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Orientational ordering of water molecules confined in beryl: A theoretical study
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We present an improved model for studying the interactions between dipole moments of water molecules
confined in beryl crystals inspired by recent NMR experiments. Our model is based on a local crystal potential
with dihexagonal symmetry for the rotations of water dipole moments, leading to deflection from the ab
hexagonal crystallographic plane. This potential shape has significant implications for dipole ordering, which
is linked to the nonzero projection of the dipole moment on the hexagonal c axis. To reveal the tendency
toward equilibrium-ordered states, we used a variational mean-field approximation, Monte Carlo simulations,
and quantum tunneling. Our analysis reveals three types of equilibrium-ordered states: a purely planar dipole
order with an antiparallel arrangement in the adjacent ab planes, a configuration with deflected dipole moments
ordered in antiparallel directions, and a helical structure of the dipoles twisting along the c axis.
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I. INTRODUCTION

Water molecules confined in various types of environments
exhibit properties substantially different from those of com-
mon water phases [1–5]. In most of the confined geometries,
these properties are a result of competition between the energy
minimization of the hydrogen-bonded network in water and
the constraints due to the confinement, such as interactions
with the cavity surface, possible quantum coherence, or the
necessity to fit within the limited volume. The properties of
the usual condensed phases of water are determined, to a
large extent, by the ubiquitous network of hydrogen bonds.
Among the known confined geometries, the opposite extreme
case in terms of hydrogen bonding is represented by crys-
tals containing single molecules of water, where hydrogen
bonding among the water molecules cannot occur because
the crystal lattice mutually separates them. Examples of such
crystals include gypsum [6–9], bassanite [7–9], and cordierite
[8,10–14], minerals in which low-temperature ordering has
been detected. Furthermore, hydrated beryl (Be3Al2Si6O18) is
a particular system of this kind that came into the focus of
researchers more than 50 years ago [15–17] and it has been
studied until now [12,18–30]. In particular, the interest in wa-
ter confined in beryl intensified after revelations of tendencies
of the water dipoles to order anti/ferroelectrically; this order-
ing develops at low temperatures with the polarization vectors
in the ab plane, i.e., perpendicular to he crystallographic c axis
[19,22].

The crystal structure of beryl exhibits hexagonal symmetry
(space group P6/mcc), and it contains linear channels of cav-
ities parallel to its hexagonal axis. Each cavity, slightly larger
than 5 Å in diameter [22], may host one water molecule. Fol-
lowing the infrared spectroscopic study of Wood and Nassau
[16], the water molecules have been assumed to stay in one of

*Corresponding author: klic@fzu.cz

two orientations with respect to the crystal lattice. According
to their hypothesis, the molecules occur with the H-H lines
oriented either parallel to the hexagonal c axis (designated as
“type-I water”) or perpendicular to it (“type-II water”). The
occurrence of the latter type was assigned to crystals with
additional doping, as the oxygen atoms of the water molecules
may bind to impurity atoms located within the channels. In the
last decade, the incipient ferroelectricity of water molecules
in beryl was demonstrated via spectroscopic measurements of
their collective vibrations in a partially hydrated crystal, re-
vealing a ferroelectric soft phonon mode. This soft mode was
detected in the THz-range spectra of dielectric permittivity,
and its parameters were shown to obey the usual Curie-Weiss,
and Cochran temperature dependence [22]. In that work, a
negative Curie temperature of TC ≈ −20 K was determined
from the temperature dependence of permittivity, implying
that the ferroelectric state could not be reached. Notably,
at temperatures lower than about 20 K, the soft phonon
vibrational frequency remained almost constant, which was
explained by quantum tunneling of the water molecules be-
tween equivalent potential minima [20,21].

Most of the theoretical studies on beryl focused on
the interactions between the dipole moments of the wa-
ter molecules, and the models of their collective dynamics
assumed that the type-I molecules can rotate around the
hexagonal axis of beryl so that the H-H lines remain parallel
to the hexagonal axis. At the same time, it was also supposed
[18,20,21,23–25] that the molecules are subjected, in their an-
gular orientations, to a local potential exhibiting six equivalent
minima separated by an angle of 60◦. A recent NMR study of
hydrated and deuterated beryl [31] provided new data on the
orientations and dynamics of the dipoles of water molecules
in beryl. These results show that the traditional view of the
molecules’ orientations have to be revisited. The numbers and
positions of the NMR lines observed are not compatible with
the earlier view assuming that the H-H lines of the molecules
are parallel to the hexagonal axis. Instead, their mutual
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FIG. 1. (a) Water molecule confined in a void formed by the
crystal structure of beryl [17]. Dark blue: SiO4 tetrahedra, pale blue:
AlO6 octahedra. The thin black line marks a libration axis of the
water molecule owing to a transiently formed hydrogen bond be-
tween one of the hydrogens and one of the nearest 12 oxygen atoms
of the void. The structural data were visualized using the VESTA

software [33]. (b) Scheme of the void with 12 possible equilibrium
orientations of the molecule. From the beryl structure, only the
12 O atoms nearest to the void center are drawn (red). When the water
molecule is constrained to one of the planes shown in light blue, an
H atom binds to one of the O atoms in the lower hexagon (dotted
line); then, the H-H line (dashed) intersects the c crystal axis above
the central O atom and the dipole moment has an upward component
along the c axis. The opposite occurs if the H atoms are constrained
to the planes shown in light green. The same color coding is used in
Fig. 2.

angle deduced from these experiments amounts to about ±18◦
(see Fig. 1). This suggests that hydrogen bonds are formed
between one of the hydrogen atoms of water [labeled H2

in Fig. 1(a)] and any of the 12 nearest-neighboring oxy-
gen atoms forming the cavity, of which 6 are in the upper
crystal plane and 6 are in the lower one. The hydrogen bond-
ing mechanism appears plausible, as the distance between
any of the 12 O atoms and the center of the void is about
3.43 Å. This is slightly more than the known donor-acceptor
distances in other hydrogen-bonded compounds [32]; we note,
however, the bond length is generally not a constant, and
it increases with decreasing bond energy. Also, in the beryl
voids, the water molecules may be slightly off centered owing
to the attractive force of the bonds, which would imply shorter
donor-acceptor distances than the above value.

