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Josephson diode effect in a line-centered honeycomb lattice based superconductor junction
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The Josephson diode effect (JDE) is the asymmetry of the critical supercurrent flowing along opposite current
directions. We study a mechanism in this work to generate a possible JDE in the two-dimensional line-centered
honeycomb (LCH) lattice based Josephson junction in which the supercurrent flows via the topological edge
states. Since the two helical edge states of the LCH topological insulator have different Fermi velocities, the field-
free Josephson junction is shown to exhibit a spin-resolved JDE in which the critical supercurrent is asymmetric
over the two opposite current directions for each spin species. By introducing magnetization in the circuit, a
charge version of JDE occurs in the system.
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I. INTRODUCTION

For the past few decades, Josephson junctions (JJs) have
attracted much attention from researchers, both from a funda-
mental physics point of view and for potential applications in
superconducting electronics [1–21]. For example, the π state
JJ was proposed as circuit elements for quantum computation
and as on-chip π phase shifters or π batteries for various
self-biasing quantum/classical circuits [22–26]. Recently, the
superconducting rectification effect was observed experimen-
tally in superconductor films [27–29] and has ignited huge
research interest in this field [30–48] because it undoubtedly
possesses significant application potential for the fabrication
of superconducting electronic devices. As is known, the semi-
conducting diode (p-n junction) is already one of the key
devices of the modern semiconductor industry, although there
are some advantages envisaged for the superconducting diode
like zero-voltage resistance, high-speed switching, and low
noise because it has very low resistance when operated at
cryogenic temperatures. In addition, superconducting diodes
can also be used as qubits in quantum computing and as
detectors of electromagnetic radiation in applications [49].

Generally, it is believed that the magnetic field together
with the lack of an inversion center in the superconductor
system gives rise to nonreciprocal supercurrents; that is, the
forward critical supercurrent is not equal to the backward
(reversal) one. Therefore, a charge current with a magnitude
between them might be in a nonresistive state flowing in
one direction but dissipative in the opposite direction. Broken
time-reversal symmetry or inversion symmetry of the system
is among the preconditions of the superconducting diode. The
magnetic field and the spin-orbit interaction are taken into
account in reality. The first superconducting diode effect was
observed in a [Nb/V/Ta]n superlattice by Ando et al. [27], and
afterwards, a number of experimental works confirmed this ef-
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fect in junction-free superconductors [30–32]. Bauriedl et al.
[28] first measured the JJ version of the superconducting diode
in the Al/InAs–two-dimensional electron gas/Al junction. In-
terest in the superconducting diode has been further advanced
by the recent demonstration in unconventional/topological
superconducting materials. For instance, the diode effect
was also observed in unconventional superconductors such
as magic-angle-twisted bilayer graphene [31]. It was also
demonstrated in topological superconductors in which su-
perconductivity coexists with nontrivial band topology, e.g.,
topological JJs where the type-II Dirac semimetal NiTe2 is
sandwiched between the conventional s-wave spin-singlet su-
perconductor Nb [50].

In theoretic aspects, Daido et al. [35] showed that the
intrinsic mechanism of the junction-free superconductors
causing the diode effect was due to the nonreciproc-
ity of depairing critical current by employing mean-field,
Bogoliubov–de Gennes, and Ginzburg-Landau theories. How-
ever, in the engineered junction’s diode, Davydova et al. [51]
showed that the physics mechanism is from both the Doppler
energy shift in the Andreev bound states due to continuum
momentum Cooper pairing and the asymmetric current from
the continuum of states due to the phase-independent contri-
bution. The JJ version of the diode termed the Josephson diode
effect (JDE) was also demonstrated successfully in experi-
ments and even identified without any application of magnetic
field [47,50–57]. The physics is clear that the Josephson
high-order harmonics leads to the JDE within the high junc-
tion’s transparency [32] when the inversion symmetry of the
junction is broken. In some works [58,59], the broken time-
reversal symmetry could come from the valley polarization
in the monolayer graphene or multilayer graphene-based JJ
instead of the spin polarization from the magnetic field or
magnetization. Nevertheless, a method providing an effective
and clear means to improve and control the JDE is urgently
needed in this field.

