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Random geometry at an infinite-randomness fixed point
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We study the low-energy physics of the critical (2 + 1)-dimensional random transverse-field Ising model. The
one-dimensional version of the model is a paradigmatic example of a system governed by an infinite-randomness
fixed point, for which many results on the distributions of observables are known via an asymptotically
exact renormalization group (RG) approach. In two dimensions, the same RG rules have been implemented
numerically and demonstrate a flow to infinite randomness. However, analytical understanding of the structure
of this RG has remained elusive due to the development of geometrical structure in the graph of interacting
spins. To understand the character of the fixed point, we consider the RG flow acting on a joint ensemble
of graphs and couplings. We propose that the RG effectively occurs in two stages: (1) randomization of the
interaction graph until it belongs to a certain ensemble of random triangulations of the plane and (2) a flow
of the distributions of couplings to infinite randomness while the graph ensemble remains invariant. This
picture is substantiated by a numerical RG in which one obtains a steady-state graph degree distribution and
subsequently infinite-randomness scaling distributions of the couplings. Both of these aspects of the RG flow
can be approximately reproduced in simplified analytical models.
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I. INTRODUCTION

Quenched randomness in quantum many-body systems can
have dramatic effects at low energies. While it is sometimes
the case that a small amount of randomness is perturbatively
irrelevant in the renormalization group (RG) sense on top of a
pure fixed point—in which case the long-distance, low-energy
physics can be treated as that of a translationally invariant field
theory—more interesting possibilities exist in both theory and
experiment.

For concreteness, consider problems concerning quantum
magnets on a lattice in the presence of random couplings.
Often, either due to constraints on the stability of a pure fixed
point to weak disorder or because the disorder strength in the
bare lattice model is large enough for notions of perturbative
irrelevance in a field theory to be useless [1,2], disorder will
remain an important feature of the low-energy theory. Under a
heuristic RG flow, the strength of randomness in the couplings
of a theory will then either saturate to some finite value or keep
increasing without bound.

So-called infinite-randomness fixed points (IRFPs) rep-
resent the interplay of quantum mechanics and quenched
randomness at its most stark: Because of domination by
rare-region effects, there is an exponentially big difference
between certain averaged and typical quantities, and con-
ventional dynamical scaling t ∼ �z is destroyed in favor of
“tunnelling” scaling ln t ∼ �ψ . The effects of randomness are
apparent in both dynamics and thermodynamics, as the two
are tied together in quantum mechanics.

Experimentally, lightly doped semiconductors have proven
to be the most natural place in which to look for regimes
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of this strong-disorder physics: The noninteracting An-
derson insulator is unstable to the formation of local
moments once Coulomb repulsion is included, and these
moments then interact with each other via exponentially
decaying antiferromagnetic exchange interactions, which
are broadly distributed even in the bare Hamiltonian [3].
Highly disordered fixed points have been proposed via
local-moment instabilities of spin liquid and valence bond
solid states in the presence of quenched randomness [4–7].
Dirty metals also host a finite concentration of local mo-
ments; there RKKY interactions can qualitatively change
the physics due to the relatively long-ranged (1/rd ) decay
and oscillating ferromagnetic/antiferromagnetic sign of the
couplings [8].

The most powerful tool in the study of these random
magnets has proven to be the strong-disorder renormalization
group (SDRG) [9,10], first proposed by Ma, Dasgupta, and
Hu [11] and further elaborated on by D. S. Fisher [12,13].
The central premise of the SDRG is that a broad disorder
distribution naturally gives rise to a small parameter, namely
the ratio of a typical term in the Hamiltonian to the largest
term. Doing perturbation theory in this small parameter allows
one to integrate out the strongest term in the Hamiltonian and
to renormalize the couplings geometrically adjacent to this
term in the lattice. The protocol of SDRG is to repeatedly
integrate out the largest term in the Hamiltonian, each time
modifying the remaining terms and thereby defining a flow
of the Hamiltonian with decreasing energy scale. If, starting
with a broad disorder distribution, the RG makes the distri-
bution grow broader without bound—i.e., if it takes us to
an IRFP—then the approximation of the largest term being
much stronger than the terms neighboring it can be justified
self-consistently, and the RG flow becomes asymptotically
exact at low energies.
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FIG. 1. Decimation rules for strong-disorder RG in the (1 +
1)-dimensional transverse-field Ising model. The upper and lower
subfigures depict decimations when the strongest coupling on the
chain is a transverse field h and an Ising bond J , respectively. Note
that, under these RG steps, the chain geometry does not change, apart
from a trivial reduction by one lattice site.

A simple example of a model that flows to infinite random-
ness is the (1 + 1)-dimensional random transverse-field Ising
model (TFIM),

H = −
∑

i

Jiσ
z
i σ z

i+1 −
∑

i

hiσ
x
i , (1)

at its ferromagnet-to-paramagnet critical point, which occurs
when the distributions of logarithms of the Ji and hi have
equal means: 〈ln J〉 = 〈ln h〉 (we assume that the Ji and hi

are independent and identically distributed, each according to
its respective distribution). The SDRG theory of this phase
transition, and of the randomness-induced critical phases next
to it, was developed in Ref. [13].

The RG rules are summarized in Fig. 1. If a spin is deci-
mated, then it is frozen into the +x direction and a new bond
is made between the spins formerly adjacent to it. If a bond
is decimated, then the two spins that it connected become
one big spin, and the bond goes away. Crucially, under these
RG rules the geometry of the interaction graph is unchanged
from the one-dimensional chain and the remaining couplings
and fields on the chain remain uncorrelated, so the RG flow
can be described in terms of the flow of the bond and field
distributions under successive decimations.

Consider implementing a generalization of the same rules
in two dimensions starting from some lattice (again with all
Ji as well as all hi independent and identically distributed to
begin with). Now, when a spin with transverse field h which
has n neighbors (“degree” n in graph theoretic language) is
decimated, in second-order perturbation theory one has to
remove n bonds, J1, J2, . . . , Jn, and make n(n − 1)/2 new
ones with strengths JiJj/h. This immediately modifies the
interaction graph. If one starts with a lattice, then the new
graph is no longer a lattice, and in fact tends to develop bigger
and bigger all-to-all cliques which make the graph grow closer
to complete. The model that is closed under the action of the
RG should hence be defined on general graphs G = (V, E ) as

H = −
∑

〈i j〉∈E

Ji jσ
z
i σ z

j −
∑
i∈V

hiσ
x
i . (2)

We stress that we will study disorder distributions with all
Ji j > 0, i.e., ferromagnetic, and all hi > 0 as well. Including
both signs of the couplings makes the problem more compli-
cated, although it has been conjectured that this modification
is irrelevant near infinite randomness [14].

FIG. 2. An example of a site/bond decimation (upper/lower
subfigures, respectively) according to our triangular RG rule in the
(2 + 1)-dimensional transverse-field Ising model. For site decima-
tion the order of adjacent bond couplings (J1 > J2 > . . . ) identifies
the spin that the triangulating bonds all emerge from. Note that the
geometrical modification enacted on the graph by these two decima-
tions, once other neighboring bonds are drawn, is identical.

The other ingredient of the two-dimensional problem
which does not exist in the one-dimensional one is the ex-
istence of correlations between couplings. For example, two
bonds created during the RG may have a constituent bond
in common, as in J1J2/h and J1J3/h. There will also be cor-
relations between geometrical quantities and couplings—for
example spins with small transverse fields will tend to have
big degrees because it took a large number of decimations to
make them.

These issues constitute qualitative barriers to analytical
considerations and impede a complete understanding of the
SDRG compared to studies in one dimension. Nevertheless,
the RG rules have been numerically implemented [14], and
the quantum critical point is found to flow to infinite random-
ness, as in one dimension. Critical exponents that determine
thermodynamics and disorder-averaged correlation functions
can be computed in this numerical RG.

It follows from the above discussion that, in going from
one to two dimensions, one needs to generalize the notion of
the SDRG from a flow of self-similar couplings on a fixed
geometry (viz. the chain) to a potentially joint flow of self-
similar couplings together with the geometry.

