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Quasiparticle and transport properties of disordered bilayer graphene
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In recent experimental and theoretical studies of graphene, disorder scattering processes have been suggested
to play an important role in its electronic and transport properties. In a preceding paper, it has been shown that
the nonperturbative momentum-space Lanczos method is able to accurately describe all the multiple impurity
scattering events and account for the quasiparticle and transport properties of disordered monolayer graphene.
In the present study, we expand the range of applicability of this recursive method by numerically investigating
the quasiparticle and transport properties of Bernal-stacked bilayer graphene in the presence of scalar Anderson
disorder. The results are further compared with the findings of the same system using a self-consistent Born
approximation, as well as the central findings in the preceding paper for monolayer graphene. It is found that
in both systems, proper inclusions of all the scattering events are needed in order to reliably capture the role of
disorder via multiple impurity scattering. Furthermore, we reveal the dependences of the transport properties of
disordered bilayer graphene on the carrier density and temperature, and explore the role of interlayer scattering
at varying strengths. Our findings may help to provide some new angles into the quasiparticle and transport
properties of disordered bilayer graphene.
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I. INTRODUCTION

Graphene, a single carbon atomic layer, was experimen-
tally realized in 2004 [1]. It is the simplest two-dimensional
Dirac material with its low energy excitation described by
massless chiral Dirac fermions. By exploiting the van der
Waals interlayer coupling, various kinds of bilayer graphene
(BLG) have been realized, such as Bernal-stacked bilayer
graphene with a parabolic dispersion at low energies [2],
and magic-angle twisted bilayer graphene with strongly
coupled flat bands [3,4]. As presented on preceding papers,
extensive experimental studies on the electronic transport
properties of monolayer graphene (MLG) [5–12] and
Bernal-stacked bilayer graphene [8,11–15] have shown that
disorder scattering plays an important role in these systems,
and the different types of disorder may dominate under
different physical conditions. For example, for graphene
on the SiO2 substrate, electron-hole puddles have been
suggested as the dominant source of remnant disorder in
the form of long-range charged impurities [16,17]. For
suspended graphene and graphene encapsulated in hexagonal
boron nitride layers [11], the combination of long-range
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and short-range impurities has been invoked to explain their
sublinear behavior of conductivity [18,19]. But shortage
of experimental evidence for the existence of short-range
impurities in monolayer graphene still questions the role of
scalar Anderson impurities. On the other hand, for bilayer
graphene, native pointlike defects have recently been detected
by using scanning tunneling microscopy, calling for closer
attention to the potential importance of scalar short-range
disorder in few-layer graphene systems [20,21].

On the theory side, diagrammatic methods such as the
self-consistent Born approximation (SCBA) are commonly
used to study disorder physics [22,23]. The diagrammatic ap-
proximation is useful when a particular set of diagrams plays
a major role and is intuitive in understanding the intrinsic
physical processes. However, it is often challenging to iden-
tify and calculate the dominant types of diagrams in a given
complex system. In particular, coherent multiple scattering
of electrons in disordered materials can cause a large num-
ber of physical phenomena such as Anderson localization,
weak (anti-)localization, and universal conductance fluctua-
tion [24–26], while proper descriptions of such phenomena
are extremely demanding within standard diagrammatic ap-
proaches. Moreover, when referring to few-layer graphene,
the commonly used SCBA neglects many multi-impurity scat-
tering events, yet such events may become important in Dirac
materials even for weak disorder [27,28]. Therefore, the non-
perturbative Lanczos method [29,30] is needed in studying
the disorder effects in these systems. This method has been
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FIG. 1. (a) Schematic of a Bernal-stacked bilayer graphene struc-
ture, with A1 and B1 (A2 and B2) indicating the sublattices on the
bottom (top) layer. The solid (dashed) lines represent the nearest
intralayer (interlayer) hopping t (γ1). (b) Band structures without
disorder around the K± point. The blue solid and orange dashed
lines represent the spectrum of BLG within the four-band and two-
band models, respectively. The solid green lines are the spectrum of
monolayer graphene.

widely used to study many-body effects [31–33] and disorder
physics [28,34,35]. More importantly, the multiple impurity
scattering processes involving different impurity centers can
be treated exactly using this method [28,36,37], a capabil-
ity that is particularly valuable for investigating disordered
bilayer graphene that contains both intralayer and interlayer
scattering events.

In this paper, we study the quasiparticle and transport
properties of bilayer graphene with short-range Anderson dis-
order using the Lanczos method. The quasiparticle properties
are studied in both the strong (E f τ/h̄ � 1) and weak scat-
tering limits (E f τ/h̄ � 1), with E f the Fermi energy and
τ the quasiparticle lifetime. In particular, the quasiparticle
residue is shown to decrease sharply near the charge neutral-
ity point, suggesting the modification of multiple scattering.
Furthermore, we find that the conductivity increases with the
carrier density and saturates at high carrier densities, and
the interlayer scattering events will reduce the longitudinal
conductivity. We also obtain the characteristic dependence of
the conductivity on the temperature in the low carrier density
limit (namely, around the charge neutrality point). The results
are further compared with the findings of the same system
using the SCBA, demonstrating the pronounced differences
between the two approaches, as well as the central findings in
the preceding paper for monolayer graphene [38], highlight-
ing the interlayer scattering effects.

This paper is organized as follows. The tight-binding
model and methodologies are introduced in Sec. II. The nu-
merical results for quasiparticle properties calculated by the
Lanczos method and SCBA are presented in Sec. III. The
transport properties are given in Sec. IV. Finally, in Sec. V,
a brief conclusion is given.

II. MODEL AND METHODS

We start with the tight-binding model for clean Bernal-
stacked (AB-stacked) BLG [2] [see Fig. 1(a)]

H0 = −t
∑

b

∑
〈i, j〉

c†
b,icb, j + γ1

∑
i

c†
A2,i

cB1,i, (1)

where c† (c) is the creation (annihilation) operator, b =
A1, B1, A2, B2 refer to sublattices (“1” and “2” refer to the
bottom and top layers, respectively), i and j represent the
coordinates of unit cells. The nearest intralayer and inter-
layer hoppings are denoted by t and γ1, respectively. Other
additional interlayer hopping terms are neglected since they
are much smaller than γ1. When γ1 = 0, the system becomes
two decoupled graphene monolayers. To consider a moderate
and reasonable interlayer hopping, we choose γ1 = 0.1t in
our calculations [2]. For convenience, we set all the energies
(bands, hopping strength, etc.) in the unit of t = 2.7 eV and
the length in the unit of lattice constant (carbon-carbon dis-
tance) a = 0.142 nm in the whole paper.

The corresponding Hamiltonian H0 can be solved in the
momentum space near the valley Kξ = (ξ 4π

3
√

3a
, 0), with valley

index ξ = ± denoting the two nonequivalent valleys, which
reads as

HKξ
=

⎛⎜⎜⎜⎝
0 h̄v f k− 0 0

h̄v f k+ 0 γ1 0

0 γ1 0 h̄v f k−
0 0 h̄v f k+ 0

⎞⎟⎟⎟⎠, (2)

where k± = ξkx ± iky, and v f = 3at/2h̄ is the Fermi
velocity of MLG. The basis is chosen as ψ =
(cA1,k, cB1,k, cA2,k, cB2,k)T , with cb,k (c†

b,k) being the
annihilation (creation) operator in the momentum
space. The corresponding spectrum is then obtained as
ε(k) = ±[

√
(h̄v f k)2 + (γ1/2)2 ± (γ1/2)] with k = |k|,

exhibiting the four bands as plotted in Fig. 1(b) (the blue
solid lines). Due to the interlayer coupling, the spectrums
are parabolic in the vicinity of E = 0 and recover to linear
dispersion at larger energies, which is different from the
massless Dirac cone of MLG [the green solid lines in
Fig. 1(b)].

