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Despite extensive existing studies, a complete understanding of the role of disorder in affecting the physical
properties of two-dimensional Dirac fermionic systems remains a standing challenge, largely due to obstacles
encountered in treating multiple scattering events for such inherently strong scattering systems. Using graphene
as an example and a nonperturbative numerical technique, here we reveal that the low-energy quasiparticle
properties are considerably modified by multiple scattering processes even in the presence of weak scalar
potentials. We extract unified power-law energy dependencies of the self-energy with fractional exponents from
the weak scattering limit to the strong scattering limit from our numerical analysis, leading to sharp reductions
of the quasiparticle residues near the Dirac point, eventually vanishing at the Dirac point. The central findings
stay valid when the Anderson-type impurities are replaced by correlated Gaussian- or Yukawa-type disorder
with varying correlation lengths. The improved understanding gained here also enables us to provide better
interpretations of the experimental observations surrounding the temperature and carrier density dependencies
of the conductivity in ultrahigh mobility graphene samples. The approach demonstrated here is expected to
find broad applicability in understanding the role of various other types of impurities in two-dimensional Dirac

systems.
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I. INTRODUCTION

The role of disorder in two-dimensional Dirac fermionic
systems [1] was intensively explored in the early 1990s,
in part motivated by the observations of localized states in
d-wave superconductivity of cuprate superconductors [2] and
plateau transitions in integer quantum Hall effect [3]. In those
pioneering studies, it has been shown that even impurities with
weak scattering strengths have nonperturbative effects on the
quasiparticle properties near the Dirac point [3-5], resulting
in intriguing new physical consequences. As an example, an
exact conformal field theory was developed to successfully
describe the contributions from multiple impurity scattering
processes if the nature of weak disorder preserves the con-
tinuous chiral symmetry [3-6]. In this scenario, the electron
density of states was shown to possess a power-law depen-
dence on energy with fractional exponents, instead of logarith-
mic behaviors obtained within perturbative treatments [7,8].
Those findings not only enriched our physical understand-
ing about such disordered systems but also highlighted the
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importance of multiple impurity scattering processes. Never-
theless, the conformal field theory is not applicable to scalar
type of impurities that breaks continuous chiral symmetry. In
such cases, the elastic scattering time t is short, and the Dirac
fermionic systems easily enter into the strong scattering limit
(the dimensionless parameter E;7 //i < 1) as the Fermi energy
Ey approaches the Dirac point (here Ef is measured relative
to the Dirac point), calling for new theoretical treatments.
Separately, since the experimental discovery of graphene
[9], the past decade has seen a substantial rejuvenation of
interest in the study of the role of disorder in two-dimensional
Dirac fermionic systems. In particular, graphene serves as
an ideal platform for studying disorder effects at or close to
the Dirac point, because the system displays linear dispersion
over a large energy range. Indeed, extensive unusual trans-
port properties have been reported using ultrahigh-mobility
samples [10-19], including that the minimum conductivity
at the Dirac point strongly depends on temperature, the con-
ductivity is sublinear in carrier density very close to the
Dirac point, and there exists a critical carrier density sepa-
rating a nonmetallic and a metallic regime characterized by
the temperature dependence of resistivity. Such novel trans-
port behaviors not only reflect intriguing physics around the
Dirac point in weakly disordered graphene, but potentially
also highlight the importance of exotic disorder effects. To

©2023 American Physical Society


https://orcid.org/0000-0002-6148-5377
https://orcid.org/0000-0003-3196-2563
https://orcid.org/0000-0001-9765-4454
https://orcid.org/0000-0001-5844-3558
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.064207&domain=pdf&date_stamp=2023-08-22
https://doi.org/10.1103/PhysRevB.108.064207

BO FU et al.

PHYSICAL REVIEW B 108, 064207 (2023)

date, those unconventional transport properties of graphene
remain to be fully understood, in part because prevailing
theoretical treatments have various limitations. For example,
the standard Boltzmann transport theory treatments [20-22]
only capture subsets of scattering events. Several analytical
approaches have also been developed to study the role of
disorder in graphene [23-25], as examplified by the functional
renormalization-group (fRG) approach [26,27], but these new
developments again only considered the contributions of some
subsets of multiple impurity scattering processes and still
failed to properly describe the quasiparticle behavior around
the Dirac point. Therefore, it is still a standing challenge to
reliably treat multiscattering events in the presence of phys-
ically realistic disorder without continuous chiral symmetry.
An enabling theoretical approach is needed to include all the
multiple scattering events to capture the underlying disorder
physics, especially near the Dirac point.

In this work, we present numerically exact results of
the quasiparticle and transport properties of disordered two-
dimensional Dirac fermionic systems as obtained using an
accurate momentum-space Lanczos method [28,29], with
disordered graphene around the Dirac point as a concrete
example. As shown recently, this method is able to rigorously
treat all multiple scattering events from random scalar dis-
order potentials or other types of impurities. Strikingly, we
extract from numerical data a universal power-law functional
form of the self-energy in describing the multiple scattering
effect of disorder on the quasiparticle behavior, which is valid
from the weak to strong scattering limit. The newly estab-
lished universal power law enables us to further reveal the
novel quasiparticle behaviors near the Dirac point, such as the
unusual energy dependence of the quasiparticle residue. We
are also able to reproduce the experimentally observed con-
ductivity versus the carrier density at different temperatures
[10,12,14,16], thereby attesting that a proper account of multi-
ple impurity scattering processes is essential in understanding
the transport properties of disordered graphene. The approach
demonstrated here is expected to find broad applicability in
other disordered systems where multiple impurity scattering
events play a decisive role. In a companion work [30], we have
extended the scope of this recursive method by conducting
numerical investigations on the quasiparticle and transport
properties of disordered Bernal-stacked bilayer graphene. Our
findings reveal that for both systems, accurate representation
of the disorder’s impact through multiple impurity scattering
requires the inclusion of all scattering events.

This paper is organized as follows. The model and method-
ologies are introduced in Sec. II, followed by the numerical
results for the self-energy and quasiparticle properties in
Sec. III. The transport properties are given in Sec. IV. We
discuss two kinds of correlated impurity: Gaussian- and
Yukawa-type disorder in Sec. V. Finally, in Sec. VI, we draw
some conclusions from our main results.

II. MODEL AND METHOD

In the absence of disorder, graphene can be modeled by
a m-band tight-binding Hamiltonian. In our calculations, the
short-range Anderson-type disorder is introduced by the on-
site energy distributed uniformly and independently within
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FIG. 1. (a) Imaginary and (b) real parts of the self-energy for
disordered graphene with different disorder strengths (0.02 < o <
0.12). The open symbols are the numerical results, while the solid
lines are the fitting curves by Egs. (2) and (3). The inset in panel
(b) shows the comparison of the density of states (DoS) obtained
by the real-space Lanczos method (RS, open symbols) with the
calculated results based on the fitted self-energy in momentum space
(KS, solid lines) for « = 0.05, 0.09, and 0.12.