The central object of our study is a geometrically moti-
vated truncation of the full RG rules, shown in Fig. 2. Here,
when a field h on a spin with degree n is decimated, one
orders the bonds next to it as J1 > J2 > . . . > Jn, and only
makes new bonds with magnitudes J1Ji/h. We conjecture that
this truncation is irrelevant at the IRFP, and this is verified by
implementing the RG numerically. We shall argue for validity
of our truncation and explain how infinite randomness in the
couplings is intertwined with the geometrical ensemble that
appears at the fixed point of our RG.

Triangulations of the plane (or of the torus in numerics
with periodic boundary conditions) are almost preserved by
our RG, modulo subtleties which will be discussed presently.
Furthermore, the RG makes the effects of site and bond dec-
imations on the interaction graph identical, as can be seen in
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Fig. 2. The geometry thus generated is naturally much simpler
than the geometry in the RG without truncations, i.e., the one
that generates all bonds that can be generated in second-order
perturbation theory [14].

In fact the triangular truncation reveals the structure of
the RG flow rather vividly. We find that the flow occurs in
two steps: (1) Starting from the bare lattice geometry and
bare distributions of couplings, the first step is mostly geo-
metrical. The geometry quickly approaches a steady state, a
“fixed-point geometry,” which is approximated by a certain
ensemble of random triangulations. The couplings during this
stage feature primarily in how they feed into the evolution
of the geometry from the initial lattice to the fixed-point
geometry. (2) In the second stage, the geometry wanders
ergodically through the fixed-point ensemble, while the cou-
plings flow to infinite randomness on top of it.

Both of these stages can be approximated in analytical toy
models (once we ignore a variety of correlations). The most
important geometrical quantity is the distribution of degrees n
of the graph, which we will call p(n). In the first stage, we can
write down a differential equation for the evolution of p(n)
with RG time and find its steady state, having fed in a cari-
cature of the information about correlations between degrees
and coupling strengths which determine the rates at which the
geometrical operations occur as a function of n. All further
correlations, which in principle exist, are dropped. The second
stage involves coupled integrodifferential equations similar to
those analyzed by Fisher [12] for the evolution of the distri-
butions of couplings J , h. These differential equations take as
input the fixed-point geometry’s degree distribution p(n), and
again ignore all correlations beyond those which have to be
assumed to maintain the geometrical steady state. With p(n)
chosen to be of a functional form that greatly simplifies the
RG equations [and is a good fit to the numerically observed
p(n)] we find an approximate scaling solution which flows to
infinite randomness, in fact with critical exponents that are
close to the numerically observed ones.

The remainder of the paper is structured as follows. Sec-
tion II contains background on the problem (in both the
one- and two-dimensional cases). In Sec. III we introduce
the RG rule, present numerical results obtained using it for
infinite-randomness scaling and the evolution of geometry,
and interpret these results using the two-stage perspective
described above. In Sec. IV we outline solutions to analytical
toy models for the RG. Finally, Sec. V concludes with a
discussion of open problems.

II. BACKGROUND

In this section, we mostly explain previous work and set up
notation.

A. One dimension

Here we discuss in more detail the random one-
dimensional TFIM, Eq. (1), following Ref. [13]. One can
obtain the ground-state and low-energy properties of this
Hamiltonian using the following approximate RG, summa-
rized in Fig. 1.

Find the largest of the set of couplings, � = maxi{Ji, hi}.
If � corresponds to a bond Ji, then remove the bond and

combine the two spins it connects to form one new spin with
a larger moment and is acted on by a new transverse field
hihi+1/Ji. If � corresponds to a transverse field hi, then put
the site in its ground state (pointing along x), remove it as well
as the two bonds Ji−1 and Ji, and add in a new renormalized
bond connecting the sites which were previously called i − 1
and i + 1 with strength Ji−1Ji+1/hi. These RG steps corre-
spond to integrating out the strongest coupling and creating
new couplings to second order in perturbation theory. The ra-
tio of the biggest coupling to those next to it is always treated
as a large parameter, and so the approximation is sensible only
if the distributions of J’s and h’s are broad. Indeed an eventual
RG fixed point is controlled only if the RG is asymptotically
exact, in other words if it makes the distributions flow to be
infinitely broad.

It is convenient to work in logarithmic variables, which will
always be non-negative:

ζ = ln(�/J ), β = ln(�/h), � = ln(�0/�). (3)

With �0 equal to the initial largest scale, � is an RG time.
In terms of these logarithmic variables, the RG steps will be
additive, and the denominators will play no role. The objects
that flow under RG are the distributions of the log couplings
P(ζ ) and R(β ):

∂P

∂�
= ∂P

∂ζ
+ R0

∫
dζ1 P(ζ1)P(ζ − ζ1)

− 2R0P + (P0 + R0)P, (4)

∂R

∂�
= ∂R

∂β
+ P0

∫
dβ1 R(β1)R(β − β1)

− 2P0R + (P0 + R0)R, (5)

where P0 = P(0) and R0 = R(0). We will explain (4); (5) has
an analogous form due to the field-bond duality in this model.

The first term comes from the fact that once the log energy
shell of size d� is integrated out, � is redefined to be the
new strongest coupling so that the whole distribution shifts
leftward by d� or, equivalently, P increases by d� × ∂P/∂ζ .
The second term adds in all the newly made bonds of size ζ

created by the decimation of a field. It receives contributions,
therefore, from all bond-bond pairs whose log strengths sum
up to ζ . The third term describes the removal of these two
bonds, which are sampled independently from the distribu-
tion. Both of these processes occur d� × R0 times, as this
is the fraction of sites decimated. Finally, the last term keeps
the distribution normalized: The integral of the right-hand side
with respect to ζ vanishes.

The simplest solution of these equations is

P(ζ ) = 1

�
e−ζ/�, R(β ) = 1

�
e−β/�, (6)

and this corresponds to the RG flow at the ferromagnet-
paramagnet critical point. Clearly, the width of both distri-
butions grows broader without bound as � increases: In the
original J/h language, the orders of magnitude spanned grow
infinitely broad. This defines an infinite-randomness fixed
point.

A number of other properties of the system at and off
criticality can be calculated using the SDRG; we will not
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discuss these here and mostly will not in our study of the two-
dimensional case either. The one exception is the number of
active (i.e., nondecimated) spins in the cluster labeled by site i
or, equivalently, the magnetic moment μi of cluster i. Initially,
the magnetic moment of each spin is 1, and when two spins
with moments μ1 and μ2 are joined via a bond decimation,
the moment of the new spin is μ1 + μ2. Equation (5) can
be modifed to include this auxiliary variable, and the joint
distribution for β and μ can be solved for as well.

B. Two dimensions

It is straightforward to define RG rules for the TFIM on
a general graph, of which the one-dimensional chain is the
simplest case. Now, when a site carrying transverse field h
and with n neighbors is decimated, we have to destroy the
n bonds that are connected to the decimated site—call these
J1, J2, . . . , Jn—and create all bonds JiJj/h that are generated
in second-order perturbation theory assuming h/Ji � 1 for
all i. Some of these bonds may already exist in the graph, in
which case one replaces a bond with the newly created one if
the new bond is stronger than the old one. This approximation
is justified in the limit of infinite randomness, because in this
case one of the new/old bonds is expected to be much stronger
than the other one.

Bond decimations contract edges of the graph, renormaliz-
ing the strength of a transverse field on a cluster of two spins
to h1h2/J where h1 and h2 were the transverse fields on the
spins shared by the decimated bond J . Any bonds to common
neighbors of the two spins being fused will, similarly to above,
take on the value of the stronger of the two bonds that overlap
after the decimation.

A generic graph will be greatly modified by these RG rules.
In particular, lattices in two dimensions (which constitute the
graph “initial conditions” for the RG trajectories we are inter-
ested in) will lose their lattice character immediately. These
RG rules were first implemented numerically in Ref. [14]
on two-dimensional lattices, keeping track of the interaction
graph as the RG progresses. The log coupling distributions
P(ζ ), R(β ) broaden without bound and reach a scaling form
at criticality, thus establishing the existence of an IRFP in two
dimensions.

Since the RG is not on as firm analytical ground in two
dimensions as in one, it should be checked against unbiased
numerics, in particular against quantum Monte Carlo which
can be performed on this model without a sign problem.
The Monte Carlo numerics also shows an IRFP, with critical
exponents well within error bars compared to the RG [15,16].
Therefore we will take as given the existence of the IRFP and
rough values of its critical exponents.