In the low energy regime |E | � γ1/4, by projecting onto
the lowest energy orbits, the four-band model mentioned
above can be reduced to an effective two-band model with the
basis ψ = (cA1,k, cB2,k)T , and accordingly, the Hamiltonian is
written as

H eff
0 = − 1

2m

(
0 k2

−
k2
+ 0

)
, (3)

where the effective mass m = γ1/(2h̄2v2
f ). The spectrum of

the two-band model is ε± = ±k2/(2m), shown as the orange
dashed lines in the Fig. 1(b). Obviously, the two-band and
four-band models are consistent perfectly within the small
energy regime near the charge neutrality point (CNP, E = 0).

To explore the disorder effect, the short-range Anderson
type nonmagnetic disorder is introduced by random on-site
delta potential

V (r) =
∑

i

uiδ(r − Ri ), (4)

where ui measures the random potential at position Ri

distributed uniformly and independently within the inter-
val [−W/2,W/2]. And the correlation between impurities
is 〈V (r)V (r′)〉 = nimpu2 = nimpAc

W 2

12 δ(r − r′). Here, nimp =
Nimp/N is the concentration of impurity, Ac = 3

√
3

2 a2 is the
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area of the unit cell. A dimensionless parameter u0 = nimpAcW 2

12(h̄v f )2π

is defined to character the disorder strength. Assume that
the disorder is uncorrelated between sublattices due to its
short-range nature. The disorder strength can be modified
by adjusting W for fixed nimp = 1. The range of disorder
strengths considered in this paper is 0.02 � u0 � 0.17 (which
corresponds to 0.81t � W � 2.36t).

Here, we use the Lanczos recursive method in both the
momentum space and real space to numerically compute
the quasiparticle properties of BLG, including the exact
ensemble-averaged retarded Green’s function GR, the self-
energy 	, and density of states (DOS). We also compare the
self-energies obtained by the SCBA and Lanczos recursive
method. In order to avoid the finite-size effects, we choose a
large sample containing millions of atoms (N = 4 × 36002).
Moreover, a small artificial cutoff η = 10−3 is used to simu-
late the infinitesimal imaginary energy in our calculations. At
last, the periodic boundary condition is satisfied.

III. QUASIPARTICLE PROPERTIES

A. Self-energy

The renormalization for the single electron due to impurity
scattering is encoded in the self-energy. Based on the Dyson
equation G(k, E ) = G0(k, E ) + G0(k, E )	(k, E )G(k, E )
[39], the self-energy is defined as

	(k, E ) = G−1
0 (k, E ) − G−1(k, E ). (5)

Here, G0 is the retarded Green’s function of the bare Hamil-
tonian without disorder. The ensemble-averaged Green’s
function is given by G = 〈E − H0 − V + iη〉−1, where 〈· · · 〉
indicates the average expected value over the random disorder
configurations.

1. Eigenstate representation

The electronic properties are frequently addressed in the
eigenstate representation so that the effects on the energy
bands can be seen directly. In the eigenstate representation,
the self-energy is not diagonal and is dependent on both the
energy E and wave vector k, and can be written as

	(k, E ) =

⎛⎜⎜⎝
	1 0 	3 0
0 	2 0 	3

	3 0 	2 0
0 	3 0 	1

⎞⎟⎟⎠, (6)

where the ith diagonal element can be considered as the
self-energy of the ith energy band, and the detailed anal-
ysis is performed in Appendix B. The imaginary parts of
the self-energy are shown in Fig. 2. At high energies, the
self-energy is wave vector k independent. At low energies,
the value of the self-energy element 	1 (	2) increases (de-
creases) with the increase of k, leading to the overlap of
the two self-energy elements. Within a small energy range
|E | � γ1/4 (k � γ1/2v f ), we can assume that the self-energy
is momentum independent and take a k = 0 approximation.
The k independence assumption is also used with the effec-
tive homogeneous medium in perturbation calculations [40].
When γ1 = 0, the result is consistent well with the case of

FIG. 2. (a) k and E dependences of the imaginary part of the self-
energy Im	(k, E ) in the eigenstate representation. (b) k dependence
of �(0) = −Im	(E = 0). Here the disorder strength u0 = 0.02.

MLG [28]. It is obvious that the self-energy of MLG is only
dependent on the energy E , and not on the wave vector k.

2. Plane wave representation

Another commonly used representation is the plane wave
representation. In the plane wave representation, the self-
energy is diagonal and momentum independent, and adopts
the form

	pw(E ) =

⎛⎜⎜⎜⎝
	

pw
1 0 0 0

0 	
pw
2 0 0

0 0 	
pw
2 0

0 0 0 	
pw
1

⎞⎟⎟⎟⎠. (7)

For convenience, the subsequent discussion defaults to the
plane wave representation. And the representation transforma-
tion between the plane wave and eigenstate representations is
shown in Appendix B3.

The energy-dependence imaginary part and real part of
the self-energy for BLG with different disorder strengths u0

are presented in Fig. 3(a). Since the imaginary part and real
part can be transformed to each other via the Kramers-Kronig
relation [41], we can only pay attention to the imaginary part
Im	. As shown in Fig. 3(a), the amplitudes of Im	

pw
1 and

Im	
pw
2 exhibit the same variation trend, both increasing with

the dimensionless disorder strength u0. Even though both the
Lanczos method and SCBA [the diagram of the SCBA is
shown in Fig. 4(a)] can capture this feature, the discrepancy
between the calculated results of the two methods is obvious,
especially near the CNP. These two methods fit better when
the impurity strength is weak, because the SCBA does not
encompass all of the impurity effects well when the impurity
strength increases. The amplitudes of the imaginary part Im	

within the SCBA are much smaller than the accurate results
from the numerical simulations for strong disorder strength,
indicating that multiple scattering plays an important role in
BLG. The inaccuracy of the SCBA can be attributed to the
mixture of Bloch states and the interference correlations from
multiple scattering [28,42].

As a comparison, the self-energy for MLG is shown in
Fig. 3(b), which is momentum independent. The imaginary
part of the self-energy follows a power law formula [38], and
its amplitude also increases with the disorder strength u0. The
imaginary and real parts of the self-energies for two systems
at u0 = 0.09 are also contrasted in Fig. 3(c). It can be seen
that the imaginary parts of the self-energies significantly differ
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FIG. 3. Energy dependences of the imaginary (left panel) and
real (right panel) parts of the self-energy elements for disordered
(a) bilayer and (b) monolayer graphene in the plane wave repre-
sentation. The solid (dashed) lines are the calculated results by the
Lanczos method (self-consistent Born approximation) with different
disorder strengths u0 = 0.02, 0.09, 0.17. (c) Comparison of the self-
energies for the two systems at u0 = 0.09. The red (blue) solid lines
are the results of 	

pw
1 (	pw

2 ) for BLG, while the green dashed lines
are the results for MLG.

near the CNP but are the same at higher energies, consistent
with the band dispersion relations.

To further investigate the effect of the disorder strength on
the self-energy, we focus on the energy E = 0 and obtain the
analytic expression of the self-energy by the SCBA as

	
pw
1 (E = 0) = −i

(
πγ1

4
u0 + πγ1u3

0

16
ln2 4E2

c

πγ 2
1 u0

)
, (8)

	
pw
2 (E = 0) = −i

πγ1u2
0

8
ln

4E2
c

πγ 2
1 u0

, (9)

here Ec = 2.7t is the high energy cutoff. The first term of
Eq. (8) is a linear relationship with the disorder strength u0.

FIG. 4. (a) Feynman diagram of the disorder averaged self-
energy in the self-consistent Born approximation. The solid line
represents Green’s function, the star denotes impurity, and the dashed
lines represent electron-impurity interaction. (b) Disorder strength
dependence of the imaginary part of the self-energy of monolayer
graphene at E = 0. (c) Disorder strength dependence of Im	

pw
1 (0)

(left panel) and Im	
pw
2 (0)(right panel) of bilayer graphene. The blue

(red) solid lines are the results calculated by the Lanczos method
(SCBA). The yellow line is the result calculated by the Born approx-
imation (BA) within the two-band model, which is the linear term of
Eq. (8). The green dashed lines are the analytic results of Eqs. (8)
and (9).