The local atomic arrangements of the voids lack the mir-
ror symmetry with respect to the plane perpendicular to the
hexagonal axis; consequently, the potential minima from the
oxygens atoms in the upper and lower levels surrounding the
water molecule are not aligned along the c axis, but rather
alternately angularly tilted [see Fig. 1(b)]. The observed tem-
perature dependence of the NMR lines strongly supports a
model in which the hydrogen bonds are present, with the
bonded proton of the confined water molecule forming a rota-
tion axis around which the other free hydrogen librates near its
equilibrium position. It is known from the structural data [17]
that the cavity centers are surrounded by 12 oxygen atoms
located at equal distances from the centers. These atoms are
distributed in two layers parallel to the ab planes, namely, at
the vertices of two hexagons [see Fig. 1(a)]. Consequently,
each water molecule’s possible equilibrium dipole positions
within its beryl cavity must equal 12.

The aim of this paper is to propose a model of the water
molecules in the cavities of the beryl crystal with a confining

potential showing dihexagonal symmetry of 12 local minima
for the equilibrium positions for their dipole moments. We
show that the presence of 12 energetically equivalent orien-
tations of the water molecules has unexpected consequences.
Various ordering tendencies along the crystallographic c axis
emerge, leading to a wider variety of dipole states than as-
sumed up to now. In particular, we find that the ground state
at low temperatures is linked to a chiral ordering along the
c axis. The experimental findings indicate that the existing
models of water molecules confined in the cavities of the beryl
crystal with a sixfold potential degeneracy still need to be
completed, revisited, and extended to be compatible with the
latest observed behavior. Our model is the first step in this
direction.

II. MICROSCOPIC MODEL

The water molecules are confined in cavities in the beryl
crystal with an overall hexagonal symmetry along the c axis
(also called “vertical direction” in the following). The center
of mass of the water molecules is positioned at the symmetry
axis, and their fluctuations can be neglected. The protons of
the hydrogen atoms in the water molecules are attracted to the
oxygens of the lattice ions, forming a nanocavity for the water
molecule. Recent NMR experiments [31] show that in contrast
with the widespread assumption of previous theoretical works,
the H-H lines of the water molecules are tilted with respect to
the c axis. To set up a model potential for the water molecules’
reorientations, see Fig. 2; we took advantage of this finding
together with the data on the local crystal arrangement [17]
showing that six oxygen atoms are positioned slightly above
the center of the cavity and six below. The two hexagons are
not mirrored by the ab plane but angularly turned by 30◦,
forming a perfect dihexagonal spatial structure confining the
water molecule in its center of origin. The positions of the
oxygen hexagons, probably forming transient hydrogen bonds
to the molecules, are at the origin of the angular deflection of
the dipole moment of water I from the ab plane. The dipole
moment can be directed towards one of the oxygens either
above or below the center of mass of the water molecule. The
deflection angle does not change much with temperature and
its experimental value θ ≈ 18◦ [31] was taken as fixed in the
model description. We hence assume dynamics only in the
orbital angle φ within the ab plane.

The dipole moment of the water molecule in the cavity
with only rotational degrees of freedom can be described by a
quantum-mechanical Hamiltonian

H loc = 1

2I
L2 + V loc, (1)

where L is its angular momentum, I its moment of inertia,
and V loc is a local potential due to the surrounding walls. We
assume that angle φ in the ab plane orthogonal to the symme-
try axis fully describes the rotational degrees of freedom. We
neglect the dipole dynamics out of the plane since the angle of
deflection from the plane is small, and the energy connected
with the vertical movements is negligible.

The local potential of the cavity has six minima for each
oxygen hexagon. Since the single water molecule is at-
tracted alternately to two hexagons, we can represent the local
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FIG. 2. Scheme of angular reorientations of the water molecule
in the beryl cavity. Red circles denote oxygen atoms of both the beryl
structure (upper and lower rows) and the water molecule (central
area), whereas small blue and green circles stand for hydrogen nuclei.
These are attracted by the potential of the cavity (wavy lines; note
the opposite signs of the energy scales) which attracts either of
the hydrogen nuclei such that a hydrogen bond is formed (dashed
lines). The water molecule represented by filled circles corresponds
to one orientational configuration of the hydrogen nuclei among the
12 possible ones. The unbound nucleus is partially free, exhibiting
librations (angle α) around its equilibrium position. Reorientations
of the molecule (dotted arrows) may occur in two ways, either via
tunneling of the nucleus through the potential barrier, or when an
oxygen atom from the opposite side of the cavity traps the librating
nucleus, breaking the previous hydrogen bond and freeing the bound
nucleus from its previous position. The horizontal axis does not relate
to the water molecule’s oxygen atom fixed in the cavity center.

potential as a 2 × 2 matrix

V loc(φ) = Vb

2

(
1 + cos 6φ ω/Vb

ω/Vb 1 − cos 6φ

)
, (2)

where Vb is the potential barrier as in the standard sixfold
model and ω is the amplitude of the transition of the hydrogen
bond from the upper to the lower nearest oxygen. As the lower
and upper limits of the potential barrier, we take the values of
Ref. [21], Vb1 = 56 meV and Vb2 = 176 meV. We will set the
value of ω self-consistently (see Sec. III B).