[-W/2, W/2]. So we consider the following Hamiltonian on
a honeycomb lattice:

H=1tY li)(jl+ ) Viliil, (1)

<ij> i
where ¢ is the hopping energy between the nearest-
neighboring carbon atoms. A dimensionless parameter o =
is defined to characterize the strength of uncorre-

lated Anderson disorder, where A, = %az is the area of the
unit cell, a is the C-C distance, and vy = 3ar/2/ the bare
group velocity for clean graphene. To explore the quasipar-
ticle properties of disordered graphene we choose a large
graphene sample containing millions of atoms (L? = 10 000?)
to calculate its retarded self-energy (X) by the momentum-
space Lanczos recursive method [28,29]. The large sample in
our calculations allows us to choose a small artificial cutoff
n = 0.001 to simulate the infinitesimal imaginary energy so
that we can extract the self-energy function with high-energy
resolution.

AW?
12(hvy)?m

III. SELF-ENERGY AND QUASIPARTICLE PROPERTIES

The imaginary part of the self-energy [ImX(FE)] for disor-
dered graphene with different disorder strengths (o) is shown
in Fig. 1(a). One can see that, as the disorder strength in-
creases, ImX(E) gradually deviates from a linear behavior,
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FIG. 2. Numerical fittings of the parameters (a) g8, (b) A, and
(c) Xy as functions of the disorder strength «. B, A and X, are
obtained from the power-law self-energy fitting in Fig. 1. (d) Log-log
plot of the imaginary part of the self-energy and the power-law fit-
tings by subtracting the values at the zero energy for several disorder
strengths.

and the absolute value of ImX(0) increases accordingly. These
characteristic features inspire us to use a power-law formula
to fit our numerical results, given as

ImS(E)=—-%— AIE|'™?, 0<B <1, )

where B, ¥y, and A are the fitting parameters only deter-
mined by the disorder strength «. As shown in Fig. 1(a), the
agreement between the self-energy function form in Eq. (2)
and numerical results is excellent within the low-energy win-
dow of [—0.2¢,0.2¢]. Equation (2) is further confirmed by
the log-log plot of the imaginary part of the self-energy as
a function of energy as shown in Fig. 2(d). More remark-
ably, only via the Kramers-Kronig relation, we identify the
functional form of the real part of the self-energy [ReX(E)]
without introducing any other adjustable parameter except the
high-energy cutoff as

ReX(E) = Dsgn(E)|E|'™* + CE, (3)

where sgn(E) is the signum function, C = %A, and D =
—cot(3B)A. The high-energy cutoff is chosen as E. ~ 2.7¢,
which has the same order of magnitude of the band width.
Such a functional form in Eq. (3) can well fit the numerical
results of ReX(FE), as shown in Fig. 1(b). This further con-
firms the correctness of our proposed power-law formula for
the imaginary part of the self-energy. We have also calculated
the spectral function as shown in Appendix A, demonstrat-
ing that this power-law relation significantly renormalizes the
quasiparticle properties around the Dirac point. Moreover, the
inset in Fig. 1(b) plots the comparison of the density of states
(DoS) obtained by the widely used Lanczos method in real
space [31] with that calculated using our fitted self-energy,
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FIG. 3. (a) Quasiparticle residue Zp = v,/v; (b) dimensionless
parameter Et // as a function of E for different .

showing again the perfect agreement with each other. More
discussions about the DoS are given in Appendix B.

Equations (2) and (3) are the main discoveries of the
work [32], reflecting that proper treatments of all orders of
multiscattering events will uncover the novel quasiparticle
properties around the Dirac point. More interestingly, the
existence of nonzero ¥ in the obtained self-energy functional
form is reminiscent of what is reported in multichannel Kondo
problem [33], thereby suggesting that some novel quasiparti-
cle behaviors and unconventional transport properties should
be observed even in weakly disordered graphene.

In the following, we digest the central findings in several
important physical aspects. First, we discuss the relation-
ship between the fitting parameters and disorder strength. In
Fig. 2(a), a linear fitting of B versus o € [0.04, 0.12] gives
a slope of 2.00 £ 0.05. A also has a linear relation with «,
and the fitting slope is 1.70 £ 0.05, as shown in Fig. 2(b).
However, X can be fitted by an exponential function Ae 5/¢,
and the fitting parameters are A = 1.0 £ 0.1 in unit of ¢ and
B =0.57 £0.05, as shown in Fig. 2(c). Note that the expo-
nential fitting parameter for Xy is B = 0.57 £ 0.05, which is
roughly a factor of 2 off the prediction (B = 1) within the
self-consistent Born approximation (SCBA) [25,34].

Since all information of the quasiparticle properties is en-
coded in the self-energy function, next we discuss how the
multiscattering events considerably affect the quasiparticle
properties. The real part of the self-energy (ReX) in Eq. (3)
contains two terms, a linear term (CE') and a singular one
[Dsgn(E)|E|'~#]. We find that the singular term will domi-
nate the quasiparticle behavior around the Dirac point, leading
to a super-linear dispersion of Ej oc k'/'=#)| where Ej is the
root of E — livek — ReX(E) = 0. This result clearly indicates
that the linear dispersion for the ideal graphene is unstable
against disorder due to multiple scattering events. Moreover,
the power-law correction for the real part of the self-energy
leads to the quasiparticle residue Zg = 1/[1 — 0gReX(E)]
E# vanishing as E — 0, so does the effective group velocity
v, = 0Ey /hidk = Zgvy, as shown in Fig. 3(a). In the weak
scattering limit (Eyt /A >> 1), Zg is close to 1.0, and decreases
slowly as the Fermi energy decreases. In the strong scattering
limit, however, Zg (or vg) drops rapidly to zero at the Dirac
point. This unusual feature directly demonstrates that multiple
scattering events significantly modify the quasiparticle prop-
erties near the Dirac point. Therefore, it is naturally expected
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FIG. 4. (a) The mean free path ¢, and (b) the localization length
& as a function of the energy for disorder strengths o = 0.08
and 0.11.

that unconventional low-energy transport behaviors may arise
in disordered graphene.