It is noted that we only get this linear term if we use the
two-band model and ignore the contribution from more distant
energy levels, which is also the Born approximation (BA). The
second term of Eqs. (8) and (9) relate to the coherence be-
tween the energy bands. As shown in Fig. 4(c), the difference
between the Lanczos and SCBA methods is insignificant when
the disorder strength u0 is weak. When u0 increases, such
difference increases, suggesting that the multiple scattering
becomes important. For MLG, the self-energy obtained by
the SCBA is written as 	(E = 0) = −iEc exp(−1/u0). It is
clear that the SCBA does not capture all the disorder effects
very well, as shown in Fig. 4(b). The multiple scattering
effect is even more important in MLG than in BLG. Since the
SCBA sums all the noncrossing diagrams, we wonder if the
difference between the two methods is due to the cross terms.
According to some previous studies, the SCBA is unreliable
in semimetals, where the condition kF l � 1 (kF the Fermi mo-
mentum and l the mean free path) is not satisfied [42–45]. In
those systems, the second-order cross term has the same order
magnitude as the SCBA results. However, for the short-range
Anderson impurity used in this paper, the contribution of
the second-order cross term (the lowest-order multiscattering
event) is zero, so the discrepancy should be attributed to the
contribution of other higher-order Feynman diagrams.

B. Density of states

A common and effective way to observe the disorder effect
is to examine the changes of DOS in the presence of the
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FIG. 5. (a) Density of states (DOS) as a function of energy E
with different disorder strengths u0. The dashed (solid) lines are
the results for the clean (disordered) bilayer graphene. (b) Spectral
function A(k, E ) and the corresponding DOS. (c) Dimensionless pa-
rameter Eτ/h̄ and (d) quasiparticle residue Z as functions of energy
E at u0 = 0.09. (e) Elastic mean free path le as a function of energy
E at u0 = 0.02. In (c)–(e), the solid and dashed lines are for MLG
and BLG, respectively.

disorder. First, the DOS of clean BLG is given by

D(E ) = gvgs

2π (h̄v f )2

[
|E | + γ1

2
+ �(|E | − γ1)

(
|E | − γ1

2

)]
,

(10)

where �(x) is the step function, gs = 2 and gv = 2 account for
the spin degeneracy and valley freedom, respectively. Unlike
MLG, BLG has a finite DOS at the CNP in addition to the
linear dependence on the energy. With the disorder, the DOS
of a system can be provided by the imaginary part of the
disorder averaged Green’s function. In Fig. 5(a), we show
the results of the DOS per unit cell obtained by the Lanczos
method in the real space. It is found that the disorder sig-
nificantly modifies the DOS and a relatively strong disorder
can erase the step of the DOS. The imaginary part of the
self-energy has similar behaviors with DOS, while the real
part of the self-energy represents the renormalization of the
energy bands. Combined with the changes of the real part
of the self-energy and DOS, we can imagine that the energy
levels are pushed toward zero energy by the disorder potential,
and the DOS increases accordingly [2]. The increase in the
DOS near the CNP is also evidence of multiple scattering. The
short-range disorder does not qualitatively change the band
structure. We plot the experimentally testable single-particle
spectral function A(k, E ) = −ImG(k, E )/π as a function of
energy E and momentum k in Fig. 5(b). Naturally, the band

structure is basically maintained, and more information is
available in Appendix C.

C. Quasiparticle residue

To measure the disorder effect on quasiparticle behaviors,
we study the quasiparticle residue

Z =
[

1 − ∂Re	(k, E )

∂E

]−1∣∣∣∣
E=Ẽk

, (11)

where Ẽk is the energy of quasiparticle that is the root of the
equation E − εk − Re	(k, E ) = 0. The quasiparticle residue
is a crucial quantity to judge whether the system can be de-
scribed by normal Fermi liquid (FL) theory [46]. If Z ≈ 1, the
system is close to a clean system, and can be well described
by the normal FL. If Z is significantly smaller than 1 or
even vanishes, it means that the system deviates from the
original structure and the hybridization with other states is
strong, indicating that the perturbation calculations are invalid
and the system is a marginal FL or a non-FL [28,35,46].
In addition, the elastic mean free time is defined as τ =
h̄/[−2ZIm	(E )], the group velocity is vg = ∂Ek/h̄∂k = Zv

with velocity v = ∂εk/h̄∂k, and the elastic mean free path is
le = vgτ = h̄v/[−2Im	(E )]. As shown in Figs. 5(c) and 5(d),
in the weak scattering limit (E f τ/h̄ � 1), the behaviors of the
elastic mean free time and quasiparticle residue for MLG and
BLG are similar, with Z close to 0.9, and Z decreases slowly
as the energy |E | decreases for each system. In the strong
scattering limit (E f τ/h̄ � 1), Z further decreases, especially
for MLG where Z drops rapidly at the CNP. Such an unusual
feature suggests that the multiple scattering effect remarkably
changes the quasiparticle properties near the CNP. Further-
more, the behaviors of elastic mean free paths for two systems
are contrasted in Fig. 5(e). In the weak scattering region, the
mean free paths for two system are nearly the same. However,
in the strong scattering region, the mean free path for MLG
becomes significantly longer as the |E | decreases, even up
to 103 orders of magnitude, but the mean free path for BLG
first increases and then decreases to zero. In the latter case,
since the difference of the imaginary parts of the self-energies
between the two systems is not significant, the difference of
the elastic mean free path mainly comes from the electrons
velocity. For MLG, the velocity of the electrons is v f , while
the velocity for BLG decreases as the energy approaches zero.

IV. TRANSPORT PROPERTIES

A. Longitudinal conductivity

To further study the disorder effect on transport proper-
ties of the system, we calculate the longitudinal conductivity
based on the Kubo-Greenwood formula [47]

σxx(E f , T ) =
∫

dE

(
−∂ f (E , E f )

∂E

)
σ 0

xx(E ), (12)

where f (E , E f ) = 1/[e(E−E f )/kBT + 1] is the Fermi-Dirac
distribution with E f the Fermi energy, kB the Boltz-
mann constant, and T the temperature, and σ 0

xx(E ) is
the zero temperature conductivity. At zero temperature the
− ∂ f (E ,E f )

∂E can be replaced by delta function δ(E − E f ). The
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FIG. 6. Conductivity at zero temperature (σ 0
xx) for (a) BLG and

(b) MLG with different disorder strengths u0 = 0.02, 0.05, 0.09.

zero-temperature conductivity is given by

σ 0
xx(E ) = gsgν

e2π h̄

L2

∫
d2k

(2π )2
Tr[vxA(k, E )vxA(k, E )], (13)

with the velocity operator vx = 1
h̄

∂H
∂kx

. Figures 6(a) and 6(b)
show the energy dependence of zero-temperature conductiv-
ities for BLG and MLG, respectively. Similar to that of a
normal metal, the increase of the disorder strength leads to
a decrease in the conductivity. The conductivity of either
system increases extremely rapidly with increasing |E | and
then saturates. One difference is that BLG has a kink around
|E | = γ1. The reason for the kinklike structure in the con-
ductivity is the sudden appearance of interband scattering and
additional carriers in the excited conduction band [2,48]. Due
to the broadening of the spectral function, the kink is gradually
smeared when the disorder strength increases. Here, there also
exists a minimum conductivity σmin at the CNP for either
system.

