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Absence of mobility edges in mosaic Wannier-Stark lattices
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Mobility edges, separating localized from extended states, are known to arise in the single-particle energy
spectrum of certain one-dimensional models with quasiperiodic disorder. Recently, some works claimed rather
unexpectedly that mobility edges can exist even in disorder-free one-dimensional models, suggesting as an
example the so-called mosaic Wannier-Stark lattice where a Stark potential is applied on every M site of the
lattice. Here, we present an exact spectral analysis of the mosaic Wannier-Stark Hamiltonian and prove that,
strictly speaking, there are not mobility edges, separating extended and localized states. Specifically, we prove
that the energy spectrum is almost pure point with all the wave functions displaying a higher than exponential
localization with the exception of (M − 1)-isolated extended states at energies around which a countably infinite
number of localized states with a diverging localization size condense.
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I. INTRODUCTION

Anderson localization [1–4], i.e., the inhibition of wave
diffusion in disordered media via destructive interference
of multiply scattered waves is a universal phenomenon ob-
served in a variety of classical and quantum systems with
experimental demonstrations reported in different areas of
physics ranging from photonics [5–7], acoustics [8], matter
waves [9–13], and quantum matter [14], to mention a few.
The kind of disorder and the spatial dimension of the sys-
tem are pivotal to Anderson localization since they strongly
affect the appearance of localization transitions and the ex-
istence of mobility edges [2–4,15–17], i.e., critical energies
separating extended and localized states in the spectrum. In
low-dimensional systems with uncorrelated disorder, local-
ization transitions and mobility edges are prevented [4,15].
Conversely, quasiperiodic systems, i.e., quasicrystals, can
show localization transitions and mobility edges even in one-
spatial dimension (see, e.g., Refs. [18–32] and references
therein). Quasiperiodic models displaying mobility edges
include special incommensurate potentials displaying a gen-
eralized Aubry-André self-duality [20–22], slowly varying
incommensurate potentials [18,23–28], flat-band lattices [29],
and quasiperiodic mosaic lattices [30], to mention a few. A
different form of mobility edges, separating localized and
critical (rather than extended) wave functions, has been also
predicted and experimentally observed in certain quasiperi-
odic potentials [33–40].

Recently, some works suggested that mobility edges can
exist in models without disorder nor incommensurate poten-
tials, i.e., in disorder-free systems [41–43]. Specifically, they
considered the so-called mosaic Wannier-Stark lattice, i.e., a
lattice in which a Stark (linear gradient) potential is applied
at every M sites in the lattice. For M = 1, the Hamiltonian
shows a pure point spectrum, the Wannier-Stark ladder energy
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spectrum, with localized wave functions and a corresponding
periodic dynamics in the time domain (the famous Bloch
oscillations) [44–47]. However, when M � 2 mobility edges
are claimed to arise, the coexistence of extended states and
Wannier-Stark localized states in the energy spectrum. This
is a rather puzzling claim given the system has no disorder
nor quasiperiodicity and motivates investigating the nature
of the eigenstates of the mosaic Wannier-Stark Hamiltonian
carefully.

In this paper, we present an exact analytical solution to the
mosaic Wannier-Stark model and show that the energy spec-
trum is almost pure point and, thus, strictly speaking, there are
not mobility edges. Specifically, we show that all eigenfunc-
tions are localized with a higher than exponential localization
with the exception of (M − 1)-isolated extended states. The
localized eigenfunctions can be classified into two sets: high-
energy wave functions with energies outside the lattice band,
and low-energy wave functions with energies inside the lattice
band. The eigenenergies of the low-energy wave functions
condense toward the energies of the isolated extended states,
whereas, the energies of the high-energy wave functions are
unbounded and approximate the usual Wannier-Stark ladder
in the high-energy limit. Although the high-energy wave func-
tions are tightly localized in very few sites of the lattice, the
low-energy wave functions can extend over a large size w of
the lattice, however, asymptotically, they decay faster than any
exponential and, thus, they are normalizable wave functions
belonging to the point spectrum of the Hamiltonian. However,
as the energy E of the localized wave function approaches
one of the (M − 1)-isolated energies of thee extended states,
the localization size w diverges.

II. MOSAIC WANNIER-STARK HAMILTONIAN:
MODEL AND ENERGY SPECTRUM

The spectral properties of the disorder-free mosaic
Wannier-Stark lattice [41–43] are defined by the eigenvalue
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FIG. 1. (a) Schematic of the Wannier-Stark mosaic lattice. A linear gradient potential Vn = nF is applied at every M sites of the lattice
(M = 2 in the figure). The wave functions are mostly localized either in the lattice sites with nonvanishing potential (branch I) or in the lattice
sites with the vanishing potential (branch II). A wave function belonging to branch I is tightly localized at around one single site of the lattice
with Vn �= 0, whereas, a wave function of branch II is weakly localized and can extend over several sites with a localization length w, which
diverges as its eigenenergy approaches one of the (M − 1) values Eσ . (b) and (c) Geometric solution to Eqs. (7) and (9) for the calculation of the
energy spectra E (I )

