approach where we take the frequency
positions of the clearly visible gaps as fixed references and
find the frequency position of the vanished gaps in between by

intersecting the iDOS in between with equally spaced lines.
The positions of the visible gaps are extracted by hand and
marked as solid black vertical lines in the first two columns
of Fig. 10. At the positions where the solid black lines
intersect the iDOS, we draw solid blue horizontal lines. For
Fn = 3, 5, 8 we were able to identify all gaps, so the solid blue
lines divide the iDOS in Fn intervals, but as explained earlier
for Fn = 13, 21 not all gaps can be identified. Whenever we
could not identify a gap, we drew additional blue dashed
horizontal lines that equally divide the space in between the
two solid blue lines by the number of bands that we expected
to be in between the clearly visible gaps. To not adjust our
results based on our expectations, we estimate the number of
bands in between two clearly visible gaps (solid blue lines) by
rounding the position where the blue lines intersect the iDOS
axis to the nearest integer value, and we suppose that this is
the number of bands below that gap. In that way, we determine
the number of bands in between two solid blue lines. At the
frequencies where the dashed blue lines intersect the iDOS,
we draw a dashed black vertical line. The black vertical (solid
and dashed) lines then define the integration boundaries,
which we use to integrate each individual spectrum measured
over each resonator, leading to LDOS(i, j).

The results can be seen in Fig. 10, where LDOS(i, j) is
plotted ordered according to the resonator position indexes
i (third column) and to the conumber indexes c(i) (fourth
column). By averaging LDOS(c(i), j) over all sites that share
the same conumber index, one obtains the smoothed patterns
plotted in Fig. 6. Unlike the procedure for linear chains, we do
not need to symmetrize our results since this approach allows
us to analyze the whole frequency range. For the normaliza-
tion, the procedure is the same.

APPENDIX B: FRACTAL DIMENSIONS
OF THE WAVE FUNCTIONS

We perform a multifractal analysis of the LDOS displayed
in Fig. 2. The fractal dimension Dψ

q ( j) for each state j is
defined via an exponential scaling of the generalized inverse
participation ratio χ (n)( j) with the system size Fn [see (1)],

and the spectrally averaged fractal dimension Dψ
q is defined

by the scaling of the arithmetic average 〈χ (n)( j)〉 j over all
states in the spectrum. To investigate the scaling behavior as
a function of the system size, one would have to perform the
experiment for different system sizes Fn, which is impractical
in our case, because the maximal possible system size in order
to resolve all wave functions is 55, which is far from the
quasiperiodic limit. Fortunately, there is another approach that
is commonly used to calculate (fractal) dimensions in various
fields of physics and mathematics, namely a box-counting
algorithm. The method that we use and present in the follow-
ing section has already proven itself in the characterization
of chaotic systems and multifractal wave functions at critical
transitions and in quasiperiodic structures [3,5,16,42].

1. Calculation via a box-counting algorithm

The main idea behind the box-counting method is to break
the system down into small “boxes” and analyze them individ-
ually. By changing the box size and considering smaller and
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FIG. 10. From the top to the bottom: The different steps of the data treatment procedure for the circular chains with Fn = 21 (first row),
Fn = 13 (second row), Fn = 8 (third row), Fn = 5 (fourth row), and Fn = 3 (fifth row). For each chain, we plot (from left to right) the density
of states DOS(ν ) (first column) and the integrated density of states iDOS(ν ) (second column) as a function of the frequency ν. The black
and blue horizontal and vertical lines define the integration boundaries to extract LDOS(i, j), which are arranged according to the position
index i (third column) and conumber index c(i) (fourth column). The vertical axis of the third and fourth column corresponds to the frequency
index j.

smaller boxes, one can thus deduce scaling properties for the
system. We use in the following the notations and formalism
presented in Ref. [42]. We start by dividing our system of
size Fn into B = Fn/L boxes of size L. Since the system is
one-dimensional, the boxes are actually intervals of length L.
We then study the spatial distribution of each wave function

ψ j (i) by calculating the probability

pb(ψ j, L) =
∑

i∈box b

|ψ j (i)|2 (B1)

to find a “ball” inside box b. Repeating this procedure
for different box sizes L, one can then compute the mass
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FIG. 11. Calculated ln〈P(q, ψ j, L)〉 j for the different box sizes L
and some example values of q. For each q the data points are fitted
individually (solid lines) in order to extract their slope.

exponent

τq = lim
L→0

ln
〈
P(q, ψ j, L)

〉
j

ln L/N
= lim

L→0

ln
〈∑B

b=1 pb(ψ j, L)q
〉

j

ln L/N

(B2)

by linear fitting the spectrally averaged quantity
ln〈P(q, ψ j, L)〉 j versus ln L and extracting the slope. For
our system of size Fn = 55, we consider all box sizes
L = 1, 5, 11, 55 with integer ration Fn/L. In Fig. 11 we plot
and fit ln〈P(q, ψ j, L)〉 j versus the box size ln L for some
typical values of q. We find an excellent agreement between
the data points and fit. From the mass exponents τq one can
then easily obtain the spectrally averaged fractal dimension
Dq = τq/(q − 1).