Indeed, the elastic mean free path ¢, is given by the self-
energy as £, = v,7 = 3at/[—4ImX(E)], where the elastic
mean free time 7 can be expressed as t = i/[—2ZzImX(E)].
Using our finding for Xy, the mean free path remains finite
£.(0) ~ aexp(0.57/a) at the Dirac point, which is consistent
with the results from the one-loop RG calculations [25,35].
But the lifetime t diverges as & E —# in the limit £ — 0, in
stark contrast with the Fermi’s golden rule prediction (7
E~1), clarifying the significance of the multiscattering events
again. Figure 3(b) plots the dimensionless parameter (Et /%)
as a function of energy (E) to point out the low-energy win-
dow |E| =~ E.exp(—1/2a), which corresponds to the strong
scattering regime (Et/h < 1). As shown in Fig. 4(a), we
plot the energy dependence of ¢, for « = 0.08 and 0.11.
With the decreasing disorder strength, £, at the Dirac point
becomes longer. According to the scaling theory of Anderson
localization, the 2D localization length (£) can be evaluated
exclusively based on the diffusive transport properties & =
2€.exp(mo,/Gop) (orthogonal symmetry) [36-38], with o, the
conductivity of the system and Gy = 2¢?/h. Figure 3(d) shows
that & depends sensitively on the disorder strength and is
strongly suppressed as « increases. The energy dependence
of £ is mainly dominated by o,. As a result, the behavior of &
shows a minimum value at the Dirac point, exhibiting an op-
posite trend as £,. Moreover, the localization length estimated
by our numerical results agrees well with that obtained by the
transfer matrix method [37].

IV. TRANSPORT BEHAVIOR

Based on the above self-energy results, we further inves-
tigate the transport properties of disordered graphene. First,
we study the conductivity with impurity scattering including
the multiscattering events, and then we take account the effect
of electron-phonon scattering. At last, we consider the higher
order correction in addition to the bare current bubble.

A. Conductivity with impurity scattering

On the Drude formula level, the conductance is given
by o0 = %g with the dimensionless electrical conductance
g~ kpl,, where kp is the Fermi wave vector and ¢, is the
mean free path. Using the Fermi energy E ~ hvskr and
mean free path £, ~ v,7, the dimensionless conductance can

be rewritten as g~ Et/h. The conductance g is a good
measure of disorder and can be used as a parameter to in-
terpolate between the weak scattering regime g >> 1 and the
strong scattering regime g < 1. Previous theoretical studies
are mainly restricted to extrinsic or doped graphene wherein
the Fermi level is away from the charge neutral Dirac point (or
weak scattering regime). The numerically exact results about
the self-energies allow us to explore the transport behaviors
around the charge neutrality point where the dimensionless
conductance is not much larger than 1. To include the non-
trivial contribution of the quasiparticle residue, we take more
rigorous quantum-mechanical treatments based on the Kubo
formalism to calculate the Drude conductivity by

0T Ey) = / dE (—@)w@), @)

where f(E, Es) = 1/[eE~E//T 4 1] is the Fermi-Dirac dis-
tribution with T being the temperature, and o,(E) is the zero
temperature conductivity given as

tan~! X(E):|
— 5
(E) , O
with Gy = 2¢2/h and x(E) = [E — Re£(E)]/ImZ(E). After

o4(E) = %[1 + x(E)tan™! x(E) +

introducing a dimensionless function G(E) = OE ZZ((—R%E/ =
1-ReX(E)/E .
#‘52)(/5)’ X (E) can be rewritten as x(E) = G(E)Et/h.

For a small disorder strength (¢ or B ~ 0), our numeri-
cal calculation shows that y(E) can be approximated as
Et/h. Thus, the Drude conductivity is only determined
by the dimensionless parameter Et/Ai. The conductivity
[Eqg. (5)] contains two types of contributions: the first term
(unity) in the bracket is the contributions of two Green’s
functions of the same kind (retarded-retarded or advanced-
advanced), whereas the second and third terms come from
the contribution of the retarded-advanced sector. In the weak
scattering regime (Et/h > 1), the conductivity is dominated
by the retarded-advanced term and takes the form o,(E) ~
% | x (E)|, suggesting that weak disorder leads to weak depen-
dence of conductivity on the Fermi energy. Around the Dirac
point, however, the sublinear behavior of Et /h as plotted in
Fig. 3(b) yields a sublinear power-law energy dependence of
the obtained zero-temperature conductivity, in agreement with
numerical calculations using the finite-size Kubo formalism
[39], but in sharp contrast with the prediction calculated by
the Fermi’s golden rule [40]. More remarkably, it naturally
produces the sharp peak in resistivity at low temperature and
the strong temperature dependence of the maximum resistiv-
ity, due to the sharp dip of Et /A around the Dirac point as
shown in Fig. 3(b). Those novel behaviors have been widely
reported in ultrahigh-mobility samples at and near the Dirac
point [10-19].

To compare with the experimental transport results of high
quality graphene in more detail, in the following quantitative
evaluations, a typical weak disorder strength is chosen as
a = 0.09 without any other adjustable parameter being used.
Figures 5(a) and 5(b) plot the corresponding conductivity o,
and resistivity p = 1/oy, as functions of the carrier density
n from the temperature 4K to 300K, respectively, where
n= [°DE)f(E,Ef)dE + ffoo D(E)[1 — f(E,Ef)dE,
and D(E) denotes the density of states. Sharp dips (or
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FIG. 5. (a) Conductivity oy, and (b) resistivity p as functions of
the carrier density » at different temperatures 7 = 4K, 60 K, 200 K,
and 300 K. The disorder strength is « = 0.09.

peaks) in the conductivity (or resistivity) are observed
precisely at the Dirac point at low temperatures. By
increasing the temperature, the conductivity very close to
the Dirac point has a pronounced increase, showing a strong
temperature dependence. Most remarkably, there exists a
T-independent carrier density (roughly n*~ 1.5 x
10" cm™2) that divides the systems into two different
density regimes. In the low-density regime (|n| < n*), the
resistivity exhibits a nonmetallic behavior, that is, increasing
p for decreasing T'. For |n| > n*, the resistivity displays a
weak T-dependence and decreases for decreasing 7.