α and E (II )
α of the two branches. Panel (b) shows the behavior of the function f (φ) = ± sinh φ cosh(Mφ)/ sinh(Mφ) (solid

blue curves) for M = 4 and energies E = ±2κ cosh φ (dashed red curves). The horizontal solid line yields the quantized value αF/(2κ ) with
an α integer. The bold circle corresponds to the simple positive root φ to Eq. (7). (c) The same as (b) but with f (θ ) = sin θ cos(Mθ )/ sin(Mθ ).
The three bold red circles correspond to the (M − 1) = 3 positive roots θ to Eq. (9) in the range of (0, π ), which are denoted by the additional
index ρ = 1, 2, . . . , M − 1. The solid black circles in (c), at which f (θ ) is singular, correspond to the (M − 1) energies Eσ of extended states.
The shaded light areas in (b) and (c) denote the energy interval (−2κ, 2κ ) of the tight-binding lattice in the absence of the potential. Note that
in (b), any energy belonging to E (I )

α falls outside the shaded area, whereas, in (c), any energy belonging to E (II )
α falls inside the shaded area.

equation,

Eψn = κ (ψn+1 + ψn−1) + Vnψn ≡ Hψn, (1)

where κ is the hopping amplitude between adjacent sites in
the lattice and Vn is the Stark potential, applied at every M site
of the lattice, i.e.,

Vn =
{

Fn, n = 0,±M,±2M,±3M, . . .

0, otherwise, (2)

and F is the force. A schematic of the mosaic Wannier-Stark
lattice is displayed in Fig. 1(a). For M = 1, one recovers
the famous Wannier-Stark problem of a quantum particle
hopping on a one-dimensional lattice subjected to a DC
force F . This problem is exactly solvable, and the Hamilto-
nian H displays a pure point energy spectrum with equally
spaced energies Eα = αF (α = 0,±1,±2,±3, . . .) forming
the Wannier-Stark ladder and yielding in the time domain
a periodic motion of the wave packet (Bloch oscillations
[44–47]). The corresponding wave functions are the well-
known Wannier-Stark states, which are given in terms of
Bessel functions of the first kind,

ψ (α)
n = (−1)n−αJn−α (2κ/F ), (3)

and show a higher than exponential localization, i.e.,
limn→±∞ ψ (α)

n exp(R|n|) = 0 for any R � 0.
Here, we provide exact analytical results on the energy

spectrum and corresponding eigenfunctions for the mosaic

Wannier-Stark Hamiltonian when M � 2. According to the
Simon-Spencer theorem [48] since the potential Vn is un-
bounded at infinity, the absolutely continuous part of the
energy spectrum of H is empty, i.e., the energy spec-
trum comprises pure point and/or singular continuous parts.
The Simon-Spencer theorem basically excludes the existence
of bands of extended states for the mosaic Wannier-Stark
Hamiltonian, and the corresponding eigenfunctions, therefore,
should be either normalizable (localized) states or critical
states. However, the Simon-Spencer theorem does not exclude
the existence of isolated extended states with zero spectral
measure of the corresponding energies. This means that, if
mobility edges would exist, they should separate localized and
critical states. The main result of the present paper is that
the energy spectrum is almost pure point, and there are not
mobility edges. The results are summarized by the following
theorem:

(1) The energy spectrum of H on the infinitely extended
lattice and for M � 2 is pure point with corresponding eigen-
functions displaying a higher than exponential localization
with the exception of (M − 1)-isolated energies, given by

Eσ = 2κ cos
(πσ

M

)
, (4)

(σ = 1, 2, . . . , M − 1) at which the corresponding eigenfunc-
tions are the following non-normalizable (improper) extended
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states:

ψ (σ )
n = sin(nπσ/M ). (5)

(2) The eigenenergies of the localized wave functions can
be grouped into two sets: the high-energy wave functions (set
I) and the low-energy wave functions (set II) with correspond-
ing eigenenergies E , which fall outside and inside the range
of (−2κ, 2κ ), respectively. Note that this range defines the
energy band of the tight-binding lattice in the absence of the
Stark potential.

(3) The spectrum E (I )
α of the high-energy wave functions is

given by

E (I )
α = ±2κ cosh, φα, (6)

where φα > 0 is the root of the transcendental equa-
tion [Fig. 1(b)],

sinh φα cosh(φαM )

sinh(Mφα )
= ±αFM

2κ
, (7)

and α = ±1,±2,±3, . . . is an arbitrary integer.
(4) The spectrum E (II )

α,ρ of the low-energy wave functions is
given by

E (II )
α,ρ = 2κ cos θα,ρ, (8)

where 0 � θα,ρ � π are the (M − 1) roots of the transcenden-
tal equation [Fig. 1(b)],

sin θα,ρ cos(θα,ρM )

sin(Mθα,ρ )
= αFM

2κ
, (9)

α = 0,±1,±2,±3, . . . is an arbitrary integer and ρ =
1, 2, . . . , M − 1 labels the root number of Eq. (9) for a given
value of α [see Fig. 1(c)].

(5) At the lattice sites nM = 0,±M,±2M,±3M, . . ., i.e.,
where the potential is nonvanishing, the localized wave func-
tions for both low-energy and high-energy branches, are given
in terms of Bessel functions of first kind, namely,

ψ
(α)
nM = (−1)n−αJn−α (
), (10)

where we have set


 = 
α = 2κ

FM

sinh φα

sinh(Mφα )
(11)

for the high-energy wave functions, and


 = 
α,ρ = 2κ

FM

sin θα,ρ

sin(Mθα,ρ )
(12)

for the low-energy wave functions (α = 0,±1,±2, . . ., ρ =
1, 2, ..., M − 1). The wave functions at the sites (nM + 1),
i.e., where the potential vanishes, are given by

ψ
(α)
nM+1 = (−1)n−α sin[(M − 1)ω]Jn−α (
) − sin ωJn+1−α (
)

sin(Mω)
,

(13)

with ω = iφα, iφα + π for the high-energy wave functions
and ω = θα,ρ for the low-energy wave functions.