In order to more intuitively study the disorder effects in
the vicinity of E = 0, we adopt the effective two-band model
in the low energy regime |E | � γ1/4. The zero-temperature
conductivity near the CNP is expressed as

σ 0
xx = 4e2

πh

[
1 +

(
α

�
+ �

α

)
arctan

α

�

]
, (14)

where α = E − Re	 and � = −Im	 for simplicity, h is the
Planck constant, and the degeneracies gs = gv = 2 have been
considered. As for MLG, the longitudinal conductivity has
a similar expression σ 0

xx = 2e2

πh [1 + ( α
�

+ �
α

) arctan α
�

]. Obvi-
ously, the minimum conductivity of BLG calculated by the
two-band model is a universal value σ 0

min = 8e2

πh and is twice

as large as that of MLG (σ 0
min = 4e2

πh ). Based solely on the
minimum conductivity at zero temperature, the BLG appears
to be a simple superposition of two MLG layers.

B. Interlayer coupling

To investigate the role of interlayer coupling γ1, we cal-
culated self-energy 	 and zeros temperature conductivity σ 0

xx
with different γ1, as shown in Figs. 7(a)–7(c), and the dif-
ferences are clear. The split of 	

pw
1 and 	

pw
2 become more

obvious and the conductivity decreases as γ1 increases. It is
worth noting that γ1 has no effect on minimum conductivity
at zero temperature, but when the temperature is not zero, the
minimum conductivity decreases with increasing γ1.

FIG. 7. (a) Imaginary and (b) real parts of the self-energy as
functions of energy for bilayer graphene with different interlayer
coupling strengths γ1 = 0.10t, 0.15t . (c) Conductivity σxx as a func-
tion of energy with different interlayer coupling strengths γ1 =
0.10t, 0.15t . (d) Conductivity σxx with different interlayer coupling
strengths t3 = 0, 0.10t and γ1 = 0.1t . The insets in (c) and (d) show
the conductivity within the energy window [−0.01t, 0.01t]. Here, the
disorder strength u0 = 0.09.

In a more realistic scenario, there will be some interlayer
jumps other than γ1, such as the interlayer interactions be-
tween A1 and B2, denoted as t3 (or called trigonal warping
term), and the corresponding Hamiltonian is written as

Hw = −t3
∑
〈i, j〉

c†
A1,i

cB2, j + h.c.

As shown in the Fig. 7(d), when t3 	= 0, the minimum con-
ductivity at zero temperature σ 0

min no longer be a universal
value, but will become larger. This is because this type of
interlayer terms is nonlocal and can also be reflected in the
velocity operator.

C. Higher order conductivity corrections

Based on the bare current bubble which contributes the
most to the classical conductivity, we also consider the vertex
correction and the quantum interference correction, whose
corresponding diagrams are the ladder diagram and the maxi-
mally crossed diagram, respectively.

Under the ladder approximation, the renormalized velocity
ṽx satisfies the Bethe-Salpeter (BS) equation [49]

ṽx(k, E + iη, E − iη)

= vx +
∑

k′
〈V (k − k′)GR(k′, E )

× ṽx(k′, E + iη, E − iη)GA(k′, E )V (k′ − k)〉, (15)
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and we assume that the renormalized velocity ṽx = �vx dif-
fers from the bare velocity only by an energy dependent
constant �. For the short-range disorder considered here, the
current operator only has a correction on the diagonal term.
Because the velocity operator in BLG is non-diagonal, the
vertex correction vanishes here.

The quantum interference correction to the conductivity is
associated with disorder-averaged Cooperon function, and the
derivation process is shown in Appendix D. In the absence
of trigonal warping, the only Cooperon channel that remains
gapless is the sublattice-triplet and valley-triplet Cooperon,
which belongs to the intervalley channel category. The quan-
tum interference conductivity correction is obtained to be
negative (corresponding to weak localization) and can be eval-
uated as

σqi 
 − e2

πh
ln

min{L, Lφ}
�e

, (16)

where L is the length of system, Lφ is the coherence length,
and �e(E , 	) ∝ nimpu2 is the mean free path. Although BLG,
like MLG, is chiral (with the additional quantum number,
pseudospin, originating from the sublattice freedom), there is
no backscattering suppression because it has a 2π Berry phase
rather than π indicating the quantum correction is conven-
tional weak localization. When the trigonal warping term is
taken into consideration, the quantum interference will be sup-
pressed, unless the intervalley scattering is sufficiently strong
[2,25,50,51]. According to the scaling theory, the scaling
function β(g) = d (ln g)/d (ln L) is negative, then conductiv-
ity g decreases as the system size L is enlarged and the
system is insulating in the thermodynamic limit. The inclu-
sion of higher-loop corrections may provide a more complete
understanding of the localization effects, worthy for future
studies.

D. Comparison with experiments

For better comparison with experiments and with MLG,
the conductivity σxx and resistivity ρxx = 1/σxx as a
function of carrier density n (corresponds to the gate
voltage in experiments) at different temperatures T =
4, 60, 200, 300 K are plotted in Figs. 8(a) and 8(b), re-
spectively, for both BLG and MLG. Here, the carrier den-
sity is given by n = ∫∞

0 D(E ) f (E , E f )dE + ∫ 0
−∞ D(E )[1 −

f (E , E f )]dE , with D(E ) denoting the DOS, and a typical
weak disorder strength is chosen as u0 = 0.09. It is found that
the conductivity of MLG is strongly sublinear with varying
the carrier density, indicating that the similar experimentally
sublinear behavior can occur with only short-range impurities.
We also observe that the conductivity (resistivity) of both
systems has a strong temperature dependence, with a sharp dip
(peak) emerging at low temperature. And there exists a critical
carrier density n∗ that divides the carrier density into two
regimes. In the low doping regime, the conductivity shows a
strong insulating temperature dependence, that is, the conduc-
tivity decreases with decreasing temperature (dσ/dT > 0).
At high carrier density, such as n = 5 × 1012 cm−2 for BLG
(n = 3 × 1012 cm−2 for MLG), the conductivity exhibits a
weak temperature dependence with a metallic temperature
behavior dσ/dT < 0. The critical carrier density of BLG is

FIG. 8. (a) Conductivity σxx and (b) resistivity ρxx as functions of
the carrier density n at different temperatures T = 4, 60, 200, 300 K,
with u0 = 0.09. (c) Temperature dependence of the minimum con-
ductivity σmin with u0 = 0.02, 0.09. In (a)–(c), the left and right
panels are for BLG and MLG, respectively. (d) Conductivity and
resistivity for BLG, with u0 = 0.02. Here, the trigonal warping t3 =
0.1t .

much larger than the value of MLG. For the same disorder
strength parameter, the conductivity and resistivity curves of
BLG are less acute and more rounded at the CNP than those
of MLG. The conductivity and resistivity of the BLG with
u0 = 0.02 are also drawn in Fig. 8(d). The σ (n) is sublinear,
and consistent with the observation in the suspended sam-
ple [15]. The main features of the temperature and carrier
dependence of our calculated results, such as the sublin-
ear behavior and the existence of a critical carrier density
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dividing insulating and metallic temperature dependences,
are in agreement with the experiments [5,7,9,11,12,52–55].
Moreover, Fig. 8(c) depicts the minimum conductivity of both
systems increasing monotonically with temperature, but their
slopes are very different. The minimum conductivity of MLG
varies linearly at first, then sublinearly with temperature; in
contrast, that of BLG is parabolic at low temperature and
linear at higher temperature. The minimum conductivity at
zero temperature for MLG is universal 4e2

πh , whereas for BLG,

it deviates from the universal value of 8e2

πh [indicated by the
dotted line in Fig. 8(d)] due to the trigonal warping term
and is correlated with the disorder strength. The overall trend
of the temperature dependency of the minimum conductivity
agrees with experiments, particularly for MLG, but the linear
behavior for BLG is a bit different from that in experiments,
probably because there are more parameters which are out of
our consideration [9,11,15,52,53,56].