We separately consider the two density regimes |n| < n*
and |n| > n* and compare our theory with experimental re-
sults. We first consider low-density regime, |n| < n*, and
address the T dependence of the minimum conductivity.
Figure 6(a) shows the comparison of the minimum conductiv-
ity omin as a function of temperature between our theory and
experimental data for three monolayer devices from Ref. [16].
According to our theory, oy, increases monotonically with
T. omin versus T follows a roughly linear relationship for
T < 100K and becomes sublinear for 7 > 100 K. The ex-
periment and theory show good agreement for devices [] and
O. For device A, the theory only fits the experimental data

(b) Experimental data  Our theory
gate voltage(V)  n(10 "'cm?)
.+ —- 165
200 o +2 ---= 220 =
4 43 ---= 322 L]
o 45

P (Q)

<100 «=0.068

FIG. 6. Comparisons between our theory and the experimental
data for the (a) minimum conductivity o, and (b) resistivity Ap as
function of temperature. In panel (a), the open symbols indicate the
temperature dependence of oy, at the Dirac point for three devices
extracted from Ref. [16]. The dashed lines indicates the results ac-
cording to our theory for three different disorder strengths «. In panel
(b), the solid symbols represent the temperature dependence of Ap
for different gate voltages extracted from Ref. [10]. The dash lines
are the results according to our theory for different carrier densities.

well at low temperature. At finite temperature, electrons in
both the conduction band and the valence band can contribute
to the electrical conductivity. From Eq. (4), the broadening
width of the electron and hole contributions is proportional
to the temperature according to the Fermi-Dirac distribution
f(E, Ef). As the temperature increases, the broadening width
also increases, allowing more electron-hole pairs to contribute
to the electrical conductivity. The temperature dependence of
omin depends critically on the transport properties near the
Dirac point. We then turn to the high density |n| > n*. We
depict Ap(T) = p(T) — p(50K) as a function of temperature
with different carrier densities in Fig. 6(b). The solid dots and
dashed lines are experimental data from Ref. [10] and our
theory, respectively. In the high temperature range, Ap(T)
increases nearly linearly with 7. In Ref. [10], the linear tem-
perature dependence is believed to be due to electron-phonon
interaction. However, the slope of Ap versus 7 cannot be
explained solely by electron-phonon interaction, as it also
depends on the carrier density. Our theory can consistently
explain the carrier density and temperature dependence of
po(T). The overall trends of our numerical results are in good
agreement with experimental observations [10]. The discrep-
ancy at high temperatures could be due to the neglect of
electron-electron scattering and electron-phonon scattering,
which become significant at high temperatures. Those find-
ings attest that the strong T-dependence of the conductivity
(resistivity) in the low-density regime stems from the multi-
scattering effects, which amounts to another important aspect
of the present work.

B. Conductivity with phonon scattering

We are now going to take into account the effect
of electron-phonon scattering. In graphene, there exists
a characteristic wave vector g, below which the anhar-
monic effects become important [41,42]. It has be estimated
that g. = /AT /(hvy) = /T (K) x 103m~!, where A, ~
18.7eV [41]. Since our interest is the low carrier density with
n < 10'2 cm~2 where the transport properties are strongly in-
fluenced by the multiple scattering processes. The Fermi wave
vector can be estimated by kr ~ /rn < 1.25 x 103m~!, and
is small compared to g. (3.2 K). Therefore, the anharmonic
electron-phonon interaction should be taken into account. In
this situation, the scattering rate caused by phonon scattering
can be expressed as [41]

B &T?

2t(€) - 7 |€|

€] )2,7
JTA,”

where g~ 5.3 is the dimensionless electron-phonon cou-
pling constant, C & 2.26 is an integral coefficient, n ~
0.85 is a critical index [43], and the numerical prefactor
Z=~1.

As shown in Fig. 7(a), we compare the magnitude of
our calculated imaginary part of the self-energy ImX due
to impurity scattering and the contribution arising from the
electron-phonon scattering [Eq. (6)] at different temperatures
T = 4,100, 300 K. The disorder strength has been chosen as
a = 0.09. At low temperatures (T < 100K), —Im% > %(e),
and the resistivity of graphene is dominated by scattering
of impurities. We also plot the resistivity and conductivity

CZ%( (6)
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FIG. 7. (a) Imaginary part of the self-energy induced by disorder
scattering and phonon scattering at 4 K, 100 K, and 300 K.(b) Con-
ductivity o,, and (c) resistivity p as functions of the carrier density n
at different temperatures 7 = 4K, 60K, 100K, 200K, and 300K
including resistive scattering by graphene phonons described by
Eq. (6). The disorder strength is « = 0.09. (d) Comparison of tem-
perature dependence of the minimum conductivity oy, with and
without phonon scattering.

after taking phonon scattering into consideration in Figs. 7(b)
and 7(c), and the temperature dependencies of the mini-
mum conductivity opi, with and without phonon scattering
are contrasted in Fig. 7(d). By comparing with the results
in Sec. IVA, we find that our main conclusion would not
change even considering the electron-phonon scattering. The
crossover carrier density n* still exists, separating the regions
with the “metallic” (high density) and “insulating” (low-
density) behaviors.

C. Higher-order conductivity correction

In addition to the bare (zeroth-order) current bubble which
yields the main contribution to the classical conductivity,
the disorder averaging will generate other current bubbles
which are expanded in terms of scattering vertices. Two
classes of diagrams are usually calculated, the ladder dia-
gram and the maximally crossed diagrams, which account
for the vertex correction and quantum interference correction,
respectively.

1. Vertex correction

The Bethe-Salpeter Fermi equations for the vertex correc-
tion can be solved by using the single-particle propagators
with the full self-energy. With the vertex correction, the Kubo

formula for conductivity is given by

he2v? 4’k
f / . .
E ——Tr[j,G(k,
47[ ss' ==+ » / (27[ )2 r[] ( ¢ + lsn)

x Jotk,a+isn,a+isn)Gk,a+is'n)]. (7)

axx(E) = -

Here the current vertex J, satisfies the following Beta-Salpeter
equation [44]:

Jok,a+isn.a+isn) = jo+ Y (VigGK, a+isn)
=
x Jo(k', a +isn, a+is'n)
x G(k',E +is'n)Vy _)dgis,  (8)

where we have defined E — ReX =a and —ImX =5 for
simplicity and G(k, a + isn) = 1/(a + isn — hvsk - o) is the
disorder averaged retarded (s = +) and advanced (s = —)
Green’s functions with our calculated self-energy. By further
assuming that compared with the bare current j, = o, the
renormalized current J, = Ao, only differs by an energy de-
pendent dimensionless coefficient A, we can put it into the
iterative equation of Eq. (8).

For the short-range disorder, after taking intervalley scat-
tering into account, the vertex correction can be shown to
vanish identically due to the symmetry of the first Brillouin
zone. Therefore, the vertex correction only contributes in the
long-range disorder case. As shown in Appendix C, with the
vertex correction, the minimum conductivity will be depen-
dent on the disorder strength. For the Fermi energies far from
the Dirac point, the vertex correction A = 2 recovers the re-
sult for the weak scattering regime [34,45]. As one gets close
to the Dirac point, the vertex correction becomes negligible
due to the sharp reduction near the Dirac point and eventual
vanishment at the Dirac point of the quasiparticle residue as
plotted in Fig. 3(a).