Comments.
(i) The infinitely countable set of energies E (II )

α,ρ of the low-
energy wave functions are embedded in the interval (−2κ, 2κ )
and condense toward the isolated points Eσ of extended states
[Eq. (4)] as α → ±∞ because sin(Mθα,ρ ) ∼ 0. Therefore, set

of energies E (II )
α,ρ form (M − 1) narrow “bands” centered at the

around the energies Eσ .
(ii) As E (II )

α,ρ approaches the isolated points Eσ of extended

states, from Eqs. (10) and (13), one has |ψ (α)
Mn/ψ

(α)
nM+1| � 1,

i.e., the wave functions with energies close to the isolated
points of extended states have negligible excitations at the
lattices sites 0,±M,±2M,±3M, . . . where the potential is
nonvanishing.

(iii) The wave function ψ (α)
n is centered at around n =

Mα. Owing to the properties of the Bessel functions, the
spatial size w of the wave function can be estimated from the
relation w ∼ 2
M and, thus, from Eq. (12), it follows that w

diverges for the low-energy wave functions as α → ±∞, i.e.,
when the eigenenergy E (II )

α,ρ approaches one of the points Eσ

of the energy spectrum.
(iv) The energies E (I )

α of the high-energy wave functions
fall outside the range of (−2κ, 2κ ), and in the limit α → ±∞,
one has E (I )

α � αFM, and the corresponding wave function is
tightly confined at the lattice site n = α. This means that the
set of energies E (I )

α forms an almost equally spaced Wannier-
Stark ladder.

(v) A corollary of the theorem is that the mosaic Wannier-
Stark Hamiltonian does not show, strictly speaking, any
mobility edge, although the low-energy localized eigenstates
become more and more extended in space as their energy
approaches the accumulation points Eσ defined by Eq. (4).

Proof. To prove the main theorem, let us write Eq. (1) in
the dynamical system form

(
ψn+1

ψn

)
=

(
E−Vn

κ
−1

1 0

)(
ψn

ψn−1

)
. (14)

If we iterate Eq. (14) M times, starting from the sites
(ψ(n−1)M+1, ψ(n−1)M ) up to the sites (ψnM+1, ψnM ), we obtain

(
ψnM+1

ψnM

)
=

(
E−nMF

κ
−1

1 0

)(
E
κ

−1

1 0

)M−1

×
(

ψ(n−1)M+1

ψ(n−1)M

)
. (15)

Note that the sites ψnM+1 and ψ(n−1)M+1 where the potential
vanishes are just right next to the sites with the nonzero poten-
tial. Unlike previous works [41,43], we do not use Lyapunov
exponent analysis and Avila’s global theory to determine
the localization properties of the wave functions. In fact,
whereas, Lyapunov exponent analysis can be safely applied
to quasiperiodic or disordered models displaying Anderson-
like localization where the existence of Lyapunov exponent
L(E ) � 0 can be proven for any eigenstate (extended, critical,
or localized with an exponential localization), it cannot be
applied to wave functions with a higher than exponential lo-
calization, which is the case of the Wannier-Stark localization.
Rather, we provide an exact analytical solution to the dynam-
ical system Eq. (15). For the properties of 2 × 2 unimodular
matrices, one can write(

E
κ

−1

1 0

)M−1

=
(

sin(Mω)
sin ω

− sin[(M−1)ω)]
sin ω

sin[(M−1)ω)]
sin ω

− sin[(M−2)ω)]
sin ω

)
, (16)
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where the complex angle ω is defined by the relation,

cos ω = E

2κ
. (17)

After letting

ϕn ≡ ψnM , ξn ≡ ψnM+1 (18)

from Eqs. (15) and (16), one obtains

ξn = S11ξn−1 + S12ϕn−1, (19)

ϕn = S21ξn−1 + S22ϕn−1, (20)

where we have set

S11 = sin(Mω)

sin ω

(
E

κ
− FM

κ
n

)
− sin[(M − 1)ω]

sin ω

S12 = − sin[(M − 1)ω]

sin ω

(
E

κ
− FM

κ
n

)
+ sin[(M − 2)ω]

sin ω

S21 = sin(Mω)

sin ω

S22 = − sin[(M − 1)ω]

sin ω
. (21)

Taking into account that det S = S11S22 − S12S21 = 1, elimi-
nating form Eqs. (19) and (20) the variables ξn one obtains the
following second-order difference equation for the amplitudes
ϕn:

ϕn+1 + ϕn−1 = (A − Bn)ϕn, (22)

where we have set

A ≡ 2 cos(Mω), (23)

B ≡ FM

κ

sin(Mω)

sin ω
. (24)

The spectral problem on the infinite lattice defined by Eq. (22)
is the usual Wannier-Stark problem on a tight-binding lattice
but with energy-dependent DC force, which is solved in terms
of Jn Bessel functions of first kind. Here, we give a direct
solution to the spectral problem exploiting a recursive identity
of Bessel functions Jn; a different approach based on a spectral
method could be also used.

