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Transformation twinning to create isospectral cavities
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Bounded domains have discrete eigenfrequencies/spectra, and cavities with different boundaries and areas
have different spectra. A general methodology for isospectral twinning, whereby the spectra of different cavities
are made to coincide, is created by combining ideas from across physics including transformation optics, inverse
problems, and metamaterial cloaking. We twin a hexagonal drum with a deformed hexagonal drum using a
nonsingular coordinate transform that adjusts the deformed shape by mapping a near boundary domain to a zone
of heterogeneous anisotropic medium. Splines define the mapping zone for twinning these two drums and we
verify isospectrality by a finite-element analysis.
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I. INTRODUCTION

An open challenge across wave physics is to design cavities
that are twins, in the sense we shall define, of a different
shaped cavity. The ability to design such twinned cavities
opens up multiple possibilities in, say, acoustics, of having
two different shaped drums or even rooms/auditoria, sound-
ing identical, or of two different elastic components sharing
the same vibrational eigenfrequencies. In electromagnetism
there are numerous examples of closed cavities [1], and for
water waves having vastly different sized experimental wave
tanks sharing the same eigenfrequencies would be desirable.
In this paper we create such twinned cavities. The twinning
we construct is to ensure that both cavities have identical
eigenfrequencies, and as such they are isospectral as they
share the same spectrum, despite their different boundaries
and areas, and furthermore share the same eigenfields within
a well-defined portion of the cavities; we consider closed
cavities for which the spectrum is discrete [1]. To tackle
the challenge of creating twinned cavities we combine ideas
from across physics drawing upon transformation optics [2,3],
inverse problems [4,5], and metamaterial carpet cloaking [6].

A. Isospectral problems

Isospectral problems in general have a long history, e.g., in
the design of isospectral drums [7–9] motivated by the famous
question of Kac [10] as to whether one can hear the shape
of a drum. Kac was referring to the problem of whether the
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Laplacian operator in a closed domain, with Dirichlet bound-
ary conditions, could have identical spectra on two distinct
planar regions sharing the same area. The question is still
open, although there are many results for specific classes and
subsets of the problem [11]. These isospectral problems in
bounded domains are also related to inverse problems in open
space [12]. We use an approach inspired by transformation
optics [6] that allows us, in contrast to much of the isospectral
literature [13], to not limit ourselves to requiring cavities of
the same area. Instead, we modify portions of the original
shape to create the isospectral match to the target cavity and
in doing so require anisotropic heterogeneous media close to
the boundaries.

B. Cloaking theory

We shall also draw upon the theory of cloaking [2]: Cloak-
ing theories are almost invariably focused around scattered
fields in unbounded domains with line or point source exci-
tation or incoming plane waves and this is quite separate from
the isospectral cavity problem. However, there are very useful
concepts that we will utilize: Particularly pertinent is the use
of transformation optics in scattering to create mirage [14] or
illusion effects [15–17] whereby one object is cloaked such
that after scattering it appears to be another object, or where
it, or the excitation source, appears to have physically moved.

An important nuance in cloaking revolves around the pre-
cise transformation employed and to achieve perfect cloaking
a transformation with a singularity is required [2]. This singu-
larity would destroy the discrete nature of the spectrum of the
closed cavity should it be employed in the isospectral setting.
However, this requirement of extreme material parameters can
be relaxed to achieve cloaking over a finite frequency band-
width by regularizing the transform, i.e., blowing up a small
ball instead of a point [18]. Another approach that removes
the singularity is carpet cloaking [6] whereby a curved surface
maps onto a flat surface with the objective of hiding an object
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FIG. 1. Principle of transformation twinning for the eigenvalues � and eigenfunctions � in the Laplacian [Eq. (1)] of a hexagonal drum
under Dirichlet boundary conditions. Changing the boundary of a drum (a) with respect to the reference hexagonal drum (b) also results in
a change of eigenvalues from � to λ′ (d). Using a nonsingular coordinate transform [Eq. (5)], a perturbed Laplacian with heterogeneous
anisotropic parameters [Eqs. (3) and (4)] is introduced into the transformed domain (pink, between y1 and y2) of the altered drum (c). Thus,
the eigenvalues λ and eigenfunctions φ outside of the transformed domain (unaltered medium) coincide with those of the original hexagonal
drum (e) and the two drums are twinned (f).

on a surface. The approach of Ref. [6] is attractive in the
isospectral setting as it requires no singularity in the transform
and yet is tractable to apply. Hence, we use this transformation
idea to deform the boundaries of our target cavity onto those
of the reference cavity. Just as in the carpet cloaking approach,
this generates a moderately anisotropic and heterogeneous
medium. We are able to employ these ideas for isospectral
twinning despite it having no scattering field.