The water dipole moments interact via a binary dipole-
dipole interaction, and the full lattice Hamiltonian reads as

H =
∑

i

H loc
i + 1

4πε0εrr0
3

1

2

∑
i �= j

∑
α,β

pα
i Dαβ

i j pβ
j −

∑
i,α

Eα
i pα

i ,

(3a)

where Dαβ
i j is the dipolar kernel

Dαβ
i j = δαβ

r3
i j

− 3
rα

i j r
β
i j

r5
i j

(3b)

with dimensionless intermolecular distances ri j (dependent
on the lattice structure), pα

i is a dipole vector of molecule i,

and Ei is the electric field at site i. For further calculations,
we define an interaction constant J̄ = p2

0/(4πε0εrr3
0 ), where

εr = 7 is the background permittivity [22], p0 = 1.85 D is
the magnitude of dipole moment of the water molecule, and
r0 = 9.2 Å is the distance between the nearest dipoles in the
ab plane (that is r0/2 in the c direction).

III. SINGLE WATER MOLECULE

Before approaching the full lattice problem, we resolve the
local problem of a single water molecule in the beryl cavity.

A. Ground-state energies

The cavity potential (see Fig. 2) has two sixfold-degenerate
minima. The eigenvalue problem for the local Hamiltonian
H loc from Eq. (1) leads to 12 ground-state energies. They are
obtained from the equation(

−h̄2

2I
+ V loc(φ)

)(
ψ+(φ)
ψ−(φ)

)
= E

(
ψ+(φ)
ψ−(φ)

)
(4)

with periodic boundary conditions for the planar angle φ.
For the rotational constant h̄2/2I of water molecule we
choose value 3.04 meV [21]. We numerically solve the eigen-
value equations with a small value ω/Vb � 1 to obtain the
eigenenergies’ explicit ω dependence. We end up with seven
different lowest-energy states, five doubly degenerate. Their
explicit values in the interval between Vb1 = 56 meV and
Vb2 = 176 meV, with ω dependence, are

E0 = 24.5 − 26.3(ω/Vb),

E1,2 = 27.16 − 25.7(ω/Vb),

E3 = 24.5 + 26.3(ω/Vb),

E4,5 = 27.16 + 25.7(ω/Vb),

E6,7 = 34.4 − 22.0(ω/Vb),

E8,9 = 34.4 + 22.0(ω/Vb),

E10,11 = 40.5.

The eigenenergies depend on Vb and are given in meV units.
The boundary values correspond to the extreme values Vb1 and
Vb2. These energies determine the phase space for a single
dipole moment. The seven quantum energies for ω = ω1 are
plotted in Fig. 3 together with the local potential V loc(φ) with
six minima from which we can assess the impact of quantum
dynamics.

B. Dynamics: Discrete clock model

We simplify the dynamics of the dipole within the cavity by
explicitly considering only discrete amplitudes of transitions
between nearest-neighbor local minima, instead of a contin-
uous movement. We introduce three energy parameters, e0,
a, and d , which correspond to the ground-state energy and
hopping to the locally nearest and next-nearest minima of the
sixfold-degenerate local potential V loc. Note that the parame-
ter a represents the amplitude for reversing the deflection of
the dipole moment from the ab plane in the direction of the c
axis. The parameter d describes the hopping between two ad-
jacent minima without changing the orientation of the dipole
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FIG. 3. The lowest 12 energy levels of the clock model with the
potential barrier Vb1 = 56 meV and the transition amplitude between
the layers ω = 8.2 meV.

moment along the c axis. The Hamiltonian of the local dipole
dynamics reduces the position representation to a matrix

ĥloc = e0 Î −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a d 0 0 0 0 0 0 0 d a
a 0 a d 0 0 0 0 0 0 0 d

d a 0 a d 0 0 0 0 0 0 0
0 d a 0 a d 0 0 0 0 0 0
0 0 d a 0 a d 0 0 0 0 0
0 0 0 d a 0 a d 0 0 0 0
0 0 0 0 d a 0 a d 0 0 0
0 0 0 0 0 d a 0 a d 0 0
0 0 0 0 0 0 d a 0 a d 0
0 0 0 0 0 0 0 d a 0 a d
d 0 0 0 0 0 0 0 d a 0 a

a d 0 0 0 0 0 0 0 d a 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

where Î is the diagonal matrix. The three model parameters
lead to the following eigenvalues of the above matrix: Ē0 =
−2a − 2d + e0, Ē3 = 2a − 2d + e0, Ē1,2 = √

3a − d + e0,

Ē4,5 = √
3a − d + e0, Ē6,7 = −a + d + e0, Ē8,9 = a + d +

e0, Ē10,11 = 2d + e0. These eigenenergies should equal the
ground-state energies obtained in the preceding subsection.
There are generally seven independent parameters in matrix
(6). However, including the full set of eigenenergies would
make the solution cumbersome and difficult to control.
Therefore, in our simplified matrix, we consider only three
eigenenergies: the lowest energy E0, the highest energy E10,11,
and the energy E3 of the singlet state. It is important to note
that this reduction does not change the result qualitatively.
The equations determining e0, a, d then read as

−2a − 2d + e0 = E0, (7a)

2d + e0 = E10,11, (7b)

2a − 2d + e0 = E3. (7c)

The solution of these equations is e0 � 32.2 meV, d =
4 meV − 0.002 ω2, and a = 0.23 ω. We assume that the prob-
ability of jumps between the upper and lower sites is the same
as between the left and right sites, which requires choosing
d = 2a. From this condition, we obtain the value of ω. As a re-
sult, we get these parameter values for the lower bound Vb1 =
56 meV, ω1 = 8.2 meV, d1 = 3.9 meV, a1 = 1.9 meV and

for the upper bound Vb2 = 176 meV, ω2 = 3.9 meV, d2 =
1.26 meV, a2 = 0.63 meV.