Let us first assume B �= 0, i.e., sin(Mω)/ sin ω �= 0. Using
the recursive relation of Jn(x) Bessel functions,

Jn+1(x) + Jn−1(x) = 2n

x
Jn(x), (25)

the set of solutions to Eq. (22), which do not diverge as n →
±∞, is given by

ϕ(α)
n = (−1)n−αJn−α (
), (26)

where α = 0,±1,±2,±3 · · · is an arbitrary integer number,


 = 2κ

FM

sin ω

sin(Mω)
, (27)

and ω is any root of the transcendental equation,

sin ω
cos(Mω)

sin(Mω)
= α

FM

2κ
. (28)

Since the energy E is real and it is related to the complex
angle ω by the relation E = 2κ cos ω [Eq. (17)], Eq. (28) can

be satisfied by letting either ω = iφ, ω = iφ + π , or ω = θ ,
with θ and φ real numbers. The first two cases, ω = iφ or
ω = iφ + π , yield the high-energy wave functions with ener-
gies E (I )

α defined by Eqs. (6) and (7) with the + and − signs
in the equations corresponding to ω = iφ and ω = iφ + π ,
respectively. On the other hand, the last case of ω = θ yields
the low-energy wave functions with energies E (II )

α defined by
Eqs. (8) and (9). In all cases, the corresponding wave functions
are given in terms of Bessel functions as in Eqs. (10)–(12).
Finally, using Eq. (20) the wave functions ψ

(α)
nM+1 at sites

nM + 1 are obtained from the relation,

ψ
(α)
nM+1 = ξn = ϕn+1 − S22ϕn

S21
, (29)

which yields Eq. (13). For M � 3, the wave-function am-
plitudes ψ (α)

n at the other lattice sites Mn + l with l =
2, 3, . . . M − 1 if needed, can be obtained by the recursive
relation (14).

Let us finally assume B = 0 in Eq. (22), i.e., sin(Mω) =
0 with ω �= 0, π , which is satisfied by letting ω = σπ/M
for σ = 1, 2, . . . , M − 1. Correspondingly, the eigenenergies
are Eσ = 2κ cos(πσ/M ). In this case, S21 = 0, whereas,
S11, S12 �= 0 so that to avoid divergences as n → ±∞ of
the solution to Eqs. (19) and (20), one necessarily must
have ϕn = 0, i.e., the wave-function ψl vanishes identically
at the lattice sites l = nM = 0,±M,±2M,±3M, . . . where
the potential Vl is nonvanishing. This means that the wave-
function ψl is also an eigenfunction of the tight-binding lattice
without any potential with eigenenergy Eσ . Such solutions
are the well-known Bloch waves given by Eq. (5), which
identically vanish at the lattice sites 0,±M,±2M,±3M, . . . .
This concludes the proof of statements (1)–(5) given above.
The comments (i)–(v) are simple corollaries of the main
theorem. �

It should be mentioned that the condensation of the count-
ably infinite set of low-energies E (II )

α,ρ toward the (M − 1)
points Eσ leads to a divergence in the density of states at
E = Eσ , which is similar to the singular behavior found in
the Dyson one-dimensional random hopping model (see, e.g.,
Refs. [49–53] and references therein). This model shows pure
nearest-neighbor hopping disorder with no on-site potential,
and, hence, it is also known as the off-diagonal disorder
model. It displays sublattice (chiral) symmetry with an exact
pairing of states in the spectrum. Under some weak condi-
tions on the probability density distribution of the off-diagonal
disorder, the energy spectrum is pure point and the density
of states shows a diverging behavior near E = 0, which is
also accompanied by a divergence in the localization length,
i.e., vanishing of the Lyapunov exponent. Unlike the mo-
saic Wannier-Stark model studied in this paper, in the Dyson
random hopping model the eigenstate at zero energy is not
conventionally extended rather it is subexponentially local-
ized with a decay behavior ψn ∼ exp(−γ

√|n|) of the wave
function [51–53]. Also, all other localized states show an ex-
ponential (Anderson-like) localization with a finite Lyapunov
exponent, whereas, in the mosaic Wannier-Stark model con-
sidered in the present paper, the eigenfunctions show a higher
than exponential localization.
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FIG. 2. (a) Numerically computed energy in a lattice of size L = 1000 with open boundary conditions for parameter values M = 4 and
F/κ = 0.5. The inset shows an enlargement of the energy spectrum corresponding to the low-energy branch E (II )

α , clearly showing that the
eigenenergies condensate toward the (M − 1) = 3 values of 0,±√

2κ , corresponding to the energies of the isolated extended states (horizontal
red curves). (b) The IPR of the corresponding wave functions. Note that the IPR of the high-energy wave functions is very close to one,
indicating strong localization, whereas, the IPR of the low-energy wave functions is small, indicating a low degree of localization. Note also
that the two cusps visible in the IPR plot occur at the transition energies that separate the energy plateaus displayed in the inset of panel (a).
(c) Behavior of ln(IPR) versus ln(1/L) for four low-energy wave functions with energies E1–4 that approach the zero energy of the extended
state(E1 = 0.020κ , E2 = 0.0067κ , E3 = 0.0040κ , and E4 = 0.0032κ). The slopes of the curves at L → ∞ give the fractal dimension β of the
wave functions, with β = 1 for extended states, 0 < β < 1 for critical states and β = 0 for localized states. Note that all wave functions are
localized, even though the IPR is very small. A weakly localized state differs from a critical or a fully extended state because the IPR settles
down to a constant (albeit small) value as L → ∞, and the fractal dimension β correspondingly vanishes. (d) Shape of the wave-function
amplitudes |ψn| corresponding to the four energies in a lattice of size L = 3000. Note that the wave functions are very weakly localized,
extending over several hundreds of lattice sites.