V. CONCLUSION

In summary, we have studied the quasiparticle and trans-
port properties of bilayer graphene with short-range Anderson
disorder using the Lanczos method. The quasiparticle prop-
erties have been investigated in both the strong and weak
scattering limits, revealing that the quasiparticle residue de-
creases significantly near the charge neutrality point. These
intriguing features are the consequences of multiple impu-
rity scattering events, which can be captured by using the
Lanczos method. Furthermore, we found that the conductivity
increases with the carrier density and saturates at high carrier
densities, and the interlayer scattering events will reduce the
longitudinal conductivity. We also obtained the characteristic
dependence of the conductivity on the temperature in the low
carrier density limit. The results have been further compared
with the findings of the same system using the self-consistent
Born approximation, demonstrating the pronounced differ-
ences between the two approaches, as well as the central
findings in the preceding paper for monolayer graphene, high-
lighting significant interlayer scattering effects. Noticeably,
at low carrier density, the conductivities of BLG and MLG
exhibit parabolic and sublinear behaviors, respectively, and
both have a critical carrier density that separates the strong
insulating and weak metallic regimes characterized by the
temperature dependence of resistivity. The overall trends of
our numerical results are in good agreement with experimen-
tal observations. Furthermore, in the absence of the trigonal
warping term, the minimum conductivity of BLG at zero tem-
perature is a universal constant of 8e2/πh, and is independent
of the interlayer scattering strength γ1. But when trigonal
warping term is considered, the minimum conductivity of
BLG at zero temperature is dependent on disorder strength.
Our findings may help to provide some new angles into the
quasiparticle and transport properties of disordered bilayer
graphene.
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APPENDIX A: FORMULATION

By taking K + valley (ξ = +) for example,

H0(θ ) =

⎛⎜⎜⎝
0 h̄v f k− 0 0

h̄v f k+ 0 γ1 0
0 γ1 0 h̄v f k−
0 0 h̄v f k+ 0

⎞⎟⎟⎠, (A1)

where k± = kx ± iky. The eigenvalues are obtained as

ε(k) = ±
[√

(h̄v f k)2 +
(γ1

2

)2
± γ1

2

]
, (A2)

with the eigenstates

�(θ ) = 1√
S

ϕ(θ ) eik·r, (A3)

where k = |k| =
√

k2
x + k2

y , θ = atan(ky/kx ), and S is the area

of the system.
To obtain a concise analytical solution, we introduce a

transform matrix [48,57,58]

U (θ ) =

⎛⎜⎜⎝
1 0 0 0
0 eiθ 0 0
0 0 eiθ 0
0 0 0 e2iθ

⎞⎟⎟⎠ (A4)

to eliminate the angular dependence on the direction of k. The
Hamiltonian becomes

H̃0 = U −1(θ )H0(θ )U (θ )

=

⎛⎜⎜⎝
0 h̄v f k 0 0

h̄v f k 0 γ1 0
0 γ1 0 h̄v f k
0 0 h̄v f k 0

⎞⎟⎟⎠,
(A5)

and therefore the corresponding eigenstates are given by

ϕ̃ = U −1(θ ) ϕ(θ ), (A6)

�(θ ) = 1√
S

U (θ ) ϕ̃ eik·r. (A7)

As shown above, the angular dependence θ = θ (k) is ab-
sorbed into the matrix U (θ ).

Furthermore, we can define

ε(k) =
√

(h̄v f k)2 +
(

γ1

2

)2

, (A8)

γ1

2
= ε(k) cos ψ, (A9)

h̄v f k = ε(k) sin ψ. (A10)
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Additionally, ψ = atan( h̄v f k
γ1/2 ), with ψ = 0 for k = 0 and ψ =

π
2 for k → ∞. The eigenvalues are rewritten as

ε±1 = ±
⎡⎣√(h̄v f k)2 +

(
γ1

2

)2

+ γ1

2

⎤⎦
= ±2ε(k) cos2 ψ

2
, (A11)

ε±2 = ±
⎡⎣√(h̄v f k)2 +

(
γ1

2

)2

− γ1

2

⎤⎦
= ±2ε(k) sin2 ψ

2
, (A12)

where the subscripts of “1” and “2” represent different band
indexes, and the “+” and “−” represent the conduction and
valence bands, respectively. Therefore, we can easily get

S = 1√
2

⎛⎜⎜⎜⎜⎝
− sin ψ

2 − cos ψ

2 cos ψ

2 sin ψ

2

cos ψ

2 sin ψ

2 sin ψ

2 cos ψ

2

− cos ψ

2 sin ψ

2 − sin ψ

2 cos ψ

2

sin ψ

2 − cos ψ

2 − cos ψ

2 sin ψ

2

⎞⎟⎟⎟⎟⎠, (A13)

where the columns are the corresponding eigenvectors ϕ̃ for
ε−1, ε−2, ε2, ε1 (or labeled as εn, n = 1, 2, 3, 4), ordered from
the lowest to highest bands, respectively.

APPENDIX B: SELF-CONSISTENT BORN
APPROXIMATION (SCBA)

By considering the short-range disorder whose potential
range is much smaller than the lattice constant, the random
on-site potential is given as

V (r) =
∑

r

∑
A

uA(r)c†
r,Acr,A

=
∑

b

�b

(∑
i

ub
i δ(r − Ri )

)

=
4∑

b=1

�bV
b

r , (B1)

where, A = A1, B1, A2, B2, the bth diagonal element of the
matrix �b is 1 and all the others are zero. The average over
the impurity configuration of the potential is 〈Vr〉 = 0, and the
potential correlation is

〈Vr ⊗ Vr′ 〉 =
∑
bb′

〈
V b

r V b′
r′
〉
�b ⊗ �b′

=
∑
bb′

〈|ub
i |2〉δbb′δ(r − r′)�b ⊗ �b′

= nimpu2δ(r − r′)
∑

b

�b ⊗ �b. (B2)

Here, 〈|ub
i |2〉 = nimpu2 and u2 = Ac

W 2

12 with no sublattice dis-
order correlation, and 〈· · · 〉 means the disorder averaging.

1. Eigenstate representation

To be able to compare directly with the results calculated
by the Lanczos method, we also calculate the self-energy of
clear BLG in the eigenstate representation. The potential is
rewritten as

Vk−k′ =
∫

d2r e−i(k−k′ )·r(US)†
kVr(US)k′ . (B3)

With the Born approximation (BA), we can define the self-
energy as the following form:

	(k, E ) =

⎛⎜⎜⎝
	1 0 	3 0
0 	2 0 	3

	3 0 	2 0
0 	3 0 	1

⎞⎟⎟⎠, (B4)

and the Green’s function can be written as

G =

⎛⎜⎜⎝
G1 0 G31 0
0 G2 0 0

G31 0 G3 G42

0 G42 0 G4

⎞⎟⎟⎠. (B5)

Then, we can get

	(k, E ) =
∫

d2k′

(2π )2
〈Vk−k′G(k′, E )Vk′−k〉

= nimpu2

2

∫
d2k′

(2π )2

⎛⎜⎜⎝
C 0 F 0
0 D 0 F
F 0 D 0
0 F 0 C

⎞⎟⎟⎠, (B6)

with the matrix elements

C = g1 + g3 cos ψk,

D = g1 − g3 cos ψk,

F = g3 sin ψk . (B7)

Here,

g1 = G1 + G2 + G3 + G4,

g2 = G1 − G2 − G3 + G4,

g3 = g2 cos ψk′ + 2(G31 + G42) sin ψk′ . (B8)

From the above derivations, we find that the self-energy is
not diagonal and has a momentum dependence.