We use these values to characterize the local parameters of
individual dipoles in the description of the water molecules in
the extended beryl crystal with nonlocal dipole-dipole inter-
action from Hamiltonian in Eq. (3).

IV. INTERACTING WATER DIPOLES IN BERYL CRYSTAL

A. Ground state

Having resolved the behavior of a single water molecule
in the beryl cavity, we extend the description to the behav-
ior of water molecules in the extended beryl crystal. We
assume a perfect homogeneity and neglect the dilution of wa-
ter molecules. We describe the model within a tight-binding
approximation with each unit cell containing one water
molecule, the local behavior of which will be approximated by
the clock model with 12-fold degenerate ground-state energy.
We first neglect quantum tunneling between the minima. The
rotation angle φ will describe the positions of the potential
minima in the ab plane. The nS = 12 values φi ∈ {π

6 ni}nS−1
ni=0 are

the coordinates of the minima. The three-dimensional vector
of the dipole moment p in the minima deflects from the ab
plane by an angle θ :

pi = p0 cos(θ )σ i, (8)

where p0 is the magnitude of the dipole moment of the water
molecule. Here we introduced a new dimensionless vector
variable

σ i =
(

cos
2πni

nS
, sin

2πni

nS
, (−1)z+ni tan θ

)
, (9)

where z denotes the coordinate along the crystallographic c
axis. Index i should be considered a three-dimensional integer
variable, i = {x, y, z} along axes a, b, c, respectively. The in-
teracting part of the full Hamiltonian can now be represented
in the form of the classical Heisenberg spin model with spin
vector variables σ i:

HI = J

2

∑
i �= j

σ i · Di j · σ j − p⊥
∑

i

Ei · σ i, (10)

where J ≡ J̄ cos2 θ = p2
0 cos2 θ/(4πε0εrr0

3) and p⊥ = p0

cos θ . The deflection angle θ = 18.1◦ is the same for all
dipoles.

Finding the zero-temperature energy of any periodic
configuration of the normalized polarization vectors σ i is
straightforward. Angle θ is a free parameter. The ground-state
energy is obtained from minimizing a binary form

E ({σ i}) = J (θ )
∑

j

σ0 · D0 j · σ j (11)

with respect to the dipole configurations, depending on θ . An
ordered configuration gives the lowest energy. It is, however,
anisotropic and depends on the deflection angle θ . The dipole-
dipole interaction drives the system to the saturated planar
ferroelectric order within the ab planes. The order along the c
axis is antiferroelectric for small deflection angles θ < 8◦ (see
Fig. 4). The ground state displays a chiral structure for larger
angles. In the chiral structure, the dipoles are ferroelectrically
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FIG. 4. Comparison of energies of the two expected ground-state
structures. Antiferroelectrically ordered ferroelectric planes vs a chi-
ral structure with 12 positions along the crystallographic c axis as
a function of the dipole deflection angle θ from the ab plane are
plotted. Energy is calculated in units where J̄ = 1.

ordered within each ab plane, but their angular coordinate
φ switches to the nearest minimum in one direction (either
clockwise or anticlockwise) along the z coordinate until it
goes through the whole circle. It means that 12 coupled states
are periodically repeated along the symmetry axis. The unit
cell of this helical structure is graphically presented in Fig. 5.

B. Variational mean-field approximation

The ground-state analysis shows the correct way of se-
lecting the unit cell of the periodic structure used in the

FIG. 5. Visualized chiral structure of the dipoles ordered along
the c axis in the ground state. On varying the z coordinate, the dipoles
go through all the 12 minima of the local potential either clockwise
or anticlockwise. Left: four unit cells with the planar (ab) hexagonal
structure. Right: a single unit cell with the dipole projections onto the
ab plane (blue arrows) and c axis (green arrows).

thermodynamic description of the water molecules in the
beryl crystal. We start with a mean-field description neglect-
ing low-temperature quantum tunneling between the minima
of the degenerate ground state. The unit cell will have an inter-
nal structure with 12 water molecules in the vertical direction.
The vector order parameter, the thermally averaged value of
the dipole moment p(z) ∼ 〈σz〉, contains index z = 0, . . . 11
labeling the vertical coordinate within the unit cell conformal
with the helical symmetry of the ground state.

We use the variational mean field and introduce a varia-
tional vector parameter λz with periodicity nS (λz = λz+nS )
that enters into the unperturbed Hamiltonian via

H0(λ) = −
∑
ι,z

λz · σι,z, (12)

where ι = {x, y} is the lattice index in the ab plane.
We add the interacting part and treat it as a correction to

the unperturbed one,

H1 ≡ HI − H0 = J

2

∑
i, j

σ i · Di j · σ j −
∑

ι

(E − λz ) · σι,z.

(13)

The variational free energy

Fvar(λ) ≡ F0(λ) + 〈H1(λ)〉0 (14)

is minimized to determine the variational parameters λz. The
unperturbed free energy is denoted F0, and the unperturbed
average is

〈X 〉0 ≡ 1

Z0
TrXe−βH0 , (15)

with the unperturbed partition sum

Z0 ≡ Tre−βH0 =
⎛
⎝nS−1∏

z=0

ζz(λz )

⎞
⎠

N/nS

. (16)

The vector with the independent self-consistently determined
parameters is λz = {λx

z , λ
y
z, λ

z}. The partition sum of the unit
cell with the fixed vertical coordinate z reads as

ζz(λz ) =
nS−1∑
l=0

eβλz ·σz (l ), (17)

where σz(l ) is defined in the same way as in Eq. (9), σz(l ) ≡
{cos(2π l/nS ), sin(2π l/nS ), (−1)l+z tan θ}.