III. NUMERICAL RESULTS AND COMMENTS

To illustrate and support the analytical results given in
the previous section, we present some numerical results of
energy spectra and localization properties of corresponding
wave functions. The results are obtained by diagonalization
of the matrix Hamiltonian H (EIG MatLab solver) assuming a
finite lattice of large size L with open boundary conditions.
We also comment on the pseudomobility edges that have
been introduced in previous works [41–43], where the inverse
participation ratio (IPR) was used to discriminate between
localized and extended states. For a wave function normalized
such that

∑L
n=1 |ψ (α)

n |2 = 1, the IPR is defined by the relation,

IPRα =
L∑

n=1

∣∣ψ (α)
n

∣∣4
. (30)

The IPR of an extended state takes a small value and scales
as L−1, hence, vanishing in the thermodynamic limit L → ∞,
whereas, it remains finite for a localized state. In the mosaic
Wannier-Stark lattice of finite size L, we expect ∼L/M eigen-
states belonging to the high-energy branch I, and the other
L(1 − 1/M ) eigenstates belonging to the low-energy branch
II. In fact, the eigenstates belonging to the high-energy branch
have their excitations tightly confined in almost one site of the
lattice where the potential is nonvanishing. Since the fraction

of sites in the lattice where the potential is nonvanishing is
given by 1/M for large L, we expect to have ∼L/M tightly
localized wave functions belonging to the high-energy branch.
In a lattice of finite (albeit large) size L, the analytical form of
the high-energy eigenstates and corresponding eigenenergies
are not substantially modified by edge effects since the wave
functions are tightly localized in the bulk (apart for few wave
functions localized at the lattice boundaries). For the high-
energy branch, the eigenenergies are, thus, given again by
Eqs. (8) and (9) to a high degree of approximation where the
index α varies in the range of (−L/2M, L/2M ) with α �= 0.
On the other hand, a large fraction of eigenstates belonging
to the low-energy branch are so extended to reach the lattice
edges so that in this case, the exact form of the wave functions
cannot be given in an exact form and Eqs. (10) and (13) cannot
be used anymore when the wave functions reach the lattice
edges.

Figure 2(a) shows, as an example, the numerically com-
puted energy spectrum for M = 4 and for F/κ = 0.5 in a
lattice of size L = 1000. The corresponding IPR of the wave
functions is shown in Fig. 2(b). The energy spectrum in
Fig. 2(a) clearly shows that, besides high-energy eigenstates,
a large fraction of the wave functions, namely, ∼L(1 − 1/M )
wave functions, have their energy in three narrow regions [see
the insets in Fig. 2(a)] that condensate toward the (M − 1) =
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3 energies Eσ = 0,±√
2κ of extended states. As shown in

Fig. 2(b), the IPR of the high-energy wave functions is very
close to one, indicating a tight localization of the wave func-
tions. On the other hand, the IPR of the low-energy wave
functions is small, reaching a value down to ∼0.005 close
to the three energies Eσ . However, a small value of the IPR
alone does not necessarily mean that the wave function is an
extended or critical state, it just tells us that the excitation
spreads over several sites of the lattice. The nature of the
function ψ (α)

n is at best captured by looking at its fractal
dimension βα , which is defined by (see, e.g., Refs. [35,36,54])

βα = lim
L→∞

ln IPRα

ln(1/L)
. (31)

For a localized wave function, one has βα = 0, for an extended
wave function, one has βα = 1, whereas, for a critical wave
function, one has 0 < βα < 1. In our example, the energy
spectrum contains (M − 1) = 3 fully extended states at the
energies Eσ = 0,±√

2κ , and for such states, one clearly has
β = 1. In Fig. 2(c), we show the numerically computed be-
havior of ln(IPR) versus ln(1/L) for four wave functions with
energies E1 = 0.020κ , E2 = 0.0067κ , E3 = 0.0040κ , E4 =
0.0032κ that approach the zero-energy value of one of the
three extended states. The figure clearly shows that, for a
fixed energy (albeit very close to zero) the behavior of ln(IPR)
becomes independent of ln(1/L) for large enough system size
L, indicating that the slope β vanishes, and the wave func-
tion is not strictly an extended state, although the excitation
can spread over many sites of the lattice. As an example, in
Fig. 2(d), we plot the wave function amplitudes for the four
energies in a lattice of size L = 3000, clearly showing that,
even though the excitation spreads over several hundreds of
sites in the lattice, with a very small IPR, the wave function
asymptotically decays toward zero and, thus, belongs to the
point spectrum of the Hamiltonian in the L → ∞ limit. The α

indices for the wave functions depicted in Fig. 2(d) can be cal-
culated from the simple relation α � −4κ2/(M2EF ), where
E is the energy of the wave function close to the condensation
point E0 = 0. For example, for the wave function with energy
E = E1 = 0.020κ one has α = −25. We checked that the
wave function profiles obtained from the numerical matrix di-
agonalization match with an excellent accuracy the analytical
forms given in terms of Bessel functions [Eqs. (10) and (13)].