2. Quantum interference corrections

Another mystery in graphene transport is the absence of
the localization-induced insulating phase in the vicinity of the
Dirac point, violating the Ioffe-Regel criterion which states
that the electron state will be localized in the region E7 /i <
1 [36,46]. In undoped samples of graphene, the minimum
conductivity is observed to remain almost constant over a
wide range of temperatures, from room temperature down
to sub-Kelvin temperatures [11,16]. This behavior is in stark
contrast to the well-established results on the conductivity of
2D systems, where localization effects typically drive the sys-
tem into an insulating state at low temperatures. The absence
of localization in graphene is still not fully understood. Our
calculations show that the multiscattering events may provide
a plausible mechanism in understanding the absence of the lo-
calization. In realistic graphene samples, intervalley scattering
is inevitable, leading to backscattering between the two val-
leys. As a result, the intervalley Cooperon channel dominates
at small magnetic fields or large sample sizes, leading to weak
localization effects and even localization when the quantum
interference correction becomes comparable to the classical
conductivity. This is the reason why the magnetoresistance in
experiments at small magnetic fields is commonly negative,
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exhibiting a weak localization behavior [47,48]. Here, we
extend the standard calculation from the weak scattering limit
[45,49] to the strong scattering limit to discuss the contribu-
tion of the maximally crossed diagrams by considering the
accurate single-particle propagator, shown in Appendix D. In
the weak scattering regime, we recover the weak localization
correction which arises from the intervalley scattering induced
Cooperon channel [45]. In the strong scattering regime, how-
ever, we verify that multiscattering events will introduce finite
Cooperon gaps so that the small momentum singularities in
the Cooperon momentum integrals is avoided. Thus, the weak
localization correction is strongly suppressed in the vicinity
of the Dirac point. This may explain why the Anderson local-
ization is absent in the transport measurements in graphene
[11,12,16].

V. CORRELATED IMPURITIES

To simulate various defects in real experimental condi-
tions, we expand our regime of discussions to the cases where
each impurity has a finite range. In such cases, two impurities
become correlated, and the systems can be characterized as
containing correlated potential disorder. Since the correlated
potential disorder is smooth at the atomic scale, the intervalley
scattering or backscattering is suppressed. For a correlated
potential, the self-energy depends on the energy E and wave
vector k, which can be directly obtained by changing the
initial state |k) in our numerical method [28]. Here we only
focus on the self-energy X(F) for k = 0, which is symmetric
about E = 0. Note that the wavelength of the low-energy
quasiparticle approaches infinite in the vicinity of the Dirac
point. Therefore, a random potential with a shorter spatial
correlated length cannot be seen by the Dirac electronic wave,
and it will not influence qualitatively the quasiparticle (self-
energy) behaviors. Here we also use the power-law formula
[see Egs. (2) and (3)] to fit the numerical results for the
correlated disorder potentials.

A. Gaussian potential

First, we consider the most common type, Gaussian

correlated disorder potential V; = ZnN:m‘l’ Fuy exp[—|r, —
ri|?/(2€%)], where & is the Gaussian correlation length.
The scatters of Fup are randomly distributed with equal
probability, and Ny, impurities are randomly located
among the N = 4000 lattices. We fix the impurity density
Nimp = Nimp/N = 1% and take & =2a as an example in
the following calculations. After the disorder averages, the
disorder potential has a vanishing mean and a smooth form of
the correlator:

(Vi)ais = 0, )

(hve)* .
(ViVi)ais = yﬁe Irir, /487 (10)
Vi Vie i) dis = J/(hvf)ze_szlk_k,‘z? (11)

Rimpig (27£2)?
A. (o)
As shown in Figs. 8(a) and 8(b), the agreement between

the power-law fitting and numerical results obtained for the

where y = is the dimensionless disorder strength.

(a)0.000

~-0.005
N
£-0.010

-0.015

-0.1

(c)0.000
0005 -

-0.010

Im % (1)

-0.015

-0.020

FIG. 8. (a) Imaginary and (b) real parts of the self-energy with
a correlated Gaussian potential as a function of energy for different
disorder strengths (0.04 < y < 0.17). The circle symbols denote the
numerical results obtained from our Lanczos method and the solid
lines are the fitting curves. Sixty samples are collected for each curve.
(c) Imaginary and (d) real parts of the self-energy with Yukawa-type
charge impurities as a function of energy for different screening
lengths 1/g, =3,4,5,6,7 (y. =0.04,0.11, 0.22, 0.39, 0.61). The
circle symbols denote the numerical results obtained from the Lanc-
zos method and the solid lines are the fitting curves within the energy
window [—0.08t, 0.08t].

Lanczos method is very good within the energy window of
[—0.15¢, 0.15¢]. The linear fittings of 8 and A with the dis-
order strength y are shown in Fig. 9, yielding § = 2.04y and
A =0.42y.

We compare the results of this manuscript with that in
the existing literature based on real-space methods and refer
to Ref. [38], where the momentum relaxation time 7,(E)
was investigated. Inverting 7,(E) yields the imaginary part
of the self-energy, which can be expressed as —ImXZ*(E) =
h/[21,(E)]. We then fit our proposed power-law formula to
the data, and as shown in Fig. 10, the formula is a good fit in
the low-energy regime for E € [—0.15¢, 0.15¢] (equivalently
[—0.405eV, 0.405eV]).

(8)0-4 T T (b) 0.08 T T
| ] | N ya
—+— Linear Fitting 'ﬁ — +— Linear Fitting / u
0.3} ]
) ) |
/ /
0.2} /- 1 0.04} n ]
ol / < ’/
0.1 B
)
, p=2.05y s A=0.42y
0.0 ; L 0.00 ; L
0.00 0.06 0.12 0.18 0.00 0.06 0.12 0.18

Y

Y

FIG. 9. Linear fittings of (a) f and (b) A as functions of the
disorder strength () for the correlation length & = 2.0a. The black
squares denote the data obtained from the power-law fitting self-

energy.
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0.008
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(e}
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hi2z (1

0.005
0.004

0.003 -

0.002

0.001
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E(®)

FIG. 10. The fitting of the inverse of the energy-dependent mo-
mentum relaxation time 7,(E) by using the power-law formula. The
open symbols denote the numerical results extracted from Fig. 16 in
Ref. [38] and the dashed lines are the fitting curves.