We do not intend to provide a full review of SDRG studies
of the TFIM (see Refs. [9,10] for a guide to the SDRG litera-
ture on this and related systems) but would like to mention two
approaches to modified SDRG schemes which drop a number
of bonds produced by spin decimations and have strongly
influenced this work.

Kovács and Iglói in Refs. [17–19] determine a number of
rigorous truncations of the RG via which the creation of the
all-to-all cliques alluded to above can be avoided while leav-
ing the RG trajectory effectively unchanged (at long enough

TABLE I. Definitions of commonly used quantities.

� maxi j{Ji j, hi}, largest coupling
�0 � for bare Hamiltonian
� ln(�0/�), RG time
ζi j ln(�/Ji j ), log bond
βi ln(�/hi ), log transverse field
μi number of active spins in vertex i
ni degree of vertex i
P(ζ ) probability distribution of log bonds
R(β ) probability distribution of log fields
p(n) probability distribution of degrees
N number of remaining spins
ψ tunneling exponent, 〈β〉 ∼ 〈ζ 〉 ∝ N−ψ/d

d f fractal dimension exponent, 〈μ〉 ∝ N−d f /d

RG times). These truncations (along with other optimizations)
turn out to be extremely powerful and allow numerics on
systems with N ∼ 20002 spins. The effectiveness of these
truncations also implies that a great number of the bonds that
seem to make the graph look locally all-to-all are actually
irrelevant at the fixed point and need not be treated on an
equal footing with the other bonds. Of particular note is the
site decimation rule in Ref. [18], whose action is very similar
to ours. Our rule is simpler in comparison and makes some
analytical approximations possible, at the cost of rigor in
demonstrating that the truncation is irrelevant at the IRFP.

A less rigorous truncation was proposed in Ref. [20] by
Laumann et al. These authors preserve planarity of the graph
in a greedy manner: When a degree-n site is decimated, the
tentative new bonds are added from strongest to weakest until
one encounters a planarity-breaking bond, at which point one
ignores this bond and proceeds to the next strongest one,
until all n(n − 1)/2 bonds have been considered. This scheme
is correct in that it flows to an IRFP with the same critical
exponents and also speeds up numerics.

Most importantly, the success of these schemes lead one
to the geometrical principle that strong nonplanarity is not
present at the two-dimensional IRFP. This is a posteriori
natural, as planarity is the graph theoretic measure of two
dimensionality. Triangulations of the plane hold a special po-
sition among planar graphs as those in which the most bonds
are retained: We will define what this means presently.

Here we define the critical exponents of the IRFP, which
allows us to numerically check that we are at the correct fixed
point. IRFPs display so-called tunneling dynamical scaling
so that lengths scale as powers of logarithms of times or,
equivalently, logarithms of energies:

〈β〉 ∼ 〈ζ 〉 ∝ N−ψ/d , (7)

where N is the number of undecimated spins in the graph at
some RG time. This defines the tunneling dynamical critical
exponent ψ . We also measure a “fractal dimension” d f for the
spin clusters, defined as

〈μ〉 ∝ N−d f /d . (8)

Henceforth we will only work with d = 2. Definitions of
several of the quantities introduced above are summarized in
Table I.
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III. NUMERICAL RESULTS

A. RG rules

The two-dimensional RG rules discussed in the previous
section are of varying degrees of complexity in how many
bonds they effectively truncate and what families of graphs
they leave invariant. However, none of them seem amenable
to analytical treatment due to the way in which they mix
the geometrical and coupling subsets of the problem. To get
around this issue, we discuss an RG rule which maintains
planarity but is simpler in that it lends itself to a geometric
mean-field type of analysis.

One simple way to maintain planarity of a graph is to only
perform bond decimations, which contract edges of the graph.
Therefore we propose a rule for spin decimations which
looks, from the perspective of graph connectivity, exactly the
same as a bond decimation. If decimating a field on spin i,
then this involves redirecting all bonds in which i is involved
to one of its neighbors j (cf. Ref. [18]). In order to bias toward
keeping larger bonds, we choose j to be the spin bound most
strongly to i.

Bond decimation does not create more edges in the graph,
and does not break planarity, and we can implement it as
usual, merging the two spins connected by the decimated bond
and renormalizing the field on the cluster spin.

The decimation rules are illustrated in Fig. 2.
To summarize the rules for the triangular RG, if the

strongest term in the Hamiltonian is the bond Ji j , between
spins i and j, then do the following:

(1) For all k �= i adjacent to j remove Jjk and make bonds
between i and k of strength max(Jik, Jjk ) where the value of a
nonexistent bond is taken to be 0.

(2) Set the new field on i to hih j/Ji j .
(3) Remove Ji j and the spin j.
Instead, if the strongest term in the Hamiltonian is the field

hi on spin i, then do the following:
(1) Find j, the spin adjacent to i such that Ji j > Jik for all

k �= j also adjacent to i.
(2) Make bonds between j and k, for all k �= j adjacent to

i, of value max(Jjk, Ji jJik/hi ).
(3) Remove i and all bonds Jil .

It can also be seen that these decimations very nearly map
one triangulation of the plane to another. We will discuss
caveats to this statement, but the fixed-point geometry will
eventually be characterized as random planar triangulations
in our analysis.

For numerical implementation, storing the terms of the
Hamiltonian (fields and bonds) in a priority queue makes
retrieving the largest term efficient, and we pop terms from
the queue as they are decimated. When bonds are superseded
by stronger bonds formed, or a field is renormalized, we can
deactivate the old bond or field which is more efficient than
removal from the priority queue.

We implement the numerics on a triangular lattice with
periodic boundary conditions, so that the graph is planar
on a torus. We have additionally run numerics on a square
lattice to see that our results do not change: This will
be discussed later in the context of the relation between
renormalized lattice geometry and couplings. Throughout the
paper, numerical results are presented from a 500×500

lattice and averaged over 100 independent disorder
realizations.

B. Infinite-randomness scaling

In order to check the validity of our numerical RG at
criticality, we look for the existence of an infinite-randomness
critical point for some initial distribution of disorder. At infi-
nite randomness, P(ζ ) and R(β ) scale in the same way, as all
the energy scales in the problem flow together. However, in the
paramagnetic phase P(ζ ) broadens faster than R(β ), meaning
that the fields predominate at low energies. Conversely in the
ferromagnetic phase R(β ) broadens faster than P(ζ ). There-
fore one way to diagnose an IRFP is to measure the mean β

and ζ and find a distribution of initial couplings and fields
such that the ratio 〈β〉/〈ζ 〉 reaches a constant in the scaling
regime of the RG. Since R(β ) remains roughly exponential
throughout the RG and P(ζ ) develops a hump at nonzero ζ (as
shown in, e.g., Ref. [14]), we start with initial distributions of
this form to minimize transients (though without the essential
correlations among couplings and between the couplings and
the graph that develop during the RG).

Fixing R(β ) = e−β (i.e., exponential with unit mean) at the
start of the RG in all our numerics, we parametrize the initial ζ

distribution, similarly to Ref. [20], by P(ζ ) = 1
3 (a + bζ )e−cζ

and define the quantity m = b − ac, so that m/3 is the slope
of the distribution at ζ = 0 and a/3 is the intercept. The
one-parameter family of initial distributions that we use to
go through criticality is generated by fixing a and varying
m. The values of b and c are fixed in terms of a and m by
the definition m = b − ac and the normalization of P(ζ ); we
discuss the latter now. We use the normalization that for the
initial distribution of couplings,

∫
P(ζ )dζ = 1, in contrast to

previous work which defined
∫

P(ζ )dζ = 3, corresponding to
the number of bonds per spin in the originally triangular lattice
[20]. In our case, N

∫
P(ζ )dζ is equal to 1/3 times the number

of bonds in the lattice at all RG times, so that
∫

P(ζ )dζ � 1
for a planar graph (see Sec. III C). For the analytical work in
Sec. IV we will use

∫
P(ζ )dζ = 1 at all RG times.

Fixing a = 0.1 and varying m, we see in Fig. 3 that there
is a transition from 〈β〉 growing slower than 〈ζ 〉 to growing
faster, as m is increased. Infinite randomness is reached at the
point where both scale the same way, here roughly m = 0.205.
The fixed-point scaling forms of these distributions are seen in
Fig. 4. Since the SDRG is only asymptotically controlled, and
indeed since different SDRG schemes lead to the same fixed
point, the initial distributions that lead to the IRFP are not
universal objects. Different RG schemes will have different
initial transients which determine what initial conditions lead
to infinite randomness.