In systems with a finite size L, a relevant number of eigen-
states with energies very close to the (M − 1) values Eσ , are,
nevertheless, extended over the entire lattice and can be, thus,
considered as extended states in a broad sense. The mobility
edges, i.e., the energies separating such wave functions ex-
tended over the entire size L of the lattice from localized wave
functions, clearly shrink toward the (M − 1) energies Eσ in a
system of large size L, indicating that the spectral extent (but
not the number of wave functions) of such extended states
shrink to zero in the L → ∞ limit, according to the Simon-
Spencer theorem [48]. This result is clearly at odds with the
results presented in Ref. [41]. However, one can retrieve the
results of Ref. [41], and, in particular, the form of pseudomo-
bility edges, introducing the notion of an ‘extended state’ in a
weaker sense by classifying a wave function as an extended
state whenever its IPR is smaller than an assigned (small)

number ε, and a localized state when its IPR is larger than
ε. Using the property of Bessel functions that Jn(
) extends
over ∼2|
| sites of the lattice, we can roughly estimate the
size w of a narrow-energy wave function using Eq. (27), i.e.,

w ∼ 2M|
| =
∣∣∣∣4κ

F

sin θ

sin(Mθ )

∣∣∣∣, (32)

where angle θ is related to energy E via the relation
E = 2κ cos θ . For a wave function with excitation uniformly
distributed over w sites of the lattice, the IPR is clearly
estimated by the relation,

IPR ∼ 1/w, (33)

and, thus, from Eqs. (32) and (33), one obtains

IPR ∼
∣∣∣∣ F

4κ

sin(Mθ )

sin θ

∣∣∣∣. (34)

The pseudomobility edges are, thus, obtained from the
relation IPR = ε, i.e.,∣∣∣∣ F

4κ

sin(Mθ )

sin θ

∣∣∣∣ = ε. (35)

If we assume ε = 1/2 and let aM ≡ sin(Mθ )/ sin θ , the
pseudo-mobility edges are, thus, defined by the relation,∣∣∣∣F

κ
aM

∣∣∣∣ = 2, (36)

which is precisely the result obtained in Ref. [41] for the
mobility edges [see Eq. (11) of this reference].

IV. CONCLUSIONS

To summarize, we reported on the exact analytical solution
of the spectral problem of the mosaic Wannier-Stark Hamil-
tonian, a tight-binding model, which has been introduced in
recent works [41–43] as an example of a disorder-free system
displaying mobility edges, separating localized and extended
states. This result looks quite surprising since so far all known
one-dimensional models displaying mobility edges require
some kind of (incommensurate) disorder. Our results indi-
cate that for the mosaic Wannier-Stark Hamiltonian, strictly
speaking, there are not mobility edges, separating extended
and localized states. Specifically, we proved that the energy
spectrum is almost pure point with all the wave functions
displaying a higher than exponential localization, typical of
Wannier-Stark localization with the exception of (M − 1)-
isolated extended states. The energy spectrum comprises two
sets of countably infinite number of localized states, the
low-energy and high-energy wave functions. Althoughe the
high-energy wave functions are tightly localized, the low-
energy wave functions are weakly localized, and they become
more and more extended as their energies approach the ener-
gies of the isolated extended states.

ACKNOWLEDGMENTS

I knowledge the Spanish State Research Agency, through
the Severo Ochoa and Maria de Maeztu Program for Centers
and Units of Excellence in R&D (Grant No. MDM-2017-
0711).

064206-6



ABSENCE OF MOBILITY EDGES IN MOSAIC … PHYSICAL REVIEW B 108, 064206 (2023)

[1] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[2] A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, Fifty years
of Anderson localization, Phys. Today 62(8), 24 (2009).

[3] E. Abrahams, 50 Years of Anderson Localization (World Scien-
tific Publishing, Singapore, 2010).

[4] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008),

[5] M. Segev, Y. Silberberg, and D. N. Christodoulides, Anderson
localization of light, Nat. Photonics 7, 197 (2013).

[6] T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Transport
and Anderson localization in disordered two-dimensional pho-
tonic lattices, Nature (London) 446, 52 (2007).

[7] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N.
Christodoulides, and Y. Silberberg, Anderson Localization and
Nonlinearity in One-Dimensional Disordered Photonic Lat-
tices, Phys. Rev. Lett. 100, 013906 (2008).

[8] H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A.
van Tiggelen, Localization of ultrasound in a three-dimensional
elastic network, Nat. Phys. 4, 945 (2008).

[9] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M.
Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Ander-
son localization of a non-interacting Bose-Einstein condensate,
Nature (London) 453, 895 (2008).

[10] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Direct observation of Anderson localization of matter waves in
a controlled disorder, Nature (London) 453, 891 (2008).

[11] S. S. Kondov, W. R. McGehee, J. J. Zirbel, and B. DeMarco,
Three-dimensional Anderson localization of ultracold matter,
Science 334, 66 (2011).

[12] F. Jendrzejewski, A. Bernard, K. Müller, P. Cheinet, V.
Josse, M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect,
and P. Bouyer, Three-dimensional localization of ultracold
atoms in an optical disordered potential, Nat. Phys. 8, 398
(2012).

[13] G. Semeghini, M. Landini, P. Castilho, S. Roy, G. Spagnolli, A.
Trenkwalder, M. Fattori, M. Inguscio, and G. Modugno, Mea-
surement of the mobility edge for 3D Anderson localization,
Nat. Phys. 11, 554 (2015).

[14] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting Elec-
trons in Disordered Wires: Anderson Localization and Low-T
Transport, Phys. Rev. Lett. 95, 206603 (2005).