B. Yukawa potential

Considering the observation of electron-hole puddles, we
also consider the case of a Yukawa-type potential V; =

Zﬁ“j’ iﬁz—m exp[—qs|r, — ri|], with positive and negative
charged impurities possessing equal probabilities, where e is
the electron charge, r; = ez/hvf = 2.2 is a constant [50], «
is the background dielectric constant, and g is the inverse
screening length. The charge impurities are randomly dis-
tributed in the substrate, and we fix the impurity concentration
to be nimp = 0.25% (~10"2 cm~?) and the distance between
the charge and graphene plane to be d = 3a in the following
calculations. By the Fourier transformation, in momentum
space, the potential is given by

—ZVO 2e*d~/W. (12)
Vai+q

After averaging the disorder, we obtain

(Vidais = 0, (13)

e—2d4/q)2.+|k—k’\27 (14)

v, =

2

Nimp i’0
Ve Vie i )gis = — ———————
Vi Vi —)a v P4 k—KP

where Vy = 2me?/k. Here we define the dimensionless disor-

der strength as y. = %%e‘z%d . As shown in Figs. 8(c)
and 8(d), the self-energies are given for different screening
lengths. In a small energy window, such as [—0.08¢, 0.08¢],
the power-law formula can be still used to fit the behavior
of the self-energy. At higher energies, this formula does not
work because the corresponding Fermi wave vector is larger
and the electron wavelengths are comparable to the correlation

lengths in this region.

VI. CONCLUSION

In summary, using the numerically exact momentum-space
Lanczos method, we have systematically investigated the

multiple impurity scattering effects on the quasiparticle and
transport properties of two-dimensional Dirac fermionic sys-
tems in the presence of isolated or correlated weak scalar
potentials. We uncover that the multiple impurity scattering
processes arising from the weak disorder can induce non-
trivial non-Fermi liquid behavior, which is insensitive to the
detailed types of disorder. Our theory can account for a set
of unconventional findings in the transport measurements:
(i) The temperature-dependent resistivity can be divided into
two different density regimes: a metallic regime and an
insulating regime, separated by n*. (ii) For |n| < n*, we
examined the temperature dependence of the minimum con-
ductivity at the Dirac point. As the temperature increases, the
temperature-dependent minimum conductivity first increases
linearly, then becomes sublinear, and tends to saturate at
higher temperatures. (iii) In the high-density regime |n| > n*,
the resistivity linearly increases with temperature in the high-
temperature range when n is not too close to n*. The slope of
the resistivity versus temperature increases as n gets closer
to n*. Our theory can consistently explain the temperature
and carrier density dependence of resistivity. Our work attests
that the vital importance of multiple impurity scattering events
in understanding the exotic low-energy physics of ultrahigh-
mobility graphene.
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APPENDIX A: SPECTRAL FUNCTION

To demonstrate how this power-law correction signifi-
cantly renormalizes the quasiparticle properties around the
Dirac point more intuitively, we calculate the spectral func-
tion. The single-particle spectral function relates to the
Green’s function through

1
A(sk,E) = ——ImG(sk, E)
b4

1 ~Im¥
7 (E — shvsk — ReX)? + (ImX)?
1 n

7 (a—shvpk)? +n?’ (AD
where s = £ represents the conduction band and valance
band respectively, and we have defined E — ReX =a and
—Im¥ = n for simplicity. In the absence of disorder, the
spectral function A(k, E) is a § function, reflecting that the
wave vector k is a good quantum number and all its weight
ratio is precisely at E = shvsk. In the presence of disor-
der, Eq. (Al) is plotted graphically in Fig. 11. For o =
0.07, A(k = 0, E) exhibits a sharp peak of a Lorentzian type
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FIG. 11. Single-particle spectral function A(k+, E) (conduction
band) plotted as a function of energy E at several k points of k = 0.00
(black lines), 0.333/a (red lines), 0.666/a (blue lines) along the k,
direction (from left to right). The disorder strength is chosen to be
(a) = 0.07 and (b) @ = 0.12, respectively.

at E =0 shown as the black line in Fig. 11(a). When &k
moves away from the Dirac point, A(k, E) maintains the
Lorentzian line shape but becomes much broader due to
the increasing of the scattering processes [red and blue
lines in Fig. 11(a)]. For « =0.12, A(k, E) clearly devi-
ates from the Lorentzian type and carries substantially more
weight in wings as shown in Fig. 11(b). One can also
extract the dispersion relation from the peak of the spec-
tral function A(k, E) for a given k. The peak of A(k =
0.333/a,0.667/a, E) moves toward E = 0 as the disorder
strength « increases, indicating that Dirac electron group
velocity v, and the dispersion relationship are strongly renor-
malized due to the multiscattering events. This is quite
different from the usual picture in conventional metal with
a finite density of states (DoS), where the lifetime effects
dominate.

APPENDIX B: DENSITY OF STATES

To make our results even more convincing, we revisit the
calculation of the DoS based on our spectral function function.
The single-particle DoS can be easily obtained through our
simulated self-energy function as

Ao [ d*k R R
PE) = =5 | GrplmG let. ) + ImGF (k—. E)]
_ A [m B, %tan1<g)] B1)
vy Pr @+t n

Here we directly compare this result with the average DoS
obtained by the widely used Lanczos method in real space
that has been well studied by our former work [51]. As
shown in Fig. 1, for a substantial energy range [—0.1, 0.1],
the DoS calculated by our simulated self-energy agrees well
with the results obtained by the real-space method. The line
shape of DoS deviates from linearity to sub-linearity as the
disorder strength increases, quite similar to the behavior of
the imaginary part of the self-energy Im¥(E). Furthermore,
according to Eq. (B1) and our simulated results for ¥ in the
main text, the DoS at the Dirac point p(0) = A,/ (2}‘121)]%712) .
Yo/a ~ exp(—1/2a)/oe, which is also consistent with the
results obtained by the functional Renormaliztion group tech-
nique [26,27].

APPENDIX C: VERTEX CORRECTION
FOR CONDUCTIVITY

As mentioned in the main text, the vertex correction only
contributes in the long-range disorder case. By only consid-
ering the intravalley scattering, the current vertex J, satisfies
the Beta-Salpeter equation of Eq. (8). In the vicinity of the
single-valley Dirac point, we can also neglect the momentum-
dependence of the disorder potential correlator, and we obtain

(Vi Vie _ie)ais = y (Tiog)?. (C1)

Here, we adopt the Gaussian correlated disordered potential
that has been described in the main text. The summation
of the discrete momentum k in Eq. (8) will be replaced
by the integral of the first Brillion zone, ie., 1/NY , —
Ac/(2m)? [ d*k, and then

AY(E)o, =0, + A (E)y (ivs)? K
x — Ox 14 f (27_[)2
1 1
X - T— - —.
a+isn—hvk’ -0 "a+isn— hvek' o
(C2)
With some algebraic operation, one can directly obtain
A¥(E) =11 = = T(E, 5. )7, (©3)
4
with
ke 2k 2 :
I(E. s, s’):/ dk k ( .Uf) (a+isn)
o (atisn)? — (hvgky?
-/
x (atism) . (C4)
(a +is'n)? — (hvsk)?
After performing the integration, we have
I(E9 +, +) = I(E’ R _) = _11
TE, +.—)=I(E, - +) = <f n Q):manf. (C5)
n o a n

Finally, we find that with the vertex correction, the Kubo
formula for conductivity is given by

heZ 2

vy [ Ak .
on(E) = — Z SSs WTF[UXG(I(, a-—+ lST])
ss'=+

4

x Jotk,a+isn,a+is'n)Gk, a + is'n)]
e 1+ Z(E)
- 2nh (14 y/4m)[1 — y /4nZ(E)]’

where Z(E) = (a/n + n/a)arctan(a/n). At E = 0, we have
Z(E =0) =1, and then get

(Co)

& 1

WE=0 =S
E=0= STy

€N
According to Eq. (C7), the minimum conductivity will be
dependent on the disorder strength with the vertex correction.
However, this dependence is extremely small. As one moves
away from the Dirac point, the vertex correction becomes
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large and gradually gets close to the result A =2 in the
conventional metal.