To further check the validity of the IRFP found by our
scheme, we measure the critical exponents ψ and d f , which
describe respectively the scaling of log energies with length
scale and the fractal dimension of the ferromagnetic clusters
(Fig. 5). There are numerous ways to fit the exponent ψ from
numerical data, since any measure of the width of P(ζ ) and
R(β ) should broaden as a power of N in the same way at
criticality. Using the scaling of 〈ζ 〉 and 〈β〉 with N , we find
ψ = 0.52 ± 0.04, while the scaling of 〈μ〉 with N gives d f =
1.06 ± 0.03 (Fig. 5). Alternatively, we can fit an exponential
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FIG. 3. Numerical sweep to find the critical point which flows to
infinite randomness. The ratio 〈β〉/〈ζ 〉 flows to 0 in the paramagnet
and ∞ in the ferromagnet. At criticality it flows to some nonzero
constant. For initial P(ζ ) = 1

3 (a + bζ )e−cζ and R(β ) = e−β , we fix
a = 0.1 and vary m = b − ac. Criticality is achieved for m = 0.205.
Data are averaged over 100 disorder realizations on a 500 × 500
triangular lattice.

form to R(β ) and extract the width this way (not illustrated), in
which case we obtain ψ = 0.44 ± 0.05, which is a less precise
estimate for ψ due to dependence on the range over which the
fit is performed. In both of these cases the error bars refer to
the variation in the critical exponents arising from different
realizations of disorder, drawn from the distributions at the
supposed critical point. These results for critical exponents
are in agreement (within uncertainties) with previous work
[14–17,20].

C. Geometrical observables

Having established that our triangular RG scheme indeed
leads to the IRFP of the (2 + 1)-dimensional TFIM, we can
proceed to extract geometrical information about the renor-
malized lattice that is illuminated by the parsimony of our
scheme.

The most basic feature of the graph is the distribution of
degrees p(n). Of particular interest is how this distribution
evolves as the lattice is renormalized. In Fig. 6 we see that,
starting from a 500 × 500 triangular lattice with an initial
p(n) = δn6 (all vertices of a triangular lattice have six neigh-
bors), p(n) broadens to near a steady-state distribution, after
decimating only two-thirds of the spins. Crucially, the steady
state is stable over orders of magnitude in N . This feature of
the dynamics of p(n) will be of critical importance in our un-
derstanding of the interplay between couplings and geometry
to be discussed later.

The mean degree of the vertices for a triangulation (of a
torus or an infinite plane) is 6. This follows from the Euler
characteristic F − E + V = 0 for the torus, the fact that the
mean degree is given by 〈n〉 = 2E/V , and the fact that each
vertex is shared by two faces on average in the triangulation,
F/V = 2. The latter observation follows because the sum of
interior angles in a triangle is π which accounts for half of
a vertex. Combining these yields 〈n〉 = 6. For a finite graph

on a plane there will be corrections to this answer, but they
approach zero in the limit of big V , i.e., big N .

Notice that a finite toroidal graph with mean degree 〈n〉 =
6 must be a triangulation since any other toroidal graph will
have faces which are larger polygons and thus may be trian-
gulated by the insertion of additional bonds. Therefore any
nontriangulating toroidal graph has smaller mean degree as
we can add edges without adding vertices to reach a triangula-
tion. This demonstrates that any deviation from a mean degree
of 6 is equivalent to a fluctuation away from triangulations.

One subtle feature of the triangular RG rule is that it does
not perfectly preserve triangulations of the plane (or torus).
As shown in Fig. 7 we can perform a decimation starting
from a triangulation, which leads to a nontriangulation. These
nontriangulations are universally associated with spins which
we call danglers. Danglers are produced whenever we con-
tract an edge (via either site or bond decimation) whose two
endpoints have more than two spins as common neighbors. A
dangler-producing decimation makes the mean degree of the
graph drop below 6.

In the triangular RG the production of these danglers is
very rare, as we have measured by looking at the mean degree
of spins in the lattice, which never drops below 5.8 (Fig. 6).
We also see p(n) is small but nonzero at n = 1 and 2, which
must come from danglers, as these degrees do not exist in a
triangulation of a torus. Therefore, while the triangular RG
rule does not perfectly maintain triangulations, as a practical
matter the violation is very small. This property provides an
important window into the correlations inherent in the RG
and can be understood via its tendency to decimate spins of
lower degree, which we discuss in Sec. IV and Appendix A.
In addition, starting from a square lattice with mean degree 4,
one observes a steady increase in the mean degree toward 6,
which is the largest possible mean degree for planar maps and
is achieved only for triangulations.

Let us now discuss the justification of our choice of RG
truncation. Ultimately, the triangular RG is justified because
it leads to the correct IRFP; to wit, an IRFP with universal
data that is in agreement with previous work. More qualita-
tively, the geometry and behavior of the couplings conspire to
keep the RG well controlled, as we discuss here.

The proximity of the mean degree to 6, as shown in
Fig. 6, provides support for the notion that characterizing
our fixed-point geometry as random triangulations is a viable
approximation. Additionally, the distribution of degrees does
not broaden significantly despite the possibility that, for in-
stance, the variance could be unbounded: The tail at large n
decays faster than exponentially. These features imply that the
geometric part of the triangular RG is consistent, so we may
use it as a stable foundation to understand the coupling part of
the triangular RG.

One way to measure the error of approximation in ignoring
the nonplanar couplings is to look at how small the bonds
we neglect are. When we decimate a spin h of degree n we
take bonds J1 > J2 > . . . > Jn and replace them with bonds
J1J2/h, J1J3/h, . . . J1Jn/h and so the strongest neglected bond
is J2J3/h. If this bond is weaker than the bonds we do include,
then this lends some credence to the approximation.

This motivates the following definition for the average
number of bonds which can be added before we neglect a bond
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FIG. 4. Scaling forms at criticality (a = 0.1 and m = 0.205) for distributions of couplings along the flow to infinite randomness, visualized
by plotting the distributions of ζ and β, respectively, normalized by their mean values. These reach a constant shape in the scaling regime of
the RG.

stronger than one we are adding,

tcutoff(n) = E[max{i|J1Ji � J2J3, i � n}], (9)

where n is the degree of the spin under consideration and Ji

are the ordered bonds attached to that spin which are drawn
independently at random from the distribution over couplings.
Despite the fact that the couplings are in general correlated
this quantity will give a sense for why the triangular RG is
sufficient instead of a more complicated scheme. We find,
for ζ distributed according to either an exponential or the
numerically observed fixed-point P(ζ ), that tcutoff(6) ≈ 4.5,
with a very slow upward trend as n increases above 6. Con-
sidering that decimating a spin of degree 6 usually requires us
to generate only three new bonds, we see that typically we do
not add the bonds out of order. As the distribution of degrees
sharply decays for n > 6, we rarely decimate spins of very
large degree, which is the setting in which the triangular RG
could make large errors, namely when tcutoff becomes small
compared to the number of bonds generated.

D. Two-stage nature of the triangular RG

The results presented thus far constitute the majority of our
numerics in the triangular RG; some further comments on

correlations, particularly those between degrees and cou-
plings, may be found in Appendix A, which also contains
simulations of the flow of geometry under random dec-
imations (divorced from the Ising couplings which have
determined the flow of geometry here). We now discuss the
structure of the triangular RG which we will substantiate with
analytical toy models in the next section.

Figure 8 summarizes the most pertinent results. The two
panels plot the width of the log field distribution R(β ),
measured by 〈β〉, and the standard deviation of the degree
distribution p(n), which we call σn, versus N through the
RG. We interpret the RG as being composed of two stages,
the crossover between which is delineated in Fig. 8 by the
dotted line at N = 104. This crossover is the point at which the
geometrical distribution [of which p(n) is the most important
representative] has saturated and does not change for later RG
times, i.e., smaller values of N .