In this work, we demonstrate that the spin-related JDE
can appear in a field-free JJ based on the exotic helical edge
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FIG. 1. (a) Schematic of the line-centered honeycomb lattice.
Electronic band structures of the LCH nanoribbon with SOC for
the (b) spin-up and (c) spin-down species. (d) and (e) The wave
function distribution �i of the edge states marked in (b) and (c) on
the transverse ribbon site i. Parameters are λ = 0.1t and the number
of unit cells Ny = 10.

states of a two-dimensional (2D) topological insulator, the
bis(iminothiolato)nickel monolayer lattice [60,61], which has
a line-centered honeycomb lattice (LCH) structure, as shown
in Fig. 1(a). It is found that, due to the flat band in the LCH
system, there are two helical edge states possessing very dif-
ferent Fermi velocities and the superconducting quasiparticles
in the two states will accumulate a different phase shift so
that the spin-related JDE can arise in the JJ. Moreover, a
charge JDE is possible with the introduction of magnetization
to the system. This mechanism for the JDE cannot be found in
traditional topological insulator-based JJs like the Kane-Mele
quantum spin Hall insulator [62].

This work is organized in the following manner. In Sec. II,
we describe the model Hamiltonian of the LCH lattice based
JJ. In Sec. III, the spin-related JDE in both the continuum
model and the lattice model is discussed, along with the pos-
sible charge JDE. The conclusions are briefly summarized in
the last section.

II. MODEL

Let us start with the exotic topological edge states
constructed in the monolayer lattice of the 2D LCH ma-
terial bis(iminothiolato)nickel [Ni3C12(NH)6S6] [60,61]. As

schematically shown in Fig. 1(a), the LCH model is like
the graphene lattice but has an extra atom residing on each
hexagon edge and can be regarded as a hybrid of a honeycomb
sublattice and a kagome sublattice. The LCH lattice exhibits a
nontrivially topological band structure when an intrinsic spin-
orbit coupling (SOC) interaction is considered, so the exotic
topological edge states appear. We now consider a finite-size
LCH nanoribbon to explain the exotic edge states, and the
ribbon lattice is described by

H = − t
∑
〈i j〉σ

c†
iσ c jσ + iλ

∑
〈〈i, j〉〉α,β

νi jc
†
iασα,βc jβ, (1)

where the first term is the nearest-neighbor hopping with
strength t . λ represents the amplitude of the next-nearest-

neighbor SOC. νi j = �d1
i, j × �d2

i, j = +(−)1 when the next-
nearest-neighbor hopping is clockwise (counterclockwise)

with respect to the LCH sheet. �d1
i, j and �d2

i, j are the two unit
vectors along the nearest-neighbor bonds connecting site i to
its next-nearest neighbor j, and �σ is the vector of the Pauli
spin matrices.

The energy band of the LCH lattice nanoribbon is pre-
sented in Figs. 1(b) and 1(c) for the spin-up and -down
species, respectively. As we can see, there are three curves
with different slopes of the linear E − k dispersions across the
bulk energy gap beside the flat band lying at the band center.
The crossing points are at the 	 and M points of the Brillouin
zone, representing different helical edge states. Note that there
is only one Dirac point in the LCH model, and no valley de-
generacy is present, unlike in the graphene case. In Figs. 1(d)
and 1(e), the wave function distributions for the marked points
in the energy band are plotted. The edge states of the B and
C lines are the same as those in the Kane-Mele model [62]
linking the valence and conduction bands, while the exotic
edge states of the A and D lines connect the flat band with
valence and/or conduction bands due to the topology of the
flat band. Note that the two edge states at the upper and lower
edges have different Fermi velocities, and this situation is very
different from the usual Kane-Mele topological insulator [62].

As is known, the superconducting Cooper pairs will accu-
mulate a dynamic phase when they propagate in the normal
region (weak link) of the JJ, which is certainly related to the
Fermi velocity; that is, different velocities of quasiparticles
will lead to different dynamic phase accumulations and in turn
affect the Andreev bound states (ABSs) of the JJ as well as the
supercurrent. So we can devise a JJ by merely employing such
exotic helical edge states as shown in Fig. 2, where two s-wave
superconductor electrodes are deposited on the LCH lattice
and only the edge states sustain the possible supercurrents.
The Hamiltonian for such a JJ based on the exotic edge states
is simply described as [64,65]

HS =
[

Hu(l ) − μ(x) 
(x)eiφL(R)


(x)e−iφL(R) μ(x) − T Hu(l )T −1

]
, (2)

where the Hamiltonian Hu = σz h̄vu
f (kx + 	) for the upper

helical edge state and Hl = −σz h̄vl
f (kx + M) for the lower

helical edge states in the LCH ribbon, v
u(l )
f denotes the Fermi

velocity for the upper (lower) edge state, and σz is the Pauli
spin matrix. 	 = 0 and M = ±π/a represent the degeneracy
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FIG. 2. Setup of the S/N/S JJ based on the LCH lattice, where N
denotes the normal region of the JJ. S is formed by putting an s-wave
superconductor onto the LCH nanoribbon structure. φL(R) denotes the
left (right) superconducting phase.

or crossing points of the two edge states. kx is an expanded
small momentum quantity around 	 or M. μ is the univer-
sal chemical potential, and 
(x) = 
[θ (x − L) + θ (−x)] is
limited in the left (x < 0) and right (x > L) superconductor
electrodes; φL(R) is the superconducting phase, θ (x) is a step
function, and T denotes the time-reversal operator.