APPENDIX D: QUANTUM INTERFERENCE
CORRECTIONS FOR CONDUCTIVITY

In this section, we calculate the quantum correction to the
classical conductivity. The low-energy electron excitation of
graphene is well described by the two-valley massless Dirac
model in two dimension that is given by

Hy = Ty (skyo, — kyoy), D)

where s = + stands for K and K’ valleys, respectively. We
suppose that the Fermi level Ey intersects the conduction band
with the dispersion as

€x = hvylkl, (D2)
and the corresponding eigenfunctions are
risk) = ) = —=| L |7 D3)
r|s = YUgq(Fr) = m se_’w“ e .

The disorder-induced self-energy is obtained numerically
through the momentum-space Lanczos methods introduced
in the main text, and then the retarded (R) and advanced (A)
Green’s functions have the form

1
® — ¢ — ReZR(w) FilmZR(w)”
To evaluate the quantum correction to the classical conductiv-

ity, we need to calculate a summation of maximally crossed
diagrams, which is denoted by

Gl ke, ) = (D4)

_ KK K'K’ KK’ K'K
04 = Ok + 0k + 0k +0ggr, (D5)

with

e*h
ok =55 DD Tk k. 61 G Ky ()G k)
k q

x Gi(g — k)i (g — k)Gy(g — k), (D6)
e eh ¢ .
kg = ﬁ;;rfg ()G (kY ()G (k)
x GR(q — k)vy(g —k)Gr(g — k). (D7)

There exists three types of Cooperon (particle-particle type)
channels and the full vertex function I" is related to y by the
Bethe-Salpter equation:

1
T Op, 0p3q) = ViR Op, 0p) + 5 Z Vick Op- k)
k
x G (k)G (g — k)T Ok, 039), (D8)

1
Ik O, 0p30) = VK O, 0p) + < D [VRK O, GG R)
k

x Gi(q — k)TKE 0k, 6,3 ) v (0, 00)
+ GR UG (g — O TEE 61, 6,3.)].
(DY)

. . 1
T Op 030) = Vs O, O) + < D[k 0. 0)GEK)
k

x Gh(q — k)TKK Ok, 6,3 )+ EE 0,, 60)

x GR ()G (g — k) TEE 6k, 6,:9)],
(D10)

where 6, and 6, label the incoming and outgoing momenta,
respectively, and we have neglected the ¢ dependence in the
bare scattering vertex. The bare scattering vertex which only
causes small momentum transfer within the single valley can
be expressed as

VEE By 0 = P2 (K pIK. YK, ~pIK. —p)
ET()/fl
2
— (hvy) le—Zi(H—G’)+e—i(0—9’)+l ’
2Et/h |2 2

(D11)

and

KK KK (Flvf)2 / / / /
Yk = Yk = (K, pIK, p){K', —p|K", —p’)

E‘L’Q/h

(hvy)? Voo 1
— 1 — ,i0-0") - ie-0") .

T

(D12)

The bare scattering vertex which causes the scattering of elec-
trons between two valleys can be expressed as

KK' xx _ (hvy )? - /
Yk = VKK = Et/h (K,plK", p){K", —p|K — p’)

2
_ (avy) 1— lei(ew’) _ le—i(9+9/) '
2ET/h 2 2

(D13)

(ﬁUf)z
Etw/h

The total disorder strength is given in terms of 7

We have introduced intra- and interdisorder strengths of

(hl)f)z
and Foh

and T1;,

(hvp)*  (hvy)?
Et/h  Et/h

(hvy)?
E‘L’,‘/Fl ’

(D14)

As shown in Eqgs. (D8)—(D10), the radial coordinate k is only
contained in the kernel { Y, GR(k)G4(q — k) and can be
evaluated as

|, Seoer)o(G-H)

_T(E)
T (hvy )

{1 —i(vgTq)cosf — (v,7g)* cos? 0}, (D15)

with TI(E) = £E[Z 4 arctan x (E)].

For later convenience, we introduce the renormalized re-
laxation time through IT(E) = Et*/h. The angular coordinate
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can be done by using the expansion of the full vertex function
I" and the bare vertex y:

fivg)? )
F(ep, 9,,/; q) — ( Uf) lenm(q)el(nﬂpfﬂﬁpr)’

D16
Et/h — ( )
(hvf)2 i(nf,—mé,,)
YO tp) = 50 nzn;ynme np=mby), (D17)
If we further define
1 2 ey
&, = — do &
27'[ 0
x {1 — i(v,7q) cos 6 — (v,Tq)* cos’ 0},  (DIB)

then the expansion coefficients in Eqs. (D8)—(D10) can be
expressed in the matrix form

KK KK | KK KK
I'kx = vk + Vg @k,

I = viE 4 serss + viferts

K KK>
ik = vik + ViR @I + v TG (D19)
where the bare scattering vertices are
1
5 0 0
2
yRE — Tl 0 1 0|,
°lo o 1
) 0o 0 -1
"l-3 0 O
3 00
yeR = -0 1o (D20)
°lo 0 3

By truncating up to ¢ terms in small ¢ limit, ® has the form

o 1— %(vgr)zq2 —%ivgqur —%qui
¢ = = —%ivgrq_ — %(vg'r)zq2 —%ivgtq+ ,
! -4 —3iv,Tq- 1 — 3 (ve7)*q?
(D21)

with ¢> = ¢; +¢; and g+ = g, £ ig,. The two Cooperon

channels I'f§ and I 11§11§ in Eq. (D19) are coupled together. By
introducing the new variables,