We start with a distribution R(β ) = e−β , so that 〈β〉 = 1,
and a triangular lattice which has p(n) = δn6 and thus σn = 0.
As the RG goes on, both distributions broaden, but approach
long-time limits of somewhat different characters. After some
RG time, σn asymptotes to a constant. We have already com-
mented on the evolution of p(n): We know that it saturates to
a distribution with width of order 1 and quickly decaying at

102103104105
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FIG. 5. Numerical extraction of critical exponents characterizing the IRFP. The exponents ψ and df are defined by 〈β〉, 〈ζ 〉 ∼ N−ψ/d

and 〈μ〉 ∼ N−d f /d , with d = 2. Fitting power laws to our numerics after an initial transient (at the presumed critical point) gives values of
ψ = 0.52 ± 0.04, df = 1.06 ± 0.03.
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FIG. 6. Distribution of spin degrees and mean degree in the interaction graph for various RG times, at criticality. On the left the distribution
p(n) is seen to reach a steady state. The vertical dashed line is at n = 6. The light blue dots show a Poisson distribution, with slight modifications
defined in Appendix B, and the dashed black line shows the modulated Gaussian envelope from Eq. (13), plotted for n � 1. On the right is
the mean degree of the graph over RG time, which goes below 6 due to dangler production, but increases again (thus allowing us to neglect
danglers) at late RG times.

large n, and indeed we used these facts to rationalize the ef-
fectiveness of the triangular RG. The β distribution broadens
to infinite randomness and enters its scaling regime only after
σn has stabilized.

The first stage of the RG, therefore, may be seen as a purely
geometrical process in which p(n) approaches its steady-state
form. During this stage of the RG the evolution of the coupling
distributions may as well be ignored, although there is a caveat
due to geometry-coupling correlations: As we will show in
Sec. IV, if there were no correlations between the geometry
and the couplings, then a steady state p(n) of the form we
observe would not result. We will show this by comparing toy
models with and without these correlations present; also see
Appendix A.

In the second stage of the RG, while the graph of course
changes, we conjecture that it belongs to an invariant ensem-
ble of graphs, represented by the steady state p(n) (and in
principle more complicated graph data which we will ignore
for simplicity), and flows “ergodically” through it. Now the
couplings flow on top of this fixed-point graph ensemble and
quickly approach infinite-randomness scaling. It is natural that
infinite-randomness scaling for couplings appears only after
the geometry has saturated: It is the geometry which gov-

FIG. 7. An illustration of a decimation that produces a “dangler.”
Our decimation scheme is not guaranteed to preserve triangulations
of the plane. In the event that a bond is contracted for which the
endpoints share more than two spins in common, a dangling spin
(in blue here)—more generally a dangling group of spins—will be
generated. This is tantamount to a face with size bigger than 3 (here
4) which makes the mean degree of the graph drop below 6.

erns the frequencies of the various decimation processes that
broaden the coupling distributions. Also, coupling-geometry
correlations have evolved and saturated so that the steady state
p(n) can be maintained.

Finally, note in the second panel of Fig. 6 that in the second
stage of the RG the mean degree, which had at early RG times
dropped to 〈n〉 ≈ 5.8 due to dangler production, increases
towards 6 again. This is rather striking since it signals a
tendency of the scaling regime (with all correlations present)
to correct for nontriangulations in a self-consistent manner
and provides further evidence that thinking of the fixed-point
geometry of this RG as triangulations is accurate.

IV. ANALYTICAL MODELS

Having outlined our understanding of the two stages of
the triangular RG as seen in the numerics, we now discuss
analytical models for both stages, which result in fixed points
for the degree distribution and the coupling distributions,

100

2 × 100
3 × 100
4 × 100
6 × 100

〈β
〉

102103104105

N

0
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2

σ
n

FIG. 8. Numerical observations summarizing the two-stage na-
ture of the triangular RG. The first stage mainly consists of the
renormalization of the lattice, seen through the broadening of p(n)
from the initial p(n) = δn6 for a triangular lattice, and concomitant
increase in σn, the standard deviation of p(n). After the dashed
vertical line, with σn close to constant, the RG approaches the
infinite-randomness scaling regime, with 〈β〉 scaling as N−ψ/d .
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respectively. These agree with the numerical observations
qualitatively and, for analytically computed critical expo-
nents, approximately quantitatively.

A. Geometrical steady state

We discuss the mechanism by which the distribution of
degrees p(n) changes as a function of RG time, and a toy
model including coupling-geometry correlations which repro-
duces the correct form of the steady state p(n) observed in the
numerics.

Whenever a decimation (either site or bond decimation—as
we have seen, their actions on the graph are identical) takes a
triangulation to a triangulation, the changes that are effected
on the list of degrees are as follows: The spins on either side
of the edge that is contracted are joined up to create a new
spin of bigger degree: If the two degrees were n1 and n2, then
the new degree is n1 + n2 − 4. The two spins that were both
neighbors with the two spins thus joined, say, with degrees
n3 and n4, are now each joined to one new spin, and so their
degrees go to n3 − 1 and n4 − 1. If the mean degree before
the decimation was (

∑N−4
I nI + n1 + n2 + n3 + n4)/N = 6,

then the new mean degree is (
∑N−4

I nI + n1 + n2 − 4 + n3 −
1 + n4 − 1)/(N − 1), which is also 6, as required by the fact
that graph remains a planar triangulation. This exercise also
shows exactly how danglers are produced: If the edge being
contracted had more than two common neighbors, then the
mean degree would drop below 6. Therefore, since the graph
is still planar, it must have at least one face of size bigger than
3.

Let us decompose this into two processes. The first is a
shift in the denominator by −1 without changing the nu-
merator, which may be seen as the bunching up of spins
with no consideration of bonds. This produces a change in
the mean degree of δ〈n〉 ≈ 〈n〉/N . The second is a shift in
the numerator, which models the removal of double-counted
bonds without changing the number of spins; this changes the
mean by δ〈n〉 ≈ −6/N . These contributions add up to zero if
and only if 〈n〉 = 6.

Now we generalize the coefficients of these equations (al-
lowing n to be continuous) to

δ〈n〉 = α+〈n〉 − α−. (10)

We can consider similar evolution equations for general mo-
ments 〈nm〉, m = 1, 2, 3, . . . : The easiest way to control this
calculation is through a further simplification: Subtract α−/N
off the degrees of all N spins in the numerator rather than O(1)
amounts off an O(1) number of spins.

These manipulations lead us to

δ〈nm〉 = α+〈nm〉 − α−m〈nm−1〉. (11)

These equations have built in a further approximation—which
is incorrect and will need to be amended—namely that all
spins are equally likely to be involved in a decimation; in other
words, they are equally likely to be involved in the numerator
subtraction which yields the term proportional to α−.

To find the steady state, we impose that all mo-
ments are unchanged by a decimation, δ〈nm〉 = 0. We find
〈n〉 = α−/α+, which we set equal to 6, and for m�2,

〈nm〉=6m〈nm−1〉=6mm!. The distribution that has these mo-
ments is the exponential, p(n) = 1

6 e−n/6.
This explains why the correlationless geometrical RG nu-

merics of Appendix A—where decimations are performed
randomly on a given graph with no couplings present
to provide a measure as a function of degree on these
decimations—sees an exponential p(n). The comparison is
subtle since that RG also produces a lot of danglers. It is easy
to see, however, that the abundance of danglers is linked with
the abundance of small degrees in the triangulation, which in
turn is linked with p(n) being monotonically decreasing.

Since we understand which correlations generate the differ-
ence between the answer above and the numerically observed
one, we can build this physics into our model. As we have
mentioned above and numerically verify in Appendix A, spins
with small degrees are more likely to be involved in decima-
tions since they typically host larger h’s and are adjacent to
larger J’s. Let us therefore carry out degree subtractions at
degree n with weights wn. The spin-joining events that scale
moments by α+ are agnostic to which spins were involved,
since they only change the denominator. Thus we write

δ〈nm〉 = α+〈nm〉 − α−m〈nm−1wn〉. (12)

We solved the version of this equation with all wn = 1 but
would now like wn to decrease with increasing n. The correct
choice of wn can in principle be obtained from measurements
in the fully correlated RG; here we consider the simplest solv-
able choice wn = 1/n. We have for the steady state 〈nm〉 =
m(α−/α+)〈nm−2〉. Fixing 〈n〉 = 6, we see that the recursion is
satisfied by

p(n) = 1

α−/α+
n exp

(
− n2

2α−/α+

)
, (13)

where α−/α+ = 72/π .
This distribution has a hump, and its decay at large n is

stronger than exponential. Both of these features agree with
the p(n) observed in the numerical RG (with all correlations
present), as can be seen in Fig. 6. It also agrees with the
geometrical RG of Appendix A where spin decimations are
repeatedly attempted on a graph but a given decimation is
“accepted” with probability 1/n.