C. Inverse problems and boundary measurements

Further, we draw upon the closely related field of inverse
problems, [4,19], that aims to uniquely determine some phys-
ical parameters, such as an electric conductivity σ within a
bounded region �, by applying a known static voltage u to
the surface ∂� and recording the resulting current, σ∇u · n,
at the boundary with n as the normal to the surface. Such
boundary measurements indeed determine σ [18], but only
under certain limited conditions, namely, that σ must be scalar
valued, positive, and finite. For the twinned cavities that we
design using transformation optics we generate matrix-valued,
yet nonsingular, conductivities (although our language differs
depending upon the physical setting). This means that the
interior field within the cavity cannot be uniquely determined
from the boundary measurements. In an isospectral problem
this would translate into different eigenfields for the cavities
and yet both cavities would share the same spectrum.

II. METHODS

The challenge is exemplified in Fig. 1: A perfect hexagon
(original drum) with the zero (Dirichlet) boundary condition
on its boundary (y0) has a discrete spectrum of eigenfrequen-

cies with associated eigenfunctions. Also shown is a highly
deformed “hexagon” where each edge has been deformed to
have a boundary y1 (with a Dirichlet boundary condition).
The challenge is to have this altered shape have the same

eigenvalues as the perfect hexagon. This is achieved by a co-
ordinate transformation in a domain close to boundary which
effectively squeezes the missing material into the deformed
shape via changing the material parameters. The eigenfield
is slightly harder to unequivocally compare between the two
shapes, however, this is possible by choosing a domain away
from the inner boundary and then comparing the eigenfields
by an appropriate norm; here we choose the Euclidean L2

norm. We use this hexagon and its deformed counterpart as
the exemplar upon which to demonstrate our methodology
and, without loss of generality, we restrict our analysis to the
two-dimensional case. Figures 1(d)–1(f) also show, qualita-
tively, what we want to achieve: The eigenfrequencies for the
perfect hexagon are shifted by the shape change and we want
to restore them by using the coordinate transformation.

Numerically we adopt a general approach to transforma-
tion so we can tackle arbitrary deformations of the boundaries
(e.g., splines) that can describe any object/boundary of the
shape and this lends our approach versatility. All of our
eigenfunction computations are performed in COMSOL MUL-
TIPHYSICS using standard finite elements to discretize the
domains of interest. The respective transformations are in-
troduced into the finite-element simulation via a C library
built from the boundary functions (y0, y1, and y2). For our
numerical solutions, the eigenfields are normalized to a value
range of [−1, 1] with respect to the original drum. These
normalized and reoriented regions are then compared based
on their L2 norm [within the centered 8 × 5 m comparison
domain; see Fig. 1(b)], using the numerical integration with
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Simpson’s rule (Newton-Coates order 2)
√∫∫

u2dxdy for the
nodal values u(x, y) from the simulation.

A. Derivation of transformed eigenvalue problem

In Ref. [10] Kac wondered whether it is possible to deduce
the precise shape of a drum just from hearing the fundamental
tone and all the overtones. Mathematically, this reduces to the
study of the eigenvalues � and associated eigenfields � of the
Laplacian, e.g.,

−	X�(X) = ��(X) in a bounded domain 
, (1)

where 	X = ∂2/∂x2 + ∂2/∂y2 is the Laplacian in Cartesian
coordinates, and where Ref. [10] considered Dirichlet con-
ditions along the boundary ∂
 (Neumann conditions also
work). In general, the spectral properties of a shape are linked
to its geometry and its material constituent.