KK KK
X =Vrx T Vg

_ KK _ KK
Y ="VYkg ~ Vkk>

z= YRk (D22)
X =rif+ i
KK KK
Y =Tgp — iy,
Z = k¥, (D23)

the coupled Bethe-Salpeter equations [Eq. (D19)] are reduced
to uncoupled ones and the expansion coefficients can be easily

solved through
X =133 —x®] 'x,
Y = (L3, —y®I ™'y,
Z =13 —z®] 'z (D24)

By retaining the most singular terms, we can solve the above
three matrix equations:

0 0 0
~ 1
X~10 e 0
0 0 0|
[0 0 0]
1
Y~ |0 &+Dertq? Ol
[0 0 0
L O 0
with the Cooperon gaps
.L..*
8x = 1 - ‘C_’
t
1 *
T T
p(En) T
To T T
To—T*
8:= 5 ) (D26)
T

and the diffusive constants for the inter- and intra-Cooperon
channels

(D27)

Thus, according to Eq. (D23), these Cooperons are evaluated
as

¢ 1 (Flvf)2 1 1
Flé%((ep’ep’?‘l):_ 2 2 )
2ET/h\ g+ DerTq g + Drtq

(D28)
1 (hvs)? 1 1
r'k&@,,60,;q) = = ,
kK ¢ por 7 2Et/h\ g+ l)terrq2 * 8y +Dlerrq2
(D29)
1 (fwy)* %)
KK 6, 0p:q) = =~ (D30)

2Et/h g + Duatq? '

Generally speaking, the total quantum correction is deter-
mined by all these four Cooperon channels (the intravalley
Cooperon channels are doubly degenerate). But, we are in-
terested in how the multiscattering effects will qualitatively
renormalize the quantum interference correction to the con-
ductivity. In the following, we only discuss two limiting
regimes with two different types of scattering.
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1. Short-range disorder

For short-range impurities, 27, = 7y = T;, and the intraval-
ley Cooperon channel I' % is always fully gapped with its
contribution suppressed. In this situation, we only need to
consider the contribution from the intervalley Cooperon chan-
nel I'SX. From Eq. (D7), we first evaluate the bare Hikami
box. Since here we consider that the external momentum is
zero, the bare Hikami box for the Cooperon channel 1" g van-
ishes, and the bare Hikami box contribution for the mtervalley
Cooperon channel is

qi(0) __ ezfl dzq d2k

R A R
Uler - 27_[ (27_[)2 (2 )2 GK(k) K(k)GK(k)G
x (—k)vﬁ(—k)c?;(—k)r“(ek, 0-k:q)
2 LA TIE) . Det/t »
__ E) “"f/;Jrg. (D31)
 2rmh Et/h Dterf/% + g

The full correction to the conductivity should take into ac-
count the dressed Hikami box contribution. It is reported to
have the same order of magnitude of the bare Hikami box
and different signs in two-dimensional systems with large
spin-orbital coupling [45].

For the intervalley Cooperon channels, we need to consider
the following dressed Hikami box contribution,

2 2 2
ql(l) 26 h d d k d FKK 9 9 .
Oter (27[)2 (27T)2 (2 )2 KI(( k> psq)
(U Uk —P>1mpGlg(_k)G§(p)v;((p)

x GA(p)GE (—p)GE (k) (k)G (k)

1 2
__ @ GeATEY | Dat/Cre o

2rh4(Et /h)(ET/h) Dter‘r/e2 + &
2 2 2
q1(2) 26 h d d k d FKK 9 9 .
Oter ~ (27_[)2 (27_[)2 (2 )2 ]([(( k> p’q)

<U JUKK ) GR(—K)GE (p)vk ()
X Gp(p)GR(—p)GE (k)vk (k)G (k)

_ @ GpHIwy
" 2nwh4(Et /h)(Eto/h)

Dtert/e +gx
Dtert/g + x'

(D33)

After collecting all these contributions, we finally obtain the
quantum interference correction for the intervalley Cooperon
channel as

0 i(1 i(2
o = 0&” + ol + 03
— 62 # + H(E) ln Dterf/gg + gx (D34)
"~ 2nh Et/h DierT /€] + 8¢

If the chemical potential is located far from the Dirac node,
then we have IT1(E) ~ Et/h > 1 and the Cooperon gap g, =

* . . .
1 — = vanishes since t* ~ ;. The quantum interference
t

.. . . i 2 Y4 .
conductivity correction is o, = —<; In 12, recovering the re-
e

sults of the conventional weak localization regime. When the
chemical potential is near the Dirac point (strong scattering
regime), due to the finite Cooperon gap (g, &~ 1), the quantum
interference correction is strongly suppressed.

2. Long-range disorder
For the long-range potential disorder (v, & 19 < 1;), the
intervalley Cooperon channel Flflf directly vanishes since

8« ~ g, and the channel Flflf can also be neglected since it is

proportional to the intervalley scattering strength. Thus, only
the intravalley channel I'&& will contribute to the quantum in-
terference correction. The bare Hikami box for the intravalley
Cooperon channel can be evaluated as
qi(0) __ €2Fl dzq de
Ora = 2x —— 2y
2r )] @r ) @rp K
x GR(—k>v§<—k>62<—k)FKK(ek, 0-1:9)

& 3+ T(w)
~ In
21h Et/h

——— GR (kv (k)G (k)

Dtraf/ee + &
Dyt /€5 + g

(D35)

where the prefactor 2 is due to the degeneracy of the in-
travalley Cooperon channel. The phase factor e/%—0-©) = —1
gives an additional minus sign compared with the interval-
ley Cooperon channels (D28) due to the m berry phase.
The dressed Hikami box contributions for the intravalley
Cooperon channels are

dan_, ¢ [ dq [ &k [ dp
o ah ) @r)?r ) @r)? ) 2n)?
X (USE UEE ) GR (IO GE (P)Vk (P) G (P)
x Gﬁi(—p)G’e (k) (k)G (k)
@ (£ +TIE)?  Dyt/e? +g.

- 1 <78 (D36
Tk 2Ew/? M Det/C ot

TEE 6k, 05 9)

Then, we can obtain the quantum interference correction for
the intravalley Cooperon channel as

i qi(0 i(1
Jt(rla = Gtra( '+ t(rla( :
& - +TI(E) 5=+ TI(E)
~ 2nh Et/h 2Ev /h

2
w n D/l T8 (D37)
Dt/ Zé +&:
In the weak scattering regime (Et/h > 1), the Cooperon
gap g, = %(1 - %) vanishes since 7* ~ 7,. In this situation,
after including the vertex correction, the quantum interfer-
ence conductivity correction is atg} = 29 In 7.» recovering the
results of the weak anti-localization for the symplectic sym-
metry class. When the chemical potential is near the Dirac
point (strong scattering regime), the Cooperon gap is finite
(g, ~ %), the quantum interference correction will be strongly
suppressed.
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