The weight wn = 1/n is not meant to be an accurate rep-
resentation of the actual measure on decimations in the RG
that retains all correlations; it is simply a solvable example
that reproduces the most salient features of the numerically
observed p(n). Tweaking wn one can of course get better
quantitative agreement.

Having understood the effect of geometry-coupling corre-
lations on the geometry, we may fix the geometric background
and study the infinite-randomness flow of coupling distribu-
tions of Hamiltonians living on this steady-state geometry.

B. Correlationless flow of couplings

Once the geometry—for which the degree distribution p(n)
is a coarse proxy—has reached its steady state, the distribu-
tions of log couplings P(ζ ) and R(β ) continue to broaden
and indeed approach infinite-randomness scaling, as defined
in Sec. III. We shall now describe a toy model in which
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this broadening of distributions, and their approximate scaling
forms, can be seen explicitly.

The model takes as input a steady-state degree distribution
p(n) and describes the broadening of P(ζ ) and R(β ) under
the triangulation RG rules through RG equations similar to
Fisher’s [13] but with added complexity due to the removal
and production of many bonds when a spin is decimated.

The most crucial approximation here is the truncation of
all correlations among the couplings and most correlations
between the couplings and the geometry. For example, on a
decimation that produces bonds with strengths ζ1 + ζ2 and
ζ1 + ζ3, which are correlated, our equations will in fact make
new independently distributed bonds corresponding to ran-
dom variables with the same marginal distributions as ζ1 + ζ2

and ζ1 + ζ3. We therefore also never have to think about the
possibility of strong transverse fields having strong bonds next
to them and other correlations which in principle exist at the
fixed point (see Appendix A for further discussion). As we
have discussed above, coupling-geometry correlations, such
as the fact that spins with smaller degrees carry larger trans-
verse fields, are known to be essential in order to maintain
the steady state p(n) in the first place. These correlations are
implicitly taken into account by not changing p(n) during
the flow. However, we do not actually compute a flow of
couplings including correlations with n. With these trunca-
tions, the only aspect of the geometry that appears in the RG
equations is in fact p(n), as this governs the number of bonds
destroyed/created when spin decimations take place.

The other simplification we have made concerns cases in
which newly produced bonds already exist in the graph. The
numerical RG step uses the bigger of the new and old bonds
and entirely discards the smaller one (Fig. 2). However, our
RG equations will model a process in which the old bond is
always replaced by the new one, regardless of whether the
new bond is stronger or weaker. We have no way to justify
this approximation other than that it makes the system more
analytically tractable.

With all of these caveats in place, the RG equations are

∂P

∂�
= ∂P

∂ζ
+ R0

3

∑
n

p(n)

×
[
−(n + 2)P +

n∑
i=2

∫ ζ

0
dζ1P(n)

1i (ζ1, ζ − ζ1)

]

+ (P0 + R0)P, (14)

∂R

∂�
= ∂R

∂β
+ 3P0

∫ β

0
dβ1 R(β1)R(β − β1)

+ (−3P0 + R0)R. (15)

The factors of 3 come from the fact that there are three bonds
per spin in a triangulation, i.e., the average degree is 6, and
that we use the normalization

∫
dζP(ζ ) = 1. We provide a

careful derivation of the above equations in Appendix B.
Equation (15) is identical in form to its one-dimensional

analog, (5), reflecting the identical ways in which the distri-
bution of transverse fields is modified; compare Figs. 1 and
2. Eq. (14), on the other hand, differs from (4). The term that
destroys and creates bonds during a spin decimation has the
following structure: First, the spin will have degree n with

probability p(n), so we must sum over all n with weights p(n).
If the decimated spin has degree n, then we destroy n + 2
bonds: The n bonds connected to the spin and also two that
are the sides of the polygon connected to J1 (JL and JR in
Fig. 2). Then we create n − 1 bonds with log strengths equal
to ζ1 + ζi, i ∈ {2, 3, . . . , n}. The joint distributions of ζ1 and
ζi (the so-called order statistics of P) are P(n)

1i (ζ1, ζi ) and their
explicit form is given in Appendix B.

With a certain p(n) (similar to Poisson) that approximates
the numerically observed degree distribution (see Fig. 6),
progress on solving these equations can be made analytically.
Indeed, we employ a scaling ansatz with variational parame-
ters whose optimal values yield distributions that agree with
numerical observations. For more details, see Appendix B.

The upshot is that this simple model contains an IRFP (and
flows of the paramagnetic and ferromagnetic sorts on the two
sides—these are not discussed here) with critical exponents
ψ ≈ 0.6 and d f ≈ 1.3, relatively close to the critical expo-
nents observed in the numerics. We should not make too much
of this numerical agreement, however: As we relax the various
violent approximations that went into the model, the numer-
ical estimate for the critical exponents will get better, but
there is no reason to believe that the approach to the correct
critical exponents will be monotonic. We do not know how to
make analytical progress beyond this simplest correlationless
model.

V. DISCUSSION

Using a truncation of RG rules that simplifies the geometry
of the problem, we have studied the structure of the infinite-
randomness fixed point of the critical (2 + 1)-dimensional
transverse-field Ising model. We now discuss several open
questions and speculate about possible answers.

First, we are naturally interested in an extension of our
analytical results to more complicated models where the evo-
lution of some geometry-coupling correlations can be kept
track of explicitly with joint distributions such as R(β, n) for
log field β on a spin of degree n. An even simpler extension
of our work would at least keep track of a set of expectation
values such as 〈βini〉: It would be desirable to find a set of
quantities such that their evolutions can be solved for self-
consistently, without the need for putting in correlations (such
as nontrivial wn) by hand. We have been unable to do this for
the TFIM. On the other hand, such an approach is unlikely to
be able to find the full scaling forms of P(ζ ) and R(β ).

It is natural to ask whether TFIM in higher spatial di-
mensions hosts infinite-randomness fixed points. The answer
from numerical SDRG seems to be affirmative [14,18], and
the critical exponents are apparently different from the two-
dimensional case. We believe that a three-dimensional RG
truncation, which would perhaps be best interpreted approx-
imately as tetrahedra that “tile” three-dimensional space, is
the appropriate way of attacking this problem. (In spatial di-
mensions bigger than 4, disorder is not perturbatively relevant
at the clean critical point [1], so while it is still possible, and
numerically plausible [18], that an IRFP is hosted in large spa-
tial dimensions, in this scenario the true RG flow would have
a much more complicated form than in lower dimensions,

064201-10



RANDOM GEOMETRY AT AN INFINITE-RANDOMNESS … PHYSICAL REVIEW B 108, 064201 (2023)

and the one-parameter cartoon of the flow being characterized
simply by the disorder strength could fail drastically.)

There are models for which the initial graphs are not lat-
tices where the full (second-order perturbation theory) RG
rule nevertheless generates a class of graphs that are closed
under the RG. For example, site decimations on a tree will
immediately generate loops, but the graph thus generated (and
all graphs that can be generated by further site/bond deci-
mations) will be composed of all-to-all clusters (“simplices”)
arranged in a corner-sharing fashion such that if each simplex
is regarded as a big vertex, there are no loops joining these big
vertices up. These simplicial trees may well host IRFPs and
would be one way to think about possible IRFPs for the TFIM
on a tree (for different approaches see, e.g., Refs. [21–24]).
However, the geometrical problem here is richer than in our
study of the lattice with triangular truncation, since in the
absence of truncations the geometrical and coupling distri-
butions grow infinitely broad together—there is no two-stage
simplification—and geometry-coupling correlations are ex-
pected to be extremely important. We leave the study of these
more complicated IRFPs for future work.

The connection of this work to experiment is tenuous,
given that local moments in lightly doped semiconductors
are not in an Ising limit and certainly have no reason to
be tuned near criticality. The more relevant problem will
have Heisenberg exchange with big randomness. For a large
range of energies SDRG reasoning yields excellent agreement
with experiments, but it is expected that the eventual fixed
point actually has a finite-randomness character (e.g., with
conventional finite-z scaling) [3,5,25]. What geometrical prin-
ciples might govern these finite-randomness fixed points is
unknown: Certainly truncations of the sort we have done can
lead to spurious IRFPs as they drop bonds that would make
the coupling distribution less broad than the truncated one.
Besides, as we have stressed, SDRG is ultimately uncontrolled
if the fixed point it reaches is not at infinite randomness,
so it would be desirable to formulate RG schemes that are
asymptotically exact with a finite disorder distribution.