Now we introduce a coordinate transformation χ that
maps the cavity of shape 
, in our example the undeformed
hexagon, onto a transformed cavity of shape π , the deformed
hexagon, i.e.,

χ : X = (x, y) ∈ 
 → s = [u(x, y), v(x, y)] ∈ π. (2)

Using the chain rule, we obtain the counterpart of Eq. (1) in
the transformed coordinates as

−∇s · [σ (s)∇sφ(s)] = η(s)λφ(s) (3)

in the transformed domain π where ∇s is the gradient operator
in u, v coordinates, φ(s(X)) = �(X), and

σ (s) = JsXJT
sX det JXs (4)

is a matrix-valued, spatially varying parameter [physically
related to some artificial anisotropic shear modulus, permit-
tivity, permeability, or mass density, in antiplane shear elastic
(SH), transverse magnetic (TM), transverse electric (TE), or
pressure acoustic settings, respectively], that can be achieved
through effective-medium theory, e.g., with layered media
(see Supplemental Material [20]). This parameter σ depends
on the Jacobian JsX = ∂ (u, v)/∂ (x, y) of the geometrical
transformation χ . In Eq. (3), η = det JXs is a spatially varying
scalar parameter also depending on χ (physically related to
some artificial isotropic mass density, permeability, permit-
tivity, or bulk modulus, in SH, TM, TE or pressure acoustic
settings, respectively). Eigenvalue problem (3) is solved sub-
ject to the Dirichlet condition, φ = 0, on the boundary ∂π [or
the Neumann condition σ∇sφ · n = 0, with n the normal to
∂π , if the Neumann datum was assumed for (1)].

As the parameter σ in (4) and its counterpart in (6) are both
symmetric, the differential operator in (3) is symmetric and its
spectrum is real positive. However, to ensure that its resolvent
is compact, and thus that 0 < λ1 � λ2 � · · · � λk · · · that
tends to +∞, we also require that σ be a positive-definite
and bounded matrix. In other words, there should exist two
positive real constants m and M such that 0 < m � σ ξ · ξ �
M, for every vector ξ in R2. This criterion is satisfied if the
eigenvalues of matrix σ are all strictly positive and finite.
This raises an important practical point: We can only use a
class of nonsingular transforms to preserve the discrete spec-
trum, and the mathematical criterion is that the eigenvalues
of the Jacobian need to be bounded from below and above

by strictly positive constants. We now consider nonsingular
geometrical transforms that ensure the resolvent of the dif-
ferential operator in partial differential equation (3) remains
compact.

B. Li-Pendry transform

To proceed we borrow the nonsingular geometric trans-
forms of Li and Pendry who introduced them for the design of
ground carpet cloaks in electromagnetic scattering problems
[6]. As shown in Fig. 1, the region between the outer (y2)
and ground boundary (y0 = 0) is compressed into the region
between the outer (y2) and inner (y1) boundary. We introduce
a transformation which maps the region enclosed between
two curves (x, 0) and (x, y2(x)) to the one comprised between
(x, y1(x)) and (x, y2(x)). This corresponds to a compression
of space from the y0-y2 region into the y1-y2 region. In
Fig. 1, (x, 0) (ground boundary) is mapped on (x, y1(x)) (inner
boundary) and (x, y2(x)) (outer boundary) is fixed pointwise,
of the form

u = x,

v = α(x)y + β(x),
(5)

where α(x) = (y2 − y1)/y2 and β(x) = y1. The transformed
parameter σ is then easily deduced from (4) by computing the
Jacobian matrix JsX associated with (5), and similarly for η is
deduced from the determinant of the Jacobian.

For our exemplar, the hexagon and its deformed coun-
terpart, we need to do a coordinate transformation where
the deformations are identical on each face, bar a shift and
rotation. Typically, the transformation concept, as applied to
carpet cloaks [6], is for flat reference boundaries (see Supple-
mental Material [20] for curved reference boundaries y0 �= 0),
whereas here we have flat walls at certain angles with respect
to the horizontal axis. We thus proceed as follows: First, we
design the transformation for the wall parallel to the x axis,
and deduce parameter σ for the other five carpets through the
formula

R(θ )σ (s)R(−θ ), (6)

where R(θ ) is the rotation matrix through a counterclockwise
angle θ . In the present case, we consider an hexagonal drum
so θ = nπ/3, with n = 1, . . . , 5. We note that parameter η in
Eq. (3) is not affected by the rotation. One need not assume
in general that the n carpet cloaks constituting the polygonal
drum are identical, but the n − 1 carpets associated with walls
not parallel to the x axis should be deduced from the trans-
formation design via a rotation of the given angle. We further
note that the matrix in Eq. (6) is symmetric, as required, since
a is symmetric and R(−θ ) = RT (θ ).