2. Comparison to numerical results

In Fig. 3 one can see the calculated experimental fractal

dimension Dψ
q , the theoretical prediction, as well as a confi-

dence interval for our measurement. Both the positioning of
the resonators as well as the resonance frequency of each res-
onator have a small variance, which leads to slightly different
tight-binding Hamiltonians, wave functions, and thus fractal
dimensions each time one would perform the experiment.

The fluctuations of the resonance frequencies have two
origins. To place the resonators, we let them drop through
a small precision machined down-tube and then apply slight
pressure via a plastic rod on top of the dielectric cylinders.
This ensures a good electrical contact between the bottom
plate and the resonator, but upon replacing the same resonator
several times, the measured resonance frequencies of the very
same resonator still vary slightly with a standard deviation
of ≈0.5 MHz. Further, the resonators are not identical, re-
sulting in different resonance frequencies as well. Out of a
series of 500 resonators, whose resonance frequencies follow
approximately a normal distribution with a width of 40 MHz,
we chose the 55 resonators that have the closest resonance
frequencies. This results in a difference between the extreme
resonance frequencies of ≈3 MHz. Since the span of 3 MHz is
small compared to the width of the distribution of resonance
frequencies for the whole series, we suppose that they follow

a quasilinear distribution. In addition, we have small varia-
tions within the positions upon placing the resonators, which
result in slightly varying coupling strengths. In space, these
fluctuations are of the order of 0.05 mm, which induces in the
worst case (almost touching resonators) a variation of 4% of
the coupling strength.

To estimate the impact of these experimental fluctuations
on the extracted fractal dimensions, we simulate the
experiment by formulating simple tight-binding Hamiltonians
for the 11 different permutations. We model the resonators’
resonance frequencies ν∗ ∼ 7.454 MHz + U (−1.5 MHz,
1.5 MHz) + N (0, σν ) by employing a uniform distribution
with a span of 3 MHz combined with a normal distribution
with σν = 0.5 MHz centered around 7.454 GHz, which
accounts for the variation upon re-placing the same resonator
several times. With {�ri} being the exact positions that
follow the Fibonacci sequence, we suppose that the actual
positions of the resonators {�r∗

i } follow �r∗
i ∼ �ri + N (0, σpos),

supposing a normal distribution with a standard deviation of
σpos = 0.5 mm in the x and y directions. We then calculate
the coupling strength between all nearest neighbors i and
k by calculating their distances dik = | �r∗

i − �r∗
k | and using

the relation t (d ) = 63.2 MHz × K0(0.481 mm−1 × d/2)[K2

(0.481 mm−1 × d/2) + K0(0.481 mm−1 × d/2)] between
coupling strength t and separation d between two resonators
that was extracted from two-resonator measurements [36].
We diagonalize the Hamiltonians in order to find the wave
functions, average over the different permutations, and deter-
mine the fractal dimensions D∗

q via the same box-counting
method that we use for the experiment. We perform this
procedure 10 000 times, and then for each q the 5th percentile
and 95th percentile of the distribution of D∗

q are used as the
lower and higher contour line of the gray area in Fig. 3,
respectively, defining a sort of 90% confidence interval.

There is a noticeable offset for large values of q between

the experimental Dψ
q and the theory. The fact that the val-

ues for one experimental realization have an offset could be
explained by experimental fluctuation, since both the exper-
imental points as well as the theoretical curve lie within the
confidence interval, but the average values of the simulated
D∗

q (white dashed line within the gray area in Fig. 3) show
an offset compared to the theoretical curve as well. Next-
neighbor couplings within the actual experiment and the way
we average over the 11 permutations certainly play a small
role, but this offset mainly arises form the finite system size
of Fn = 55.

In Fig. 12 one can see calculated fractal dimensions Dψ

q=40
for different system sizes Fn for a high value of q = 40 and
ρ = 0.64. Since here we only want to compare the effect
of the system size, we simulate the only-nearest-neighbor
tight-binding system of the nth periodic approximation of
infinite size by formulating a closed chain of Fn resonators
(one single motif) and Fn couplings where we vary over the
phase of the connecting coupling between the first and last
resonator to account for the periodicity. One can see that the
fractal dimensions converge to the theoretical value in the
quasiperiodic limit n � 1, with an oscillating behavior. A
quick explanation of this feature can be given when looking
into the central/most localized state. If the system size is
an uneven number, the central state is localized only at the
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FIG. 12. Simulated spectrally averaged fractal dimension Dψ

q=40

for a high value of q = 40 as a function of the iteration index n (blue
points). The numbers near the blue points are the system size/motif
length Fn for each iteration. The orange line presents the theoretical
value of the fractal dimension of the quasiperiodic system Dtheo

q=40. The
gray solid lines are fits of the form D(n) = AnB − y0.

central site, while for an even system size the central state
is localized at the two central positions of c(i). It is thus
less localized and therefore it has a greater fractal dimension.
Since numerically it is very costly to diagonalize very large
matrices, we stop ourselves at a system size of F21 = 10 946,
which still has a noticeable offset compared to the theoretical
value. Then in order to verify that the values converge to
the theoretical one, we fit the apparent three different subsets
with an algebraic decay D(n) = AnB − y0, where we suppose
the same exponent B and offset y0 for all subsets but with
different amplitudes A. We find B = −1.298 and y0 = 0.540,
which corresponds reasonably well to the theoretical value
Dtheo

q=40 = 0.542, considering that the theory was formulated in
the strong modulation regime ρ � 1, where we are far off
with ρ = 0.64.