The thermal average of the nonlocal interaction term in H1

in the canonical ensemble with respect to H0 is standardly
decoupled, 〈σ iσ j〉0 = 〈σ i〉0〈σ j〉0. Moreover, 〈σ i〉0 does not on
the index ι (x, y components of index i) but only on the z
component. We denote it by �z(λz ) and it can be expressed
as

〈σz〉0(λz ) = 1

β

∂

∂λz
log ζz(λz )

= 1

ζz(λz )

nS−1∑
l=0

σz(l )eβλz ·σz (l ) ≡ �z(λz ). (18)

The variational free-energy density of the unit cell with nS

water molecules along the c axis fvar ≡ FvarnS/N can be
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written as

fvar = − 1

β

nS−1∑
z=0

log ζz(λz )

+ J

2

nS−1∑
z,z′=0

�z · Dzz′ · �z′ −
nS−1∑
z=0

(Ez − λz ) · �z, (19)

where

Dzz′ ≡ Nz

N

∑
ι,ι′

Dιz,ι′z′ = 1

Nz

∑
kz

D̃(kx = 0, ky = 0, kz )eikz (z−z′ ).

(20)

The z component of the wave vector acquires integer mul-
tiples of 2π/nS in the dimensionless representation. We
denote by D̃(k) the dipole interaction in the momentum
(wave vector) space

D̃(k) ≡ 1

N

∑
i, j

Di je
−ik·(ri−r j ), (21)

that is evaluated for a given structure of an infinite or periodic
system by using the Ewald method (see, e.g., [34]).

Stationary equations ∂ fvar/∂λz = 0 determine the equilib-
rium values of the variational parameters λ̄z, mean fields,

λ̄z = Ez − J
nS−1∑
z′=0

Dzz′ · �z′ (λ̄z′ ). (22)

The corresponding conjugate equations for the order parame-
ters, thermally averaged local polarizations, read as

〈σz〉0 = �z

⎛
⎝Ez − J

nS−1∑
z′=0

Dzz′ · 〈σz′ 〉0

⎞
⎠. (23)

C. Spatial fluctuations: Monte Carlo simulations

The mean-field approximation averages spatial fluctuations
and assumes their effect as a mean homogeneous envi-
ronment, a mean field. The dipole-dipole interaction has a
long-range and anisotropic character, and replacing it with
an effective constant is a crude approximation. Such an ap-
proximation generically overestimates the tendency toward a
long-range order. Hopping and tunneling in the clock model
only partly suppress this tendency. The spatial fluctuations
significantly affect ordering, particularly in low spatial dimen-
sions. We used the local clock model, and instead of using
the mean-field solution for the crystal equilibrium state, we
used the classical Metropolis Monte Carlo simulations [35,36]
and at low temperatures, also the Wang-Landau (WD) flat
histogram method [37,38].

D. Low-temperature quantum tunneling

The classical mean-field solution reflects well the high-
temperature behavior of statistical models. Low-temperature
asymptotics may, however, be strongly affected by quantum
fluctuations. In extreme situations, they can destroy the clas-
sical behavior by the existence of quantum criticality with
quantum critical points. Very recently, a quantum critical point

was predicted in a linear chain of the dipole moments of
the water molecules [30]. We assess the impact of quantum
fluctuations within the clock model in a simplified form by
allowing the hopping of the dipole moments only between
the nearest and next-to-nearest potential minima. The hop-
ping amplitudes a and d describe the transitions between the
minima from the opposite and the same oxygen planes with
and without changing the vertical component of the dipole
moment, respectively, as shown in Fig. 2 by the oblique and
horizontal dotted arrows. The new variational unperturbed
Hamiltonian of the mean-field approximation with quantum
tunneling remains local, but it becomes nondiagonal

Ĥ0(λ) = ĥloc −
∑
ι,z

λz · σ̂ι,z, (24)

where ĥloc is a 12 × 12 matrix defined in Eq. (6). The local
mean-field partition function (17) is then

ζ (λz ) = Tre−βĥloc
m f =

nS∑
n=0

e−βvn (z), (25)

where the vn(z) are eigenvalues of the matrix

ĥloc
m f = ĥloc − {δi jλz · σz( j)}nS

i, j=1. (26)

The mean-field polarization is then defined from the local
partition function in Eq. (18). The nonlocal interacting part
is added in the same way as in the classical case to reach the
corresponding mean-field solution with quantum tunneling.

V. THERMODYNAMIC PROPERTIES

A. Mean-field approximation

We learned from the ground-state calculations that we can
expect two ordered phases in the low-temperature limit. Ap-
proaching this limit from high temperatures, we start with
the variational mean-field approximation with the unit cell
containing nS = 12 water molecules along the c axis to assess
the trends in the thermodynamic behavior when decreasing
temperature. The first ordering emerges at Tc1 ∼ 31.6 K be-
low which the thermally averaged moments are planar and
ferroelectrically ordered in the individual ab planes. Due to
the anisotropic character of the dipole-dipole interaction, the
ferroelectric planes order in antiparallel directions in the adja-
cent planes. The response to the electric field along the z axis
increases with decreasing temperature and diverges at another
critical point Tc2 ∼ 16.8 K (Fig. 6). Below Tc2, the thermal
average of the c projection of the dipole moment becomes
nonzero and parallelly ordered along the c axis.