Finally, while our perspective on the low-energy sector of
gapless theories with quenched randomness is via the calcula-
tional power afforded by RG, one would eventually like to find
kinematic principles that govern the fixed point, in analogy
to the role conformal field theory plays at critical points in
clean statistical mechanics. Recent work has aimed at starting
to understand such a framework using tools from the physics
of topological phases [26,27], but a general theory, including
a connection to SDRG, remains an open issue.
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APPENDIX A: GEOMETRICAL RG AND CORRELATIONS

1. Correlationless geometrical RG

One feature of the SDRG in two dimensions which is not
present in one dimension is the development of correlations
between couplings generated by second-order perturbation
theory (e.g., multiple bonds can be generated involving the
same decimated bond) and between couplings and geometry.
However, we can imagine a simplified RG which essentially
divorces the two processes of lattice renormalization and
coupling renormalization, following our understanding of the
actual RG as a two-step process. In this simplified RG we
only study the lattice geometry, leaving the bonds and fields
untracked.

Without the backing of fields and bond strengths, we
supply our own rules on how to choose vertices/edges for
decimation with the aim of understanding the behavior of the
full SDRG. Note that in the triangular RG the operations of
spin and bond decimation act identically with respect to graph
geometry, as both operations correspond to the contraction of
an edge. Therefore specifying a distribution over edges would
specify a measure for decimations in this geometrical RG.
We induce a measure over edges by the following procedure:
Pick a remaining vertex according to a specified measure on
vertices (discussed below), and uniformly at random choose a
bond next to it.

The simplest choice for the aforementioned measure on
vertices is uniform. One might expect that this RG has a very
different character than the fully correlated RG. Indeed, we
see that it is much more likely to produce danglers, and as
a result the mean degree drops precipitously over the course
of the RG, as we can see in Fig. 9. Relatedly, the degree
distribution p(n) is a monotonically decreasing function of
n, in contrast with the observed p(n) in the RG with cor-
relations. This big departure from the correct distribution
signals that this procedure neglects important correlations;
we now discuss how to build these into the geometrical
RG.

2. Correlations

To understand how likely any vertex or edge is to be chosen
we must understand how likely it is for the largest field or
bond (in the actual triangular RG with couplings) to reside
on it. The simplest local quantity these probabilities could
depend on is the degree of the vertex or of the vertices adjacent
to that edge. The simplest type of correlation which would
generate a nonuniform distribution of decimations over the
graph would therefore be a correlation between the transverse
field and degree of a spin or between the strength of a bond
and the degrees of the spins at the ends thereof.

We calculated the connected correlations
〈βini〉c/(〈βi〉〈ni〉), 〈ζi jni〉c/(〈ζi j〉〈ni〉), 〈ζi jβi〉c/(〈ζi j〉〈βi〉),
and 〈ζi jζik〉c/(〈ζi j〉〈ζik〉) and found that they are positive and
of order 1. The dynamics of some important correlations
over the RG flow are shown in Fig. 10. These imply that
spins with larger degrees are more likely to have larger β’s
on them and therefore smaller fields. Similarly, bonds whose
adjacent spins have large degrees are more likely to have
small couplings on them. From a dynamical perspective this
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FIG. 9. Degree distribution (left) and mean degree (right) for various RG times in a purely geometrical RG. The decimation rule repeatedly
picks spins uniformly at random and contracts random edges next to them; couplings on the graph are immaterial. The initial graph is a
500 × 500 triangular lattice. Notice that the average degree drops over the course of the RG, and, correspondingly, the distribution of degrees
approaches an exponential-like distribution.

makes sense since decimation simultaneously increases the
degree of some spins and also leads to smaller fields on
them or smaller bonds attached to them. We can also see

that these correlations are developed quickly as the geometry
changes in stage 1 of the RG and then remain relatively
constant afterwards. This shows that the separation of the RG

FIG. 10. The development of correlations during the triangular RG. Each of the connected correlations is normalized by dividing by the
means of the random variables in the correlation. The top left shows the correlation between the degree of a spin and the log field present on
that site, the top right shows the correlation between the degree of a spin and the value of a log bond attached to that site, the bottom left shows
the correlation between a log field on a site and the log bonds attached to it, and the bottom right shows the correlation between two different
( j �= k) log bonds attached to the same site. As in our other numerics we start with a 500 × 500 triangular lattice.
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FIG. 11. Comparison at two different RG times between p(n), the distribution of all degrees, and p×(n), the distribution of degrees of
spins decimated between the current N and the next recorded N . Though initially (when N is large) spins are decimated with frequencies
uncorrelated with their degrees, the correlations that build up between fields and geometry eventually cause low-degree spins to be decimated
more than high-degree spins.

into two stages is self-consistent; in stage 2 of the RG these
steady-state correlations maintain the steady-state geometry,
as we have outlined in Sec. IV.

Another basic measure of correlations between geometry
and couplings is to look at how the distribution of decimated
spin degrees p×(n) differs from the overall p(n). In Fig. 11
we see that although in the initial RG stages the two are
similar (since correlations have had no time to develop), in
the later stages they show a pronounced difference, with the
distribution of decimated spins p×(n) having a preference for
spins with lower degree, indicating again that n and β for a
spin are positively correlated.

3. Correlated geometrical RG

We will take a simple physically motivated way of mim-
icking these observed correlations in the geometrical RG, in

the hope that this brings us closer to the real two-dimensional
fixed point. In order to select an edge to be contracted, we
pick a spin i with probability proportional to 1/ni (where
ni is the degree of spin i) and contract a random edge
connected to it. This captures the phenomenon that higher-
degree spins have weaker transverse fields and are adjacent to
weaker bonds and are therefore less likely to be involved in a
decimation.

After running this geometrical RG we obtain a steady
state p(n) that is similar to what is seen in the correlated
RG, as demonstrated in Fig. 12. Importantly the mean degree
does not drop much below 6 which shows that the number
of danglers being produced is very small, in line with the
triangular RG. This qualitative agreement is evidence that
the mechanism explained above is the one which produces
the degree distribution in the scaling regime of the triangular
RG.

APPENDIX B: CORRELATIONLESS RG EQUATIONS FOR COUPLINGS

In this Appendix we provide details concerning the solution of Eqs. (14) and (15), reproduced here:

∂P

∂�
= ∂P

∂ζ
+ R0

3

∑
n

p(n)

[
−(n + 2)P +

n∑
i=2

∫ ζ

0
dζ1P(n)

1i (ζ1, ζ − ζ1)

]
+ (P0 + R0)P, (B1)

∂R

∂�
= ∂R

∂β
+ 3P0

∫ β

0
dβ1 R(β1)R(β − β1) + (−3P0 + R0)R. (B2)

Here P(n)
1i is the joint distribution of the smallest and ith smallest variables when n variables are independently drawn from

the distribution P. Explicitly it is given by

P(n)
1i (ζ1, ζi ) = (ζi − ζ1)

n!

(i − 2)!(n − i)!
P(ζ1)P(ζi )[C(ζi) − C(ζ1)]i−2[1 − C(ζi )]

n−i, (B3)

where C is the cumulative distribution of P given by C(ζ ) = ∫ ζ

0 dζ ′ P(ζ ′). We shall normalize
∫ ∞

0 P(ζ )dζ = ∫ ∞
0 R(β )dβ = 1

at all RG times.