[15] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Scaling Theory of Localization: Absence of
Quantum Diffusion in Two Dimensions, Phys. Rev. Lett. 42,
673 (1979).

[16] N. Mott, The mobility edge since 1967, J. Phys. C: Solid State
Phys. 20, 3075 (1987).

[17] L. Sanchez-Palencia, Ultracold gases: At the edge of mobility,
Nat. Phys. 11, 525 (2015)

[18] S. Das Sarma, S. He, and X. C. Xie, Mobility Edge in a
Model One-Dimensional Potential, Phys. Rev. Lett. 61, 2144
(1988)

[19] H. Hiramoto and M. Kohmoto, New Localization in a
Quasiperiodic System, Phys. Rev. Lett. 62, 2714 (1989).

[20] J. Biddle and S. Das Sarma, Predicted Mobility Edges in
One-Dimensional Incommensurate Optical Lattices: An Ex-
actly Solvable Model of Anderson Localization, Phys. Rev.
Lett. 104, 070601 (2010).

[21] S. Ganeshan, J. H. Pixley, and S. Das Sarma, Nearest Neighbor
Tight Binding Models with an Exact Mobility Edge in One
Dimension, Phys. Rev. Lett. 114, 146601 (2015).

[22] T. Liu, H. Guo, Y. Pu, and S. Longhi, Generalized Aubry-André
self-duality and Mobility edges in non-Hermitian quasiperiodic
lattices, Phys. Rev. B 102, 024205 (2020).

[23] S. Das Sarma, Song He, and X. C. Xie, Localization, mo-
bility edges, and metal-insulator transition in a class of
one-dimensional slowly varying deterministic potentials, Phys.
Rev. B 41, 5544 (1990).

[24] H. Yao, H. Khouldi, L. Bresque, and L. Sanchez-Palencia,
Critical Behavior and Fractality in Shallow One-Dimensional
Quasiperiodic Potentials, Phys. Rev. Lett. 123, 070405 (2019).

[25] H. Yao, T. Giamarchi, and L. Sanchez-Palencia, Lieb-Liniger
Bosons in a Shallow Quasiperiodic Potential: Bose Glass Phase
and Fractal Mott Lobes, Phys. Rev. Lett. 125, 060401 (2020).

[26] D. J. Boers, B. Goedeke, D. Hinrichs, and M. Holthaus, Mo-
bility edges in bichromatic optical lattices, Phys. Rev. A 75,
063404 (2007).

[27] H. P. Lüschen, S. Scherg, T. Kohlert, M. Schreiber, P. Bordia, X.
Li, S. Das Sarma, and I. Bloch, Single-Particle Mobility Edge
in a One-Dimensional Quasiperiodic Optical Lattice, Phys. Rev.
Lett. 120, 160404 (2018).

[28] Z. Xu, H. Huangfu, Y. Zhang, and S. Chen, Dynamical obser-
vation of mobility edges in one-dimensional incommensurate
optical lattices, New J. Phys. 22, 013036 (2020).

[29] J. D. Bodyfelt, D. Leykam, C. Danieli, X. Yu, and S. Flach,
Flatbands under Correlated Perturbations, Phys. Rev. Lett. 113,
236403 (2014).

[30] Y. Wang, X. Xia, L. Zhang, H. Yao, S. Chen, J. You, Q.
Zhou, and X. Liu, One Dimensional Quasiperiodic Mosaic Lat-
tice with Exact Mobility Edges, Phys. Rev. Lett. 125, 196604
(2020).

[31] Q. Tang and Y. He, Mobility edges in one-dimensional mod-
els with quasi-periodic disorder, J. Phys.: Condens. Matter 33,
185505 (2021).

[32] Y. Wang, X. Xia, J. You, Z. Zheng, and Q. Zhou, Exact mobility
edges for 1D quasiperiodic models, Commun. Math. Phys. 401,
2521 (2023).

[33] S. Jitomirskaya and F. Yang, Singular Continuous Spectrum for
Singular Potentials, Commun. Math. Phys. 351, 1127 (2017).

[34] F. Yang and S. Zhang, Singular continuous spectrum
and generic full spectral/packing dimension for unbounded
quasiperiodic Schrödinger operators, Ann. Henri Poincaré 20,
2481 (2019).

[35] T. Liu, X. Xia, S. Longhi, and L. Sanchez-Palencia, Anoma-
lous mobility edges in one-dimensional quasiperiodic models,
SciPost Phys. 12, 027 (2022).

[36] Y.-C. Zhang and Y.-Y. Zhang, Lyapunov exponent, mobil-
ity edges, and critical region in the generalized Aubry-Andre
model with an unbounded quasiperiodic potential, Phys. Rev. B
105, 174206 (2022).

[37] T. Xiao, D. Xie, Z. Dong, T. Chen, W. Yi, and B. Yan, Ob-
servation of topological phase with critical localization in a
quasi-periodic lattice, Sci. Bull. 66, 2175 (2021),

[38] Y. Wang, L. Zhang, W. Sun, T.-F. J. Poon, and X.-J. Liu,
Quantum phase with coexisting localized, extended, and critical
zones, Phys. Rev. B 106, L140203 (2022).