The local minima of the single dipole moment are spread
between two adjacent ab planes. The dipole moments can be
perfectly antiparallel in the adjacent planes only if they stay
planar, Tc1 > T > Tc2. Once the c projection of the dipole
moment becomes macroscopically nonzero, the perfect an-
tiparallel order is no longer possible (Fig. 7). The planar
component of the dipole moment starts to drift in one di-
rection, either clockwise or anticlockwise. It means that the
a and b projections of the dipole moment are not the same
when the c projection is nonzero (Fig. 8). Notice that the
orientation of the water dipoles in this phase is quite similar
to the configuration reported recently in cordierite [11].
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FIG. 6. Staggered (along the c axis) static susceptibility χA (elec-
tric field in a direction), and static susceptibility χZ (electric field in
c direction) indicating the two critical points below which the planar
Tc1 and vertical Tc2 orders emerge, respectively. The homogeneous
susceptibility χ S with the right vertical scale displays cusps at both
transition points.

The projection of the dipole moment in the ab plane
changes its direction when moving along the c axis. We take
the unit cell with 12 water molecules in the c direction to
characterize these changes. We define an order parameter for
this unit cell, denoted by P, which reflects the antiferroelectric
order in the ab plane along the c axis and the ferroelectric
order in the c axis. The parameter is given by

P ≡ 1

nS

nS−1∑
z=0

{(−1)z px(z), (−1)z py(z), pz(z)}, (27)

where nS = 12 represents the number of molecules in the
unit cell. This parameter is referred to as the antiferroelec-
tric/ferroelectric (AF/F) order parameter.

The modulus of this thermally averaged vector parame-
ter is nonzero below Tc1, and the vector remains planar for
T > Tc2. To understand what happens below Tc2, we need
to introduce another vector parameter that can distinguish a
drift of the planar projection of the dipole moment in one
direction from random fluctuations when moving along the c
axis. If one direction of the drift is preferred, we end up with a

FIG. 7. Left panel: Ferroelectric order emerges in the ab planes
below Tc1, with the planes alternating the direction of the dipole
moment, forming an antiferroelectric structure along the c axis. The
instantaneous directions of the dipole moments (red arrows) deflect
from the ab planes, but the thermal average of the c components
(green arrows) is zero for T > Tc2. Right panel: Configuration of the
water molecules for T < Tc2 with long-range ferroelectric order of
the c projections of the dipole moments. The vertical components
of the dipole moments are aligned parallel, whereas the ab-plane
components (blue arrows) in the neighboring planes are one angular
step away from the prohibited antiparallel orientations.

FIG. 8. Three thermodynamic phases are observed in the mean-
field solution of the water molecules in the beryl cavities. At
high temperatures (T > Tc1), the system is in the paraelectric (P)
phase, which lacks long-range order. At intermediate temperatures
(Tc1 > T > Tc2), the system exhibits planar ferroelectric order with
antiparallel alignment along the c axis (AF). At low temperatures
(T < Tc2), the system exhibits long-range order with all three projec-
tions nonzero and ferroelectric order (F) along the c direction. In this
phase, the splitting of the a and b projections is clearly evident.

chiral order. To assess the chiral order quantitatively, we intro-
duce a parameter Och using polarizations in three consecutive
layers [39]:

Och = 1

nS

nS−1∑
z=0

pz · (pz+2 × pz+4). (28)

This order parameter becomes nonzero whenever Pc �= 0 as
demonstrated in Fig. 9. The chiral phase is a local minimum
of the free energy for T < Tc2. The thermally averaged pa-
rameter P has nonzero only the c component below Tc2 in the
chiral state.

We see that below the critical point Tc2, at which the
vertical component of the thermally averaged dipole mo-
ment becomes nonzero, both the unit-cell antiferroelectric
order parameter P and chiral order parameter Och can be
nonzero in equilibrium. These parameters describe different
thermodynamic states that generally differ in free energy.

FIG. 9. Three thermodynamic order parameters connected with
antiferroelectrically ordered planes P, c projection of the dipole
moment Pc, and the chiral parameter Och.
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FIG. 10. Temperature dependence of free energy of the antifer-
roelectric and chiral ordering of the dipole moments along the c axis.
They cross at a first-order phase transition point T0 � 4 K. The black
line is the equilibrium free energy.

However, only one of the solutions represents the true equilib-
rium state. The free energies in the mean-field approximation
are plotted in Fig. 10. The chiral state has a lower free energy
below T0 ∼ 4 K, at which a first-order transition to equilib-
rium takes place. This conclusion is supported by the internal
energy and heat capacity (Fig. 11). The corresponding be-
havior of the thermodynamic order parameters is plotted in
Fig. 12.

FIG. 11. Temperature dependence of the mean-field internal en-
ergy (upper figure) and heat capacity (lower figure) indicating the
three transition points. The upper two cusps of the heat capacity
correspond to continuous transitions at temperatures Tc1 and Tc2, and
the lowest one to a discontinuous transition at T0.

FIG. 12. Temperature dependence of the mean-field order pa-
rameters as discussed in the text calculated in the true equilibrium
state. Parameter Pab

A/F = 0 in the chiral state (ch) when Och saturates.

B. Monte Carlo simulations

The variational mean-field approximation suppresses spa-
tial fluctuations and replaces the crystal with a mean
environment. To improve this simplification, we used Monte
Carlo simulations to take the spatial fluctuations into account
more sophisticatedly.