The ABS can be directly derived [64–66] (the details are
shown in the Appendix):

Eu(l )
↑(↓) = ±
cos

(
φ/2 ± δku(l )

x L/2
)
, (3)

where ↑ (↓) = ± denotes spin-up (spin-down) quasiparticles
and δku(l )

x is the wave number difference between electron-
like and holelike quasiparticles for the upper edge states
with δku

x = 2Eu

h̄vu
f

and lower edge states with δkl
x = 2π − 2El

h̄vl
f
.

φ = φR − φL indicates the superconducting phase difference.
Generally, one can present an analytic expression by assuming
a short junction with L � ξ , with ξ being the superconducting
coherence length. However, the velocity is quite small for the
edge states connecting the flat band and conduction/valence
band, so the dynamic phase accumulation ku(l )

x L can be signif-
icantly enlarged.

The ABS can carry a supercurrent as [59,65]

I =
∑
u(l )

∂Eu(l )

∂φ
tanh

(
βT Eu(l )/2

)
, (4)

where βT is the temperature factor. We now prepare to nu-
merically calculate Eqs. (3) and (4) for the JJ supercurrent.
In numerics, the pair potential is set as 
 = 10−3t , where
the hopping integral t is set as an energy unit, t = 1. Since
the mean-field BCS Hamiltonian is taken into account, the
universal chemical potential is taken to be μ = 0.02t , so that
μ � 
. The zero temperature is considered in this work, and
no extra external bias or static potential is taken into account.

III. RESULTS AND DISCUSSION

A. Continuum model for spin JDE

For simplicity, the case of a spin-up electron pairing with a
spin-down hole is considered, and the opposite pairing can be
analyzed in the same way. By solving Eq. (3), we can obtain
the numerical self-consistent ABS that is depicted in Fig. 3(a).
It is seen that the ABS composed of lower edge states (dashed
line) deviates severely from the negative cosine function. This
occurs because the Fermi velocity of lower edge states vl

f is
so small that the large phase shift of the ABS is given by

FIG. 3. The ABS as a function of the superconducting phase
difference φ (a) for a spin-up electron pairing with a spin-down hole
and (c) for a spin-down electron pairing with a spin-up hole and
(b) and (d) the corresponding spin-related supercurrent versus the
phase difference φ. Parameters are taken as λ = 0.01t and L = 10a.

δkl
xL = (2π − 2El

h̄vl
f
)L. However, the phase shift of the ABS

accumulated through the upper edge state is trivial due to the
larger Fermi velocity vu

f , as shown in Fig. 3(a) (solid line).
As a result of the electron chirality of the edge states, the

electronlike quasiparticle at the upper edge is right going, and
then the supercurrent originating from the spin-up electron
pairing with a spin-down hole should be left going at the upper
edge, which means that only the ABS satisfying the electron
chirality carries the supercurrent. The ABS originating from
lower edge states should contribute to only the right-going su-
percurrent. Therefore, one can acquire the supercurrent versus
the phase difference φ by calculating the partial derivatives
of the ABSs fulfilling the electron chirality, and the result is
plotted in Fig. 3(b). It is shown that the critical supercurrent
is asymmetric between the two opposite flowing directions.
This is mainly attributed to the exotic edge states with dif-
ferent Fermi velocities. This mechanism is different from the
usual JDE where the high harmonics of the Josephson current
[32,58] plays a vital role.