2. Plane wave representation

By Fourier transform, the momentum-space matrix ele-
ments of the disorder potential are given as

Vk−k′ =
∫

d2r Vr e−i(k−k′ )·r. (B9)
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The self-energy calculated by the SCBA is

	pw(k, E ) =
∫

d2k′

(2π )2
〈Vk−k′G(k′, E )Vk′−k〉 = nimpu2

4∑
b=1

∫ kc

0

d2k′

(2π )2
�bG(k′, E )�b = nimpu2

(h̄v f )2

∫ Ec

0

xdx

2π

2

[(x2 − ω1ω2)2 − (ω1γ1)]

×

⎛⎜⎜⎝
−γ 2

1 ω1 − ω2(x2 − ω1ω2) 0 0 0
0 −ω1(x2 − ω1ω2) 0 0
0 0 −ω1(x2 − ω1ω2) 0
0 0 0 −γ 2

1 ω1 − ω2(x2 − ω1ω2)

⎞⎟⎟⎠

=

⎛⎜⎜⎝
	

pw
1 0 0 0
0 	

pw
2 0 0

0 0 	
pw
2 0

0 0 0 	
pw
1

⎞⎟⎟⎠ ∝ nimpu2

π (h̄v f )2
. (B10)

Therefore, we define a dimensionless disorder strength

u0 = nimpu2

π (h̄v f )2
= nimpAcW 2

12(h̄v f )2π
. (B11)

Here, x = h̄v f k is the rescaling integration variable, and Ec = h̄v f kc is the high energy cutoff with Ec = 2.7t . In the BA, ω1 =
ω2 = E + iη, and in the SCBA, ω1/2 = E − 	1/2. The self-energy is diagonal under the action of �b. After integration,

	
pw
1 (E ) = −u0

4

{
γ1 ln

(
E2

c − ω1ω2 − ω1γ1
)
(−ω1ω2 + ω1γ1)(

E2
c − ω1ω2 + ω1γ1

)
(−ω1ω2 − ω1γ1)

+ ω2 ln

(
E2

c − ω1ω2
)2 − (γ1ω1)2

(ω1ω2)2 − (γ1ω1)2

}

≈ −i
πγ1

4
u0 − u0

(
E − 	

pw
2

)
4

ln
E4

c

−[γ1
(
E − 	

pw
1

)]2 , (B12)

	
pw
2 (E ) = −u0ω1

4
ln

(
E2

c − ω1ω2
)2 − (γ1ω1)2

(ω1ω2)2 − (γ1ω1)2
≈ −u0

(
E − 	

pw
1

)
4

ln
E4

c

−[γ1
(
E − 	

pw
1

)]2 . (B13)

The self-consistent equation can be solved numerically by
iteration. Apparently, the self-energy is k independent. The
intra- and intervalley scattering processes contribute equally
to the self-energy here [49], and have both been considered in
the above equation.

When γ1 = 0,

	1 = 	2 = 	 ≈ −u0(E − 	) ln
Ec

E − 	
. (B14)

When E = 0, due to the electron-hole symmetry, the real part
of the self-energy is zero, and we can define 	(E = 0) =
−i�(0) and

�(0) = Ece−1/u0 . (B15)

3. Representation transformation

The transformation of the self-energy from the plane wave
representation to eigenstate representation are given as

	1 = 1

2

[(
	

pw
1 + 	

pw
2

)− (
	

pw
1 − 	

pw
2

)
cos ψk

]
,

	2 = 1

2

[(
	

pw
1 + 	

pw
2

)+ (
	

pw
1 − 	

pw
2

)
cos ψk

]
,

	3 = −1

2

(
	

pw
1 − 	

pw
2

)
sin ψk . (B16)

4. Self-energy at E = 0

In order to investigate more intuitively the self-energy at
the CNP, we can adopt the two-band model and obtain

	(E ) = nimpu2
∫

k′dk′

2π

(
1

E − 	 − x
+ 1

E − 	 + x

)
I2×2,

(B17)

where x = k′2/2m with m = γ1/2(h̄v f )2. Then, �(0) =
−Im	(E = 0) can be easily given as

�(0) = nimpu2m

π
�(0)

∫
dx

1

x2 + �(0)2

= nimpu2m

π
arctan

Ec

�(0)

≈ nimpu2m

2

= πγ1

4
u0. (B18)

The �(0) calculated by the Lanczos method, four-band model
with the SCBA, and two-band model with the BA are com-
pared in Fig. 4. The three methods clearly fit better when the
disorder strength u0 is weak, and the BA and SCBA cannot
encompass all of the disorder effects well when the disorder
strength increases.
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FIG. 9. Spectral function A(k, E ) and density of states (DOS)
with different disorder strengths u0. (a) u0 = 0.02, (b) u0 = 0.09,
(c) u0 = 0.12, and (d) u0 = 0.17.

APPENDIX C: SPECTRAL FUNCTION AND DENSITY
OF STATES

The single-particle spectral function is related to the
Green’s function by the relation of

An(k, E ) = − 1

π
ImGn(k, E )

= 1

π

−Im	

[E − εn(k) − Re	(k, E )]2 + [−Im	(k, E )]2

= 1

π

�

(α − εn)2 + �2
, (C1)

with α = E − Re	(k, E ) and � = −Im	(k, E ) for simplic-
ity. The spectral function A(k, E ) is a δ function in the
absence of the disorder, indicating that the wave vector is a
good quantum number. The spectral function is broadened
and the quasiparticles have a finite lifetime when the dis-
order is introduced, as shown in Fig. 5(b) and Fig. 9. The
dispersion relation is represented by the peak of the spectral
function A(k, E ). As the disorder strength increases, the peak
of A(k, E ) moves toward E = 0, indicating that the dispersion
relation is strongly renormalized due to the multiple scatter-
ing.

The DOS per unit cell can also be obtained based on the
spectral function in the momentum space as

D(E ) = gsgv

1

N

∑
k

TrA(k, E ) (C2)

= Acgsgv

∫
d2k

(2π )2

4∑
n=1

An(k, E ). (C3)

The corresponding results plotted in Figs. 9 and 5(b) agree
well with the real-space results plotted in Fig. 5(a) by the
Lanczos method.

APPENDIX D: CONDUCTIVITY CORRECTION

In this part, we derive the quantum interference correction
to the conductivity of bilayer graphene for a short-range, un-

correlated disorder potential following the references [50,51].
The low-energy spectrum of Bernal-stacked bilayer graphene
can be described by the Hamiltonian

H = 1

2m
�0
[(

p2
x − p2

y

)
σx + 2px pyσy

]
, (D1)

which acts in the space of four-component wave functions
� = [φK+,A1 , φK+,B2 , φK−,B2 , φK−,A1 ]. Here the Pauli matrices
σ and � act in sublattice and valley spaces respectively.
The current operators from Eq. (D1) are momentum depen-
dent v = ∂H

∂ p = 1
m (pxσx + pyσy,−pyσx + pxσy). The disorder

Hamiltonian takes the form

V̂dis =
∑

r

(
uA1 (r)φ†

r,A1
φr,A1 + uB2 (r)φ†

r,B2
φr,B2

)
, (D2)

where different types of disorder are uncorrelated on averag-
ing 〈uA(r)uA′ (r′)〉 = nu2δAA′δ(r − r′). In momentum space,
the scattering amplitude is uA(k) = 1

N

∑
r uA(r)eik·r. By ex-

pressing k = q + (Kξ − Kξ ′ ) in terms of a small momentum
transfer q within a single valley and the scattering amplitude
can be separated into an intravalley part (ξ = ξ ′) and an in-
tervalley part (ξ 	= ξ ′). Then the disorder Hamiltonian in the
four-component basis � is

V̂dis 

∑
p,p′

�†
pVp−p′�p′ , (D3)

with

Vq =

⎛⎜⎜⎜⎝
u++

A1
(q) 0 0 u+−

A1
(q)

0 u++
B2

(q) u+−
B2

(q) 0

0 u−+
B2

(q) u−−
B2

(q) 0

u−+
A1

(q) 0 0 u−−
A1

(q)