III. NUMERICAL RESULTS

In Fig. 2 we show the results for three modes, with re-
spective eigenfrequencies and L2 norm results. In the perfect
hexagonal drum [Fig. 2(b)] the eigenmodes retain the sym-
metry of the shape and we chose three modes: one mode with
simpler features, one with a rapidly oscillating geometrical
mode, and another multipolar mode. The deformed hexagon
[Fig. 2(a)], as expected, has dramatically different eigenmodes
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FIG. 2. Selection of modes for a comparison of three different drums (assuming wave speed c = 1 ms−1, as σ = η = 1 in the unaltered
medium). The altered drum (a) shows different eigenmodes and eigenfrequencies compared to the hexagonal drum (b), caused by the deformed
Dirichlet boundary (black line). By introducing a coordinate transform within a boundary layer (between the black and pink line) of the altered
drum (c), the respective eigenfrequencies and eigenmodes coincide with those of the hexagonal drum. Eigenfrequencies and |L2| are provided
above each panel.

that bear little relation to that of the perfect hexagon. The
eigenfrequencies are similarly poorly matched to those of
the perfect hexagon. Turning to the deformed hexagon, with
the transformation applied, we see the eigenfrequencies co-
incide with those of the perfect hexagon and, within the
nontransformed region [see Fig. 1(c)], the L2 norm gives very
good agreement: The cavities are twinned despite the severity
of the deformation and the change of area enclosed. The
modes shown are very typical and the accuracy follows across

many tens of modes with Fig. 3 showing the first 50 eigen-
frequencies. The presented data correspond to a frequency
range of 0–0.23 Hz, but we can twin the entire spectrum in
theory, the only restriction being computational resources and
numerical accuracy. One way towards achieving twinning in
an experiment would be the use of a layered medium, with
parameters derived from effective-medium theory. We provide
a proof of concept for this approach in the Supplemental
Material [20].
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FIG. 3. Numerical comparison of the first 50 computed eigenfre-
quencies (some of which are degenerate) of the hexagonal drum vs
the altered and the twinned drum assuming wave speed c = 1 ms−1,
as σ = η = 1 in the unaltered medium. The eigenfrequencies of the
altered drum are generally higher than the hexagonal drum. With the
transformation, however, the eigenfrequencies of the altered drum
match those of the hexagonal drum closely and achieve twinning.
The mean absolute difference between twinned and original drum is
3.51 × 10−8 ± 3.50 × 10−8 Hz, and 3.85 × 10−2 ± 9.37 × 10−3 Hz
between the altered and original drum, for a mesh with 2 500 000
elements (mean ± standard deviation).

IV. CONCLUSION

In this paper, the recent theories of transformation optics
have been applied, not to scattering, but to spectral problems.
In doing so we have shown that we can match the spectrum
for strongly different shapes in closed domains, while lim-
iting the transformation to a boundary region. This opens
the path to several applications; the spectrum is essential in
terms of energy transport for photonic waveguides and crystal
fibers. The ideas presented here could be used to retrofit, or

repair, waveguides using metamaterial regions of transformed
material to create, or recreate, the eigenfrequencies and eigen-
modes desired. Similarly one could envisage cavity devices
that, through manufacture or damage, are not operating at the
right frequency or which require tunability and for which this
transformation methodology would allow eigenfrequencies
to be designed for. In vibration control an example would
be shifting the eigenfrequencies of slender bridges to avoid
unwanted swaying and resonance effects [42]. This also has
implications for designed and tunable resonance, in particular
to decrease a cavity area while maintaining the same reso-
nance properties.

On a practical level the effectiveness and quality of cloak-
ing for optics and electromagnetism is hard to quantify and
assess, and one reason we were drawn to the identification of
the spectrum is that the isospectral problem is a robust, and
unequivocal, approach to assess the quality of carpet cloaks
(independent of boundary conditions, wave simulations, per-
fectly matched layers, etc.). The agreement of the twinned
spectra is a robust measure of cloaking quality. The approach
here paves the way towards numerous extensions to other
wave systems such as the full Maxwell system [2,3,43,44] or
to acoustics [38,45] and water waves [46,47] and also to others
such as elasticity where perfect cloaking is not available [41],
but ideas around direct lattice transformation [48] and near
cloaking [49] could be adapted, to perforated domains, hetero-
geneous or anisotropic cavities, and will motivate experiments
and devices.
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