APPENDIX C: RENORMALIZATION FACTORS
λ(ρ) AND λ(ρ)

Within the renormalization theory (for the weak-coupling
dominant case), one obtains a direct recursive construction
law for the LDOS [see Eqs. (10) and (11)], where the two
renormalization factors

λ(ρ) = 2

(1 + ρ2)2 +
√

(1 + ρ2)4 + 4ρ4
(C1)

and

λ(ρ) = 1

1 + ρ2γ (ρ) +
√

1 + [ρ2γ (ρ)]2
, (C2)

with γ (ρ) = 1/1(1 + ρ2), are both dependent on the ratio of
the coupling strength ρ [30].

To experimentally estimate the renormalization factors, we
make use of the fact that the sum over all states and positions
of the LDOS for a system with motif length Fn sums up to
Fn because each of the Fn states was properly normalized
[
∑

i |ψ j (i)|2 = 1].
We can thus sum up all the pixels that contribute to the

central square of the LDOS (corresponding to atomic sites

FIG. 13. The theoretical renormalization factors λ (blue line) and
λ (orange line) as a function of ρ. The experimentally extracted
renormalization factors for the different motif lengths Fn are plotted
at their corresponding ρ with different black symbols.

and states) and divide them by the side length of that square
(i.e., the number of atomic sites within the chain) to find
the renormalization factor λ for the atomic sites/states. For
the molecular sites/states we proceed in the same way, but
additionally we average over the four corner squares (corre-
sponding to molecular sites and states).

Since we chose to use different couplings for the linear
chains and the circular chains, we can experimentally invest
the renormalization factor for two different values of ρ: ρ =
0.64 for the linear chains of Fn = 55 resonators, and ρ = 0.37
for the circular chains with a smaller motif length. In Fig. 13
one can see the two theoretical curves for λ(ρ) and λ(ρ) as
a function of ρ, which we compare to the experimentally
extracted values (black symbols).

The experimentally extracted renormalization factors λ(ρ)
and λ(ρ) correspond reasonably well with their theoretical
prediction, although the extracted λ(ρ) for the molecular sites
varies for the different motif lengths Fn and generally shows a
slight offset. This can be explained by the small system sizes
Fn, since the theoretical predictions were formulated in the
quasiperiodic limit.

APPENDIX D: INTERCHANGED COUPLINGS

As mentioned in the main text, although we mainly focus
our quantitative analyses on the common case of ρ < 1, we
also experimentally investigate the system with interchanged
couplings: tB is now the weaker coupling, and tA the stronger,
ρ > 1, thus the strong coupling dominates. As for the system
with ρ < 1, we investigate the large system (Fn = 55) by
averaging over the 21 different permutations that meet the
constraints, and smaller systems by means of circular chains.
Note that over the 21 possible permutations, 10 of them are
actually mirrored sequences of the others. Since they are
experimentally equivalent, we measure only the 11 different
permutations that are not mirrored sequences of each other,
but average over all 21 permutations by inverting the position
axis for the mirrored ones.

The averaged LDOSs can be seen in Fig. 14. Instead of
single atoms and dimers, as for ρ < 1, the chains are now
composed by dimers and trimers. This results in a different

064210-12



EXPERIMENTAL OBSERVATION OF MULTIFRACTALITY … PHYSICAL REVIEW B 108, 064210 (2023)

FIG. 14. LDOS for motif length F8 = 21 (a) and F10 = 55 (b) for
ρ < 1. The x-axis corresponds to the conumber index c(i) and the
y-axis to the frequency index j, and the same colormap as in Fig. 2
is used. The red and orange square highlight the basic motifs.

renormalization scheme upon the first deflation of the chain.
The effective bond couplings between two neighboring
trimers take on only two possible values, arranged according
to a Fibonacci sequence but with inverted strong and weak
couplings. One thus passes from the chain Cn to the chain
Cn−3 with ρ → 1/ρ when appropriately renormalizing their
couplings. In the same way, one passes from the chain Cn to
the chain Cn−4 again with ρ → 1/ρ for the dimers. All further
deflation steps then follow the renormalization laws for ρ < 1
[24]. This explains why the general structure in Fig. 14 is quite
different, but we find the same basic motifs as in Fig. 6. The
red square in Fig. 14(b) highlights the basic motif associated
with the trimers, which can be found in Figs. 6(d) and 6(f),
while the orange square highlights the basic motif associated
with the dimers, which again can be found in Fig. 6(c).
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