⎞⎟⎟⎟⎠, (D4)

where uξξ ′
A (q) = ∑

r uA(r)eiq·rei(Kξ −Kξ ′ )·r. By using〈
uξξ ′
A (q)uμμ′

A′ (q′)
〉 = nimpu2δAA′δKξ −Kξ ′ ,−(Kμ−Kμ′ )δq,−q′ , (D5)

we can obtain the disorder averaging of the correlation func-
tion of disorder potential as

〈Vq ⊗ Vq′ 〉 = δq,−q′
∑
ζ ,κ

nimpu2
ζ ,κ

2
�ζ σκ ⊗ �ζσκ, (D6)

with u2
ζ ,κ = u2 for ζ = κ = 0 or z and u2

ζ ,κ = u2/2 for ζ , κ =
x, y. Terms nimpu2

x/y,x/y take into account the inter-valley scat-
tering. nimpu2

z,z describes the different on-site energies for two
layers. Term nimpu2

00 plays the role of layer-symmetric disor-
der potential. The disordered averaged single particle Green’s
function

GR/A(p, ε) = ER/A + 1
2m

[(
p2

x − p2
y

)
σx + 2px pyσy

]
E2

R/A − p4/(2m)2
, (D7)

with

ER/A = E − 	R/A, (D8)

where 	R/A are the retarded and advanced self-energies from
numerical calculations. The velocity vertices renormalization
by impurity scattering accounts for the ladder diagrams shown
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FIG. 10. (a) Diagram for the Drude conductivity. (b) The vertex
correction. (c) Bethe-Salpeter equation for the Cooperon propaga-
tor. (d) Bare Hikami box for quantum interference correction (e)
The dressed Hikami boxes. Solid lines represent disorder averaged
Green’s function and dashed lines represent disorder.

in Fig. 10(b) and can be obtained through the self-consistent
equation

ṽ(p) = v(p) +
∑
s,l

nimpu2
sl

∫
d2 p′

(2π )2
GR(p′ )̃v(p′)GA(p′). (D9)

It can be solved by assuming the renormalized vertex correc-
tion of the form ṽ(p) = 1

m∗ (pxσx + pyσy,−pyσx + pxσy) with
m∗ the renormalized mass, and the second term in the right-
hand side vanishes after the angular integration. Hence for the
uncorrelated disorder, velocity vertices are not renormalized.

The weak localization correction to the conductivity is as-
sociated with disorder-averaged Cooperon function Cξα,ξ ′α′

μβ,μ′β ′ .
The superscripts ξα and ξ ′α′ indicate the valley indices and
the sublattice indices for the incoming and outgoing states in
the retarded branch, while the subscripts μβ and μ′β ′ are the
corresponding indices in the advanced branch. As illustrated
diagrammatically in Fig. 10(c), it can be evaluated from the
Bethe-Salpeter (BS) equations

Cξξ ′,αα′
μμ′,ββ ′ (q)

= nimpu2
ζκ�

ξξ ′
κ σ αα′

ζ �μμ′
κ σ

ββ ′
ζ

+
∫

d2 p

(2π )2
nimpu2

ζκ�
ξλ
κ σ

αγ

ζ �μν
κ σ

βδ

ζ

× GR
λλ,γ γ ′ (p, ω + ε)GA

νν,δδ′ (q − p, ε)Cλξ ′,γ ′α′
νμ′,δ′β ′ (q).

(D10)

The repeated indices obey the Einstein summation con-
vention. It is convenient to classify Cooperons as isospin
(sublattice) and pseudospin (valley) singlets (s, s′, l, l ′ = 0)
and triplets (s, s′, l, l ′ = x, y, z),

Css′
ll ′ = 1

4
(σyσs)αβ (�y�l )ξμCξξ ′,αα′

μμ′,ββ ′ (σs′σy)β ′α′ (�l ′�y)μ′ξ ′ ,

(D11)

or inversely

wCξξ ′,αα′
μμ′,ββ ′ = 1

4
Crr′

mm′ (�m�y)μξ (σrσy)βα (�y�m′ )ξ ′μ′ (σyσr′ )α′β ′ .

(D12)

The impurity scattering vertex can be arranged in the same
way

nimpu2
ζκ�

ξξ ′
κ σ αα′

ζ �μμ′
κ σ

ββ′
ζ = 1

4
nimpu2

sl (σsσy)βα (�l�y)μξ

×(σyσs)α′β′(�l�y)ξ ′μ′ (D13)

with

nimpu2
sl =

⎛⎜⎜⎜⎜⎜⎜⎝
s = 0 x y z

l = 0 2nimpu2 0 0 0

x 0 nimpu2 nimpu2 0

y 0 nimpu2 nimpu2 0

z 0 0 0 2nimpu2

⎞⎟⎟⎟⎟⎟⎟⎠.

(D14)

Then the BS equations for Cooperons in bilayer graphene read

Css′
ll ′ = nimpu2

slδss′δll ′ + 1

4
nimpu2

sl

∫
d2 p

(2π )2
Tr
{[

GR
p,ω+ε

]T

×(�y�l )(σyσs)GA
q−p,ε (�n�y)(σtσy)

}
Cts′.

nl ′ (D15)

Since the Green’s function is diagonal in valley space, it leads
to a series of coupled equations for the Cooperon modes
Css′

ll ≡ Css′
l , and

Css′
l = nimpu2

slδss′ + nimpu2
sl

∫
d2 p

(2π )2

× 1

2
Tr
{[

GR
p,ε

]T
(σyσs)GA

q−p,ε (σtσy)
}
Cts′

l , (D16)

where the trace is only evaluated in sublattice space. The BS
equations can be solved by using the gradient expansion of GA

in the small wave vector q

GA
q−p,ε 
 GA

−p,ε + GA
−p,ε (q · v−p)GA

−p,ε

+ GA
−p,ε (q · v−p)GA

−p,ε (q · v−p)GA
−p,ε

+ 1

2
GA

−p,ε

(
qiv

i j
−pq j

)
GA

−p,ε, (D17)

where v
i j
p = ∂2H

∂ pi∂ p j
. The zero order in q determines the relax-

ation gap for each Cooperon channel∫
d2 p

(2π )2

1

2
Tr
{[

GR
p,E

]T
(σyσs)GA

−p,E (σs′σy)
}

=
∫ ∞

0

pd p

2π

1[
E2

R − ( p2

2m

)2][
E2

A − ( p2

2m

)2]

×

⎛⎜⎜⎜⎜⎜⎝
s = 0 x y z

s′ = 0 EREA − p4

4m2 0 0 0
x 0 EAER 0 0
y 0 0 EAER 0
z 0 0 0 EAER + p4

4m2

⎞⎟⎟⎟⎟⎟⎠.

(D18)
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Due to the quadratic spectrum of Hamiltonian (D1) and vp

with linear momentum, the linear order in q vanishes. The
couplings between different channels from q2 terms give a
higher power of q contribution and can be neglected. As a con-
sequence, the singlet-triplet channel in sublattice space is also
conserved after multiscattering Css′

l = δss′Cs
l . From Eq. (D16),

we have

Cs
l = nimpu2

sl

1 − nimpu2
sl

2

∫ d2 p
(2π )2 Tr

{[
GR

p,ε

]T
(σyσs)GA

q−p,ε (σsσy)
} .