We employed the standard Metropolis dynamics with
single-site updates and improved them with nonlocal updates
at low temperatures to explore our system’s phase space more
effectively. We investigated the system with linear size in a
and b directions of La = Lb ∈ {3, 4, 5, 6} and up to 8 cells
of 12 atoms in the c direction, assuming periodic boundary
conditions. Averages were calculated using at least 2 × 106

Monte Carlo steps (MCS) per dipole after discarding other
1 × 106 MCS for equilibration. At low temperatures, up to
5 × 106 MCS were used. The heat capacity calculated with the
Monte Carlo simulations is plotted in Fig. 13. The broad peak
in the plot indicates the second-order phase transition to the
planar order at Tc1 ≈ 9.5 K. We observe a cusp at ≈5.5 K in-
dicating a nonanalytic behavior connected with the emergence
of ferroelectrically ordered chains of the dipoles thermody-
namically averaged only along the c axis. The vertical chains
are, however, not ordered when changing their ab coordinates.
The convergence significantly slows down when decreasing
temperature. Two metastable states of the c-ordered chains
coexist on long timescales. One is the bulk ferroelectric state,
and the other is a state with disordered ferroelectric chains.
The whole system gets stuck in one of these metastable states
during the Monte Carlo simulations. The time needed to
overcome the barrier between these states grows exponentially
at very low temperatures. We, therefore, alternatively used the
Wang-Landau (WD) flat histogram method [37,38] to handle
this problem. It allowed us to calculate the density of states,
from which we could directly deduce the temperature depen-
dence of the free energy, internal energy, and heat capacity.
Based on this, we identified a transition at Tc2 ≈ 2 K to a bulk
ferroelectric order where the ferroelectric c chains are aligned
parallelly. A transition to the helical state was observed at
T0 ≈ 1 K. Sharp heat-capacity peaks indicate a discontinuity
in the internal energy at both transitions. This conclusion
was confirmed by discontinuities in the polarization shown in
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FIG. 13. Temperature dependence of the Monte Carlo heat ca-
pacity of the water dipole moments with three transitions to ordered
phases. The heat capacity exhibits a cusp at around 5.5 K. Different
ways for calculating the heat capacity were employed, including
descending (desc) and ascending (asc) temperatures as well as the
Wang-Landau method. The first two direct approaches show hystere-
sis with two transition temperatures. In contrast to the mean-field
solution, the Monte Carlo simulations suggest a first-order transi-
tion to the phase with ferroelectrically ordered c projections of the
polarization.

Fig. 14. The Monte Carlo simulations indicate that the phase
transitions to the bulk ferroelectric ordering of the c chains at
Tc2 and to the helical state at T0 are of first-order type. The
transition to the ferroelectric order along the c axis is second
order in the mean-field approximation.

The precise determination of the transition temperature Tc2

from Monte Carlo simulations becomes difficult due to the
coexistence of two metastable states. We observed a hys-
teresis depending on whether we approached the transition
from above or from below. When starting from the ordered
low-temperature state, the transition temperature with a dis-
continuity in the internal energy is higher than that approached
from the high-temperature disordered phase. This hystere-

FIG. 14. Temperature dependence of the Monte Carlo polariza-
tions when the system is heated from the ground state. Planar order
antiferroelectrically aligned along the c axis (blue dots), ferroelec-
tric order of the c projection of the dipole moment (green), and
helical order parameter (red). We can observe that the effective
dipole moment’s planar projection in the unit cell with nS = 12 water
molecules becomes zero in the helical state.

sis is, however, suppressed by the Wang-Landau method
(Fig. 13). It is worth mentioning that the cusp near 5.5 K is
invisible in systems with only a few cells along the c axis.
Long-range spatial fluctuations generally pull down the tran-
sition temperatures. The Monte Carlo simulations with spatial
fluctuations support, nevertheless, the overall picture of the
mean-field solution. They additionally predict the existence
of inhomogeneous metastable states, possibly leading to a
first-order transition to the state with a nonzero projection of
the polarization to the c axis. A more detailed analysis of
the model with Monte Carlo simulations will be published
separately.

C. Quantum tunneling

The behavior of the dipole moments at low temperatures is
strongly affected by quantum fluctuations. We included quan-
tum fluctuations via tunneling between the local minima of the
classical model. The new parameters of the local Hamiltonian
are a ranging from a2 ≈ 0.63 meV to a1 ≈ 1.9 meV and d
from d2 ≈ 1.26 meV up to d1 ≈ 3.9 meV for the hopping
amplitude to the nearest minimum, and the hopping amplitude
to the next-nearest minimum, respectively. The local hopping
of the unit dipole moment changes the energetic balance and
affects the response to the external electric field. We plotted
the antiferroelectric χA and ferroelectric χZ susceptibilities
along the c axis in Fig. 15. In the first setting Vb1 = 56 meV
and ω1 = 8.2 meV, the transition to the planar order is shifted
to a lower temperature, Tc1 ≈ 20.2 K. The quantum tunneling
with these model parameters fully suppresses the emergence
of the ferroelectric order along the c axis. In contrast, the sec-
ond limiting setting with Vb2 = 176 meV and ω2 = 3.9 meV
shifts the transition temperature only to Tc1 ≈ 30 K and al-
lows for the emergence of a vertical ferroelectric order at
nonzero temperature Tc2 ≈ 12.7 K. The hopping amplitudes
between the local minima for the local dipole moment, which
affect the low-temperature thermodynamic behavior, were de-
rived from the input physical parameters Vb and ω. The former
was taken from Ref. [21], which describes the hexagonal sym-
metry of the local water dipole moment within a single beryl
cavity. The amplitude connecting the two hexagons of the
crystallographic cavity for the water molecule ω was chosen
to keep all the local minima equivalent. The existence of the
thermodynamic order along the c axis is strongly affected by
the value of ω, which is reflected in the hopping amplitude
a. We plotted the dependence of the planar, vertical, and chi-
ral order parameters on the relative hopping amplitude a/a1