Specifically, the ABS composed of upper edge states ex-
hibits a slight phase shift δku

x L = 2Eu

h̄vu
f
L due to the larger

Fermi velocity vu
f , and it is approximately a cosine function

[cos(φ/2)]. As a result, the left-going supercurrent originat-
ing from this ABS has a sine function form, I ∼ sin(φ/2).
However, owing to the large phase shift δkl

xL = 2π − 2El

h̄vl
f
L,

the ABS composed of the opposite lower edge states deviates
severely from the negative cosine function. While at the band
center E ∼ 0, the phase shift δkl

xL = 2π − 2El

h̄vl
f
L vanishes due
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FIG. 4. (a) Spin-related supercurrent versus the phase difference φ, where I↑(↓) represents the supercurrent originating from a spin-up
(spin-down) electron pairing with a spin-down (spin-up) hole. The spin-resolved particle density distribution in the superconducting energy
gap as a function of φ within an arbitrary unit for (b) spin up and (c) spin down. The other parameters are the same as in Fig. 3.

to the electronlike and holelike quasiparticle energy bands
crossing at the M point, as can be seen in Fig. 3(a). Conse-
quently, the slope of the ABS | ∂El

∂φ
| is totally decreased. This

means the reduced right-going supercurrent and the critical
supercurrent are not equal to the left-going one; that is, the
“spin-up” JDE arises. Nevertheless, the opposite “spin-down”
JDE will appear when the spin-down electronlike quasiparti-
cle pairing with the spin-up holelike quasiparticle is taken into
account, as shown in Figs. 3(c) and 3(d). So the system does
not show any charge JDE since the time-reversal symmetry
has not been broken yet.

B. Lattice model for spin JDE

In this section, we calculate the supercurrent sustained by
the exotic edge states within a lattice model to confirm the
above findings based on the continuum model. The super-
conductivity in the left and right lattice leads in Fig. 2 is
assumed from the superconducting proximity effect [63] and
is described by [64,66]

Hl (r) =
∑

iσ


eiφl (r) c†
iσ c†

iσ + c.c., (5)

where σ = −σ , while the LCH band structure is still de-
scribed by Eq. (1). The supercurrent can be worked out from
[64,66]

I = e

h̄

∫
dE

2π
Tr[G<

l,l+1(E )̃tl+1,l − H.c.], (6)

where G<(E ) is the lesser Green’s function, the subscript l
is the index of the unit slice of the nanoribbon lattice, t̃l+1,l

is the hopping matrix between the neighbor slices, and the
trace is over the unit slice and electron space. At equilibrium,
G< = [Ga − Gr] f (E ), where Gr(a) is the retarded (advanced)
Green’s function and f is the Fermi-Dirac distribution func-
tion. Gr(a) is the retarded (advanced) Green’s function in the
lattice and Nambu space [59].

Figure 4(a) plots the spin-resolved I (φ) based on the above
lattice model. I↑(φ) represents the spin-up electron pairing
with the spin-down hole (red dashed line) and exhibits the
spin-up JDE: the left- and right-going critical supercurrents

are different. This behavior entirely recovers the result of
the continuum model shown in Fig. 3(b). In Fig. 4(b), we
also calculate the ABS in the superconducting energy gap,
which is represented by the energy-resolved particle density
distribution [64]. We can see that only the ABS fulfilling the
electron chirality exists, which agrees with the practical ABS
obtained in the continuum model, as shown in Fig. 3(a), while
the missing ABS violates the chirality of the electron. The
horizontal line is due to the flat band in the LCH lattice in
Figs. 4(b) and 4(c).

The spin-down ABS is shown in Fig. 4(c) for the situation
in which the spin-down electron pairs with the spin-up hole.
Obviously, I↓(φ) = −I↑(−φ) due to the time-reversal sym-
metry, so the spin-down supercurrent can exhibit the opposite
JDE, as shown in Fig. 4(a). Therefore, we can see that the spin
supercurrent Is = I↑ − I↓ displays a spin version JDE [black
solid line in Fig. 4(a)], but there is no charge version JDE
(blue solid line).

C. Charge JDE via magnetization

To obtain a charge JDE, we introduce magnetization into
the JJ, which is assumed in the middle nonsuperconducting
region of the JJ in Fig. 2. In the lattice model, it is simply
described by Hm = ∑

iσσ ′ σzhzc
†
iσ ciσ ′ , where hz is an energy

unit that denotes the strength of the exchange field, σ and
σ ′ are the spin indices, and σz is a Pauli operator. So the
spin-up and spin-down subbands have an energy shift of hz.
We repeat the same calculations as those shown in Fig. 4, and
the results are presented in Fig. 5. The antisymmetry between
the corresponding spin-resolved supercurrents is broken, i.e.,
I↓(φ) �= −I↑(−φ), in Fig. 5 (red and green dashed lines).
Consequently, the critical charge supercurrent I↓ + I↑ is also
asymmetric between the two opposite flowing directions, and
a charge JDE arises.