(D19)
Within the SCBA, the self-energy can be obtained by solving
the following self-consistent equation;

	
R/A
p,E =

∫
d2 p′

(2π )2

〈
Vp−p′GR/A

p′,εVp′−p
〉

= 2nimpu2
∫

d2 p′

(2π )2

ER/A

E2
R/A − p4/(2m)2

, (D20)

which yields the Ward identity

1 = 	R(p, ε) − 	A(p, E )

(EA − ER)

= 2nimpu2
∫

d2 p′

(2π )2

EAER + ( p2

2m

)2[
E2

R − ( p2

2m

)2][
E2

A − ( p2

2m

)2] . (D21)

The analysis shows that the only Cooperon channel that
remains gapless is the sublattice-triplet and valley-triplet
Cooperon Cz

z , which belongs to the intervally channel cat-
egory. The intravalley Cooperon channels Cx,y

l are strongly
suppressed by the intervalley scattering from the atomically
sharp scatters. Here we want to emphasize the exact cancel-
lation of the zero-order term in q in the denominator of Cz

z is
ensured by Ward identity, regardless of the explicit form of the
self-energy 	R/A. After substituting Eq. (D17) into Eq. (D20)
and performing the integral, we have

Cz
z = 2nimpu2

l2
e q2

(D22)

with the square of mean free path defined as

l2
e = −nimpu2

π

(
EAER

(
ln
(−E2

A

)− ln
(−E2

R

))− E2
A + E2

R

)
(EA − ER)3(EA + ER)

.

(D23)

The leading quantum correction to the conductivity can be
computed by an index contraction of the external legs of the
Cooperon with the Hikami boxes,

σqi = 1

2π

e2

h̄

1

V 2

∑
k,q

(
GA

k vx
kGR

k

)
μ′β ′,ξα

× Cξξ ′,αα′
μμ′,ββ ′ (k,−k, q)

(
GR

q−kv
x
q−kGA

q−k

)
ξ ′α′,μβ

. (D24)

The bare Hikami box depicted as the second diagram in
Fig. 10(d) is enough. The two other dressed diagrams as
shown in Fig. 10(e), which must be included in single layer
graphene, vanishes for bilayer graphene since vp is linear in
momentum. After being transformed into singlet and triplets
channels

σqi 
 1

2π

e2

h̄
Hmm′

rr′
1

V

∑
q

Crr′
mm′ (q) (D25)

with Hmm′
rr′ as the Hikami box for each channel

Hmm′
rr′ = δmm′δrr′

1

2
Tr
[
�y�m′�T

y �T
m

] 1

V

×
∑

k

1

2
Tr
[
(σyσr )GA

k vx
kGR

k (σrσy)T
(
GR

−kv
x
−kGA

−k

)T]
.

(D26)

The Hikami box for Cz
z can be evaluated as

Hz
z = − 1

π

(
EAER

(
ln
(−E2

A

)− ln
(−E2

R

))− E2
A + E2

R

)
(EA − ER)3(EA + ER)

.

(D27)

The lower q cutoff for a system of length L is ∼1/ min{L, Lφ},
where Lφ is the coherence length of the system, and the upper
cutoff is ∼1/�e. The quantum interference conductivity cor-
rection is negative (weak localization) and can be evaluated
as

σqi 
 − e2

πh
ln

min{L, Lφ}
�e

. (D28)

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Electric field effect in atomically thin carbon films, Science 306,
666 (2004).

[2] E. McCann and M. Koshino, The electronic properties of bi-
layer graphene, Rep. Prog. Phys. 76, 056503 (2013).

[3] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. Jarillo-Herrero, Unconventional
superconductivity in magic-angle graphene superlattices,
Nature (London) 556, 43 (2018).

[4] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken,
J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T.

Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-
Herrero, Correlated insulator behaviour at half-filling in
magic-angle graphene superlattices, Nature (London) 556, 80
(2018).

[5] A. S. Mayorov, D. C. Elias, I. S. Mukhin, S. V. Morozov, L. A.
Ponomarenko, K. S. Novoselov, A. Geim, and R. V. Gorbachev,
How close can one approach the dirac point in graphene exper-
imentally? Nano Lett. 12, 4629 (2012).

[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Two-dimensional gas of massless dirac fermions in graphene,
Nature (London) 438, 197 (2005).

064208-13

https://doi.org/10.1126/science.1102896
https://doi.org/10.1088/0034-4885/76/5/056503
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26154
https://doi.org/10.1021/nl301922d
https://doi.org/10.1038/nature04233


CHEN, FU, XU, SHI, CUI, AND ZHANG PHYSICAL REVIEW B 108, 064208 (2023)

[7] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim,
Temperature-Dependent Transport in Suspended Graphene,
Phys. Rev. Lett. 101, 096802 (2008).

[8] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin,
D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant Intrinsic
Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett.
100, 016602 (2008).

[9] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approaching
ballistic transport in suspended graphene, Nat. Nanotechnol. 3,
491 (2008).

[10] Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H.
Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, Measurement
of Scattering Rate and Minimum Conductivity in Graphene,
Phys. Rev. Lett. 99, 246803 (2007).

[11] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang,
S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L.
Shepard, and J. Hone, Boron nitride substrates for high-
quality graphene electronics, Nat. Nanotechnol. 5, 722
(2010).

[12] P. J. Zomer, S. P. Dash, N. Tombros, and B. J. van Wees, A
transfer technique for high mobility graphene devices on com-
mercially available hexagonal boron nitride, Appl. Phys. Lett.
99, 232104 (2011).

[13] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I.
Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim,
Unconventional quantum Hall effect and Berry’s phase of 2π in
bilayer graphene, Nat. Phys. 2, 177 (2006).

[14] J. Katoch, T. Zhu, D. Kochan, S. Singh, J. Fabian, and R. K.
Kawakami, Transport Spectroscopy of Sublattice-Resolved
Resonant Scattering in Hydrogen-Doped Bilayer Graphene,
Phys. Rev. Lett. 121, 136801 (2018).

[15] B. E. Feldman, J. Martin, and A. Yacoby, Broken-symmetry
states and divergent resistance in suspended bilayer graphene,
Nat. Phys. 5, 889 (2009).

[16] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet,
K. von Klitzing, and A. Yacoby, Observation of electron–hole
puddles in graphene using a scanning single-electron transistor,
Nat. Phys. 4, 144 (2008).

[17] E. H. Hwang, S. Adam, and S. Das Sarma, Carrier Transport
in Two-Dimensional Graphene Layers, Phys. Rev. Lett. 98,
186806 (2007).

[18] S. Das Sarma, E. H. Hwang, and E. Rossi, Theory of carrier
transport in bilayer graphene, Phys. Rev. B 81, 161407(R)
(2010).

[19] S. Das Sarma and E. H. Hwang, Conductivity of graphene
on boron nitride substrates, Phys. Rev. B 83, 121405(R)
(2011).

[20] F. Joucken, C. Bena, Z. Ge, E. A. Quezada-Lopez, F. Ducastelle,
T. Tanagushi, K. Watanabe, and J. Velasco, Sublattice De-
pendence and Gate Tunability of Midgap and Resonant
States Induced by Native Dopants in Bernal-Stacked Bilayer
Graphene, Phys. Rev. Lett. 127, 106401 (2021).

[21] F. Joucken, C. Bena, Z. Ge, E. Quezada-Lopez, S. Pinon, V.
Kaladzhyan, T. Taniguchi, K. Watanabe, A. Ferreira, and J.
Velasco Jr., Direct visualization of native defects in graphite and
their effect on the electronic properties of bernal-stacked bilayer
graphene, Nano Lett. 21, 7100 (2021).

[22] C. W. Groth, M. Wimmer, A. R. Akhmerov, J. Tworzydło,
and C. W. J. Beenakker, Theory of the Topological Anderson
Insulator, Phys. Rev. Lett. 103, 196805 (2009).

[23] H. Bruus and K. Flensberg, Many-Body Quantum Theory in
Condensed Matter Physics: An Introduction, Oxford Graduate
Texts (Oxford University Press, Oxford, 2004)

[24] J. H. Pixley, P. Goswami, and S. Das Sarma, Anderson Local-
ization and the Quantum Phase Diagram of Three Dimensional
Disordered Dirac Semimetals, Phys. Rev. Lett. 115, 076601
(2015).

[25] R. V. Gorbachev, F. V. Tikhonenko, A. S. Mayorov, D. W.
Horsell, and A. K. Savchenko, Weak Localization in Bilayer
Graphene, Phys. Rev. Lett. 98, 176805 (2007).
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