1. Derivation

Let us say the number of spins with log strength between β and β + dβ is S(β )dβ, so that S(β ) = NR(β ). The analogous
quantity for bonds is B(ζ ) = 3NP(ζ ), since the number of bonds is 3N . We will find the evolution under RG of the functions
B and S and translate these to equations for R and P, respectively. When b bond decimations take place, the bond distribution

064201-13



PANDEY, MAHADEVAN, AND COWSIK PHYSICAL REVIEW B 108, 064201 (2023)

0 5 10 15 20 25
degree n

10−6

10−5

10−4

10−3

10−2

10−1
p(

n
)

N
105556
44568
18818
7946
3355

1417
599
253
107

102103104105

N

5.86

5.88

5.90

5.92

5.94

5.96

5.98

6.00

〈n
〉

FIG. 12. Degree distribution (left) and mean degree (right) for various RG times in a geometrical RG which mimics some geometry-
coupling correlations. The decimation rule repeatedly picks a spin with probability proportional to the inverse degree and decimates a random
edge adjacent to it. The blue line is the result of the analytical model with wn = 1/n from Eq. (13), and the black dotted line is p(n) from the
fully correlated triangular RG at N = 1417 (as in Fig. 6). The mean degree drops slightly below 6 and saturates.

evolves as

δBb = b

B0

∂B

∂ζ
− 2bP. (B4)

The first term comes from the redefinition of ζ because the cutoff of the distribution is at a lower bare energy. The second
term comes from the two additional bonds that are destroyed when a bond decimation occurs (within triangulations). The site
distribution evolves as

δSb = −2bR + b
∫

dβ1R(β1)R(β − β1), (B5)

since every bond decimation destroys two log transverse fields and replaces them with their sum.
If s site decimations are performed, then we similarly have

δSs = s

S0

∂S

∂β
(B6)

and

δBs = s
∑

n

p(n)

[
−(n + 2)P +

n∑
i=2

∫ ζ

0
dζ1P(n)

1i (ζ1, ζ − ζ1)

]
.

(B7)

Note that δS = δ(NR) ≈ NδR + RδN = NδR − (s + b)R. Similarly, δB = 3NδP − 3(s + b)P, so that

δP = 1

3N
[δBs + δBb + 3(s + b)P],

δR = 1

N
[δSs + δSb + (s + b)R]. (B8)

When the RG integrates out the log energy interval δ�, the number of spin decimations is s = S0δ� = NR0δ� and the number
of bond decimations is b = B0δ� = 3NP0δ�. Plugging these into Eq. (B8) we obtain Eqs. (B1) and (B2).

2. Scaling solution

Given that we are looking for an IRFP, and we expect log energies to broaden in proportion to RG time �, we change variables
to z = ζ/�, y = β/� and attempt scaling solutions

P(ζ ) = 1

�
�

(
ζ

�

)
, R(β ) = 1

�
ρ

(
β

�

)
(B9)

to get the equivalent equations

−� − z�′ = �′ − nρ0

3
� + ρ0

3

∑
n

p(n)
n∑

i=2

∫ z

0
dz1 �

(n)
1i (z1, z − z1) +

(
�0 + ρ0

3

)
�, (B10)
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and

−ρ − yρ ′ = ρ ′ + 3�0

∫ y

0
dy1 ρ(y1)ρ(y − y1) + (−3�0 + ρ0)ρ. (B11)

where �
(n)
1i is defined in analogy to P(n)

1i using �(z) instead of P(ζ ), and n ≡ 〈n〉 = ∑
n[np(n)].

The RG numerics prompts us to try as a solution to Eq. (B11) an exponential distribution ρ = ρ0e−yρ0 . Doing this yields
�0 = 1/3, regardless of ρ0. We can turn our attention to Eq. (B10) for �, with the constraint that �(0) = 1/3.

First note that the integral is from 0 to z and therefore must vanish at z = 0. This fixes

ρ0 = 9�′(0) + 4

n − 1
. (B12)

3. Poisson degree distribution

With a suitable p(n) it is possible to use the form of the joint distribution of order statistics in Eq. (B3) to do the sum over
n in Eq. (B10) explicitly.1 Consider the distribution p(n) = e−λλn/n!. This is in fact a remarkably good approximation to the
numerically observed p(n): See the green dotted curve in Fig. 6.

First, write

�
(n)
1i (z1, z − z1) = (z − 2z1)

n!

(i − 2)!(n − i)!
�(z1)�(z − z1)[C(z − z1) − C(z1)]i−2[1 − C(z − z1)]n−i (B13)

[where C(z) = ∫ z
0 dz1�(z1)] as

�
(n)
1i (z1, z − z1) = �1�2

n!

(i − 2)!(n − i)!
Ai−2Bn−i, (B14)

noting in particular that none of the bundled-up objects here have n or i dependence. Now take the quantity
∞∑

n=2

e−λ λn

n!

n∑
i=2

∫ z

0
dz1 �1�2

n!

(i − 2)!(n − i)!
Ai−2Bn−i (B15)

and reverse the order of sums, taking the integral all the way out, to get

e−λ

∫ z

0
dz1 �1�2

∞∑
i=2

∞∑
n=i

λi

(i − 2)!
Ai−2 λn−i

(n − i)!
Bn−i. (B16)

The n sum is trivially eλB and we are left with

e−λ

∫ z

0
dz1 �1�2eλB

∞∑
i=2

λ2 λi−2

(i − 2)!
Ai−2. (B17)

After doing another exponential sum, we finally have

e−λλ2
∫ z

0
dz1 �1�2eλ(B+A) = λ2

∫ z/2

0
dz1 �(z1)�(z − z1)e−λC(z1 ). (B18)

Let us make a couple of simple changes. First, since the Poisson distribution is normalized so as to have support on 0, 1, 2, . . . ,
but the n sum starts at 2, we should change the normalization by a factor of 1/[1 − e−λ(1 + λ)]. Also, since n = λ holds for the
distribution that has support at n = 0 and 1, this should also be modified to

n = λ
1 − e−λ

1 − e−λ(1 + λ)
. (B19)

(For the physically relevant case of n = 6 these modifications are minuscule.) Thus Eq. (B10) becomes

[−4 + ρ0(n − 1)]� − 3(z + 1)�′

ρ0
= λ2

1 − e−λ(1 + λ)

∫ z/2

0
dz1 �(z1)�(z − z1)e−λC(z1 ). (B20)

We will take n = 6 henceforth.
It is worth stressing that this degree distribution does not represent the steady state of any decimation process on graphs that

we know of and has been chosen simply to make analytical progress. In fact, it cannot even quite be a degree distribution for
a triangulation since it has support on n = 2. Nevertheless, the fact that it agrees with the degree distribution in the numerical
RG means that using it was sensible at the level of our approximation, which cannot make use of information about the graph
ensemble beyond p(n) anyway.

1We thank Nicholas O’Dea for pointing this trick out.
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FIG. 13. Error in the solution of Eq. (B20) versus the value of ρ0, both evaluated by varying c1 and c2 through [0.0,3.0]. The error

is evaluated as
√∑

z∈{0,�z,2�z...,zmax}[L(z) − R(z)]2, where L(z) and R(z) are respectively the left- and right-hand sides of Eq. (B20) and

zmax = 3 = 20 × �z.

4. Ansatz

Inspired by the shape of the fixed point P(ζ ) we see in the numerics, we attempt the ansatz

�(z) = (
1
3 + c1z + c2z2)e−γ z, (B21)

where γ is fixed in terms of c1 and c2 by normalization.
Also recall that demanding that the equation be satisfied at z = 0 fixes ρ0 in terms of the parameters c1 and c2 which appear

in �(z) [Eq. (B12)]. Thus we have two parameters which can be varied to look for the best approximation for a solution to
Eq. (B20). We did this and discovered that the error—defined by the norm of a vector of differences between the two sides of
Eq. (B20) sampled along a list of z’s—is more or less a function of ρ0 alone, as can be seen in Fig. 13. The error is minimized
by ρ0 ≈ 2.2.

5. Critical exponents

We can now find the critical exponent ψ . As discussed above, the number of spins reduced by going forward in the RG by
log energy d� is given by (3P0 + R0)Nd�:

dN

d�
= −(3P0 + R0)N = −(3�0 + ρ0)

N

�
⇒ N ∝ �−(3�0+ρ0 ), (B22)

which gives ψ = 2/(3�0 + ρ0). Plugging in �0 = 1/3 and ρ0 ≈ 2.2 from above, we get ψ ≈ 0.6.
The fractal dimension exponent d f can be obtained by including the auxiliary variable μ in Eq. (B2) and imposing that

each bond decimation destroys two moments μ1 and μ2 of the spins being fused and creates the moment μ1 + μ2 (again,
we assume no correlations). The resultant equation is identical to the one-dimensional one [13] and gives 〈μ〉 ∼ N−d f /2, with
d f = ψ (1 + √

1 + 4ρ0)/2 ≈ 1.3.
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