at zero temperature in Fig. 16. We see that the greater the
amplitude with greater quantum fluctuations, the lower the
probability of the vertical order. The limiting case a = a1 ≈
1.9 meV is beyond the edge of the existence of the vertical
order at zero temperature. Therefore, we do not observe a
divergence of the ferroelectric susceptibility at nonzero tem-
peratures. The vertical order occurs at a value of a = 0.41 a1,
and the vertical polarization is reduced to ∼60% of the original
classical values at zero temperature for a = a2 ≈ 0.63 meV.
Chiral order at zero temperature is suppressed by quantum
tunneling above ach ≈ 0.052 a1. Recent experimental data
supported by Monte Carlo simulations revealed that deuter-
ated water molecules reduce quantum tunneling and enhance
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FIG. 15. Antiferroelectric (blue) and ferroelectric (green) sus-
ceptibilities calculated with quantum tunneling amplitudes as
discussed in Sec. IV D. Dynamical quantum fluctuations decrease
the transition temperatures, as do the static spatial fluctuations. The
quantum tunneling for the setting labeled “1” (with Vb1, ω1) appears
to lead to a zero c projection of the thermally averaged dipole
moment (top figure). The inset shows the ferroelectric susceptibility
with a magnified vertical scale. The second setting (bottom fig-
ure) labeled “2” (with Vb2, ω2) allows for the existence of vertical
ferroelectric order at a nonzero temperature Tc2, although with a
suppressed chiral order.

FIG. 16. Dependence of the in-plane antiferroelectric polariza-
tion Pab (blue curve), the vertical polarization Pc (green curve), and
the chiral order parameter Och (red curve) on the relative strength
of quantum tunneling defined by the hopping parameter a/a1 at
zero temperature. The value a/a1 = 1 corresponds to setting “1,”
while a/a1 = 0.33 corresponds to setting “2,” representing different
strengths of quantum tunneling. Chiral order is suppressed for values
above ach ≈ 0.052 a1.

the tendency towards long-range antiferroelectric ordering
[40]. Our mean-field approximation of the deuterated water
decreases quantum tunneling in beryl by a factor of 2.

VI. CONCLUSIONS

We have developed a model that considers 12 equiva-
lent orientations for the interacting dipole moments of water
molecules confined in beryl crystal cavities. Recent NMR
experiments [31] revealed that the dipole moments of type-I
water molecules are not exactly orthogonal to the hexagonal c
axis but instead deflect by approximately ±18◦ from the crys-
tallographic ab plane. Moreover, the potential minima for the
hydrogen nuclei pointing to the oxygen atoms of the confining
beryl molecules are shifted by 30◦ in the neighboring layers.
This situation contradicts previously used theoretical models
of water molecules in beryl crystals, prompting us to introduce
a model of the orientational potential for the dipole moments
of water molecules with dihexagonal symmetry, involving al-
ternating minima with the c component of the dipole moment
pointing up and down.

We used a classical variational mean-field approximation
to obtain a qualitative thermodynamic picture of the behavior
of the interacting dipole moments and their equilibrium con-
figurations. We used the standard dipole-dipole interactions
and included the lattice potential via a clock model where
individual dipoles can adopt only one of the 12 minima of
the lattice potential. We also used Monte Carlo simulations
to more accurately include spatial fluctuations and included
quantum tunneling between the minima to assess the low-
temperature macroscopic behavior better.

The classical mean-field solution predicts a nonzero Curie
temperature Tc1 below which the dipole moments are fer-
roelectrically ordered within the crystallographic ab planes,
but the orientations of the planar dipole moments are an-
tialigned, antiferroelectrically ordered along the c axis. The
thermodynamic order along this axis remains zero down
to another critical point Tc2, below which a different order
emerges with a nonzero thermally averaged c projection of
the dipole moment. The central and most important feature
of our model, hitherto absent in existing models with only
planar dipole moments in the crystallographic ab plane, is the
possibility of the existence of a nonzero c projection of the
thermally averaged dipole moment on the c axis. The order
along the c axis leads to unexpected consequences for the
symmetry of the equilibrium state. The ferroelectric order,
together with the nonisotropic character of the dipole-dipole
interaction, produces a helical structure of the dipole moments
in which their directions go through all the local minima
along the c axis within the unit cell containing nS = 12 po-
sitions symmetrically distributed to cover the whole angle
of 360◦.

Monte Carlo simulations, treating spatial fluctuations more
realistically, essentially supported the thermodynamic pic-
ture of the water dipole moments obtained from classical
variational mean-field theory. However, the simulations sug-
gested a less straightforward transition to the ferroelectrically
ordered c projection of the polarization. An intermediate state
with a partial order of ferroelectric vertical chains was pre-
dicted, smearing the transition to the bulk ferroelectric state
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with a nonzero c projection of the polarization and making
it of a first-order type. More precise simulations of spatial
fluctuations are necessary to clarify this issue.

The classical model was improved by quantum tunneling to
better assess the low-temperature asymptotics. The long-range
order along the c axis appears to be significantly breached by
quantum fluctuations that ultimately destroy the ordering at
nonzero temperatures for the limiting values of the parameters
in the setting “1.” However, accurately assessing the impact
of quantum fluctuations is currently difficult due to the lack of
experimental data from which we could extract the necessary
microscopic model parameters for the hopping amplitudes a
and d between the local minima of the dipole moments of
the confined water molecules in beryl. Additionally, a direct

comparison with the experiment is hindered by the fact that
the water molecules fill only some of the cavities of the beryl
crystals, which is not accounted for in our model. Hence, the
experimental critical temperatures are overestimated in our
theory depending on the hydration level. Nevertheless, our
study clearly shows that the observed deflection of the dipole
moments from the crystallographic ab plane may lead to a
nontrivial structure with a nonzero polarization along the c
axis, which is worth further experimental exploration.
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