[39] T. Shimasaki, M. Prichard, H. E. Kondakci, J. Pagett, Y. Bai, P.
Dotti, A. Cao, T.-C. Lu, T. Grover, and D. M. Weld, Anoma-

064206-7

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1063/1.3206091
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1038/nphoton.2013.30
https://doi.org/10.1038/nature05623
https://doi.org/10.1103/PhysRevLett.100.013906
https://doi.org/10.1038/nphys1101
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07000
https://doi.org/10.1126/science.1209019
https://doi.org/10.1038/nphys2256
https://doi.org/10.1038/nphys3339
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1088/0022-3719/20/21/008
https://doi.org/10.1038/nphys3379
https://doi.org/10.1103/PhysRevLett.61.2144
https://doi.org/10.1103/PhysRevLett.62.2714
https://doi.org/10.1103/PhysRevLett.104.070601
https://doi.org/10.1103/PhysRevLett.114.146601
https://doi.org/10.1103/PhysRevB.102.024205
https://doi.org/10.1103/PhysRevB.41.5544
https://doi.org/10.1103/PhysRevLett.123.070405
https://doi.org/10.1103/PhysRevLett.125.060401
https://doi.org/10.1103/PhysRevA.75.063404
https://doi.org/10.1103/PhysRevLett.120.160404
https://doi.org/10.1088/1367-2630/ab64b2
https://doi.org/10.1103/PhysRevLett.113.236403
https://doi.org/10.1103/PhysRevLett.125.196604
https://doi.org/10.1088/1361-648X/abee3c
https://doi.org/10.1007/s00220-023-04695-9
https://doi.org/10.1007/s00220-016-2823-4
https://doi.org/10.1007/s00023-019-00810-6
https://doi.org/10.21468/SciPostPhys.12.1.027
https://doi.org/10.1103/PhysRevB.105.174206
https://doi.org/10.1016/j.scib.2021.07.025
https://doi.org/10.1103/PhysRevB.106.L140203


STEFANO LONGHI PHYSICAL REVIEW B 108, 064206 (2023)

lous localization and multifractality in a kicked quasicrystal,
arXiv:2203.09442.

[40] X. Lin, X. Chen, G.-C. Guo, and M. Gong, The general ap-
proach to the critical phase with coupled quasiperiodic chains,
arXiv:2209.03060.

[41] D. Dwiputra and F. P. Zen, Single-particle mobility edge with-
out disorder, Phys. Rev. B 105, L081110 (2022).

[42] J. Gao, I. M. Khaymovich, A. Iovan, X.-W. Wang, G. Krishna,
Z.-S. Xu, E. Tortumlu, A. V. Balatsky, V. Zwiller, and A. W.
Elshaari, Observation of Wannier-Stark ladder beyond mobility
edge in disorder-free mosaic lattices, arXiv:2306.10831.

[43] R. Qi, J. Cao, and X.-P. Jiang, Localization and mobility edges
in non-Hermitian disorder-free lattices, arXiv:2306.03807.

[44] G. H. Wannier, Dynamics of band electrons in
electric and magnetic fields, Rev. Mod. Phys. 34, 645
(1962).

[45] H. Fukuyama, R. A. Bari, and H. C. Fogedby, Tightly bound
electrons in a uniform electric field, Phys. Rev. B 8, 5579
(1973).

[46] D. Emin and C. F. Hart, Existence of Wannier-Stark localiza-
tion, Phys. Rev. B 36, 7353 (1987).

[47] T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann, Dynam-
ics of Bloch oscillations, New J. Phys. 6, 2 (2004).

[48] B. Simon and T. Spencer, Trace class perturbations and the ab-
sence of absolutely continuous spectra, Commun. Math. Phys.
125, 113 (1989).

[49] G. Theodorou and M. H. Cohen, Extended states in a one-
dimensional system with off-diagonal disorder, Phys. Rev. B 13,
4597 (1976).

[50] T. P. Eggarter and R. Riedinger, Singular behavior of tight-
binding chains with off-diagonal disorder, Phys. Rev. B 18, 569
(1978).

[51] L. Fleishman and D. C. Licciardello, Fluctuations and localiza-
tion in one dimension, J. Phys. C: Solid State Phys. 10, L125
(1977).

[52] C. M. Soukoulis and E. N. Economou, Off-diagonal disorder in
one-dimensional systems, Phys. Rev. B 24, 5698 (1981).

[53] A. Krishna and R. N. Bhatt, Beyond universal behavior in the
one-dimensional chain with random nearest-neighbor hopping,
Phys. Rev. B 101, 224203 (2020).

[54] M. Schreiber, Fractal eigenstates in disordered systems, Physica
A 167, 188 (1990).

064206-8

http://arxiv.org/abs/arXiv:2203.09442
http://arxiv.org/abs/arXiv:2209.03060
https://doi.org/10.1103/PhysRevB.105.L081110
http://arxiv.org/abs/arXiv:2306.10831
http://arxiv.org/abs/arXiv:2306.03807
https://doi.org/10.1103/RevModPhys.34.645
https://doi.org/10.1103/PhysRevB.8.5579
https://doi.org/10.1103/PhysRevB.36.7353
https://doi.org/10.1088/1367-2630/6/1/002
https://doi.org/10.1007/BF01217772
https://doi.org/10.1103/PhysRevB.13.4597
https://doi.org/10.1103/PhysRevB.18.569
https://doi.org/10.1088/0022-3719/10/6/003
https://doi.org/10.1103/PhysRevB.24.5698
https://doi.org/10.1103/PhysRevB.101.224203
https://doi.org/10.1016/0378-4371(90)90052-T