In Fig. 6, we plot the charge JDE efficiency as a function
of the strength of hz for different lengths of the central non-
superconducting region of the JJ L, and it is defined as [59]

η = |I+
c − I−

c |
I+
c + I−

c

, (7)
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FIG. 5. Spin-related supercurrent versus the phase difference φ.
Here, hz = 1.2
, and the other parameters are as in Fig. 3.

where I+(−)
c denotes the critical supercurrent for the right-

going (left-going) one. Since the phase shift, the exchange
field, and the length of the JJ can affect the JDE efficiency,
the JDE is not linearly dependent on hz except in the very
weak hz case. Owing to the spin-related JDE mainly from
the different phase shifts of quasiparticles in the upper and
lower edge states, hz can certainly affect such a phase shift as
well as the junction’s transparency. Therefore, the charge JDE
efficiency’s dependence on hz is very subtle and even exhibits
some oscillations, as shown in Fig. 6.

We have exploited the two helical edge states of a topolog-
ical insulator to construct a JJ based superconducting diode,
and the crucial factor is the presence of a flat band which leads
to the edge states possessing different Fermi velocities. The
model device is feasible in experiments since there are many
experimental works observing the topological superconduc-
tivity using the helical edge states of a topological insulator
[67–70]. Similarly, there are also a lot of theoretical works
studying the JJ based on the same model device using the
two helical edge states of a topological insulator [71–73].

FIG. 6. JDE efficiency η as a function of the magnetization
strength hz for different lengths of the central region L. Other pa-
rameters are the same as in Fig. 3.

In Ref. [71], the authors achieved the JDE by exploiting the
different velocities of the up and down helical edge states,
but in our work, we do not apply any magnetic field and
introduce an asymmetric inversion-breaking interaction that
leads to the different velocities, which are, however, intrinsic
in the topological insulator of the bis(iminothiolato)nickel
monolayer lattice due to the flat band across the band center.

IV. CONCLUSION

In conclusion, we demonstrated that a devised JJ can give
rise to a spin-related JDE when the usual JJ is based on the
exotic helical edges of the LCH lattice topological insulator.
Since the upper and lower helical edge states have different
Fermi velocities of the electrons, the spin-resolved ABS has a
contrasted phase shift, so the spin-resolved JDE can occur. By
introducing an exchange field in the system, a charge version
JDE was identified. Our finding provides a mechanism to
generate the JDE.

The data that support the findings of this study are available
within the paper.
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APPENDIX: THE DERIVATION OF ANDREEV
BOUND STATES

For simplicity, let us consider an superconductor normal
metal superconductor (SNS) JJ employing upper edge states
(a spin-up electronic state pairing with a spin-down hole
state); the corresponding Bogoliubov–de Gennes equation can
be written as [64,65][

h̄vF ke
x − μ(x) 
(x)eiφL(R)


(x)e−iφL(R) μ(x) − h̄vF kh
x

][
ue

ve

]
= E

[
ue

ve

]
, (A1)

where vF denotes the Fermi velocity, μ is the universal chem-
ical potential, 
(x) = 
[θ (x − L) + θ (−x)] is limited in the
left (x < 0) and right (x > L) superconductor electrodes,
φL(R) is the superconducting phase, and θ (x) is a step function.
We obtain the eigenstates in the N region by solving Eq. (8):

�+
e = eike

x x

[
1
0

]
(A2)

and

�−
h = eikh

x x

[
0
1

]
, (A3)

where �+
e (�−

h ) indicates the electron (hole) moves in the +x
(−x) direction. The wave vector ke(h)

x = ± E
h̄vF

is the longitu-
dinal one of the electron (hole) quasiparticles. We consider
the energy regime where E < 
, and the simplified wave
functions in the two S regions are obtained as

�−
S = eik−

s x

[
E−i�



eiφL

1

]
(A4)

054521-5



YA-JUN WEI, JUAN-JUAN WANG, AND J. WANG PHYSICAL REVIEW B 108, 054521 (2023)

and

�+
S = eik+

s x

[E+i�



eiφR

1

]
, (A5)

where � = √

2 − E2 and k±

s = ±i�. The wave functions in
the N and two S regions are given by

�N = te�
+
e + rh�

−
h ,

�L
S = rs�

−
S ,

�R
S = ts�

+
S , (A6)

where te, rh, rs, and ts are the scatting amplitudes. Therefore,
using the matching conditions at x = 0 and x = L,

�L
S |x=0 = �N |x=0,

�N |x=L = �R
S |x=L, (A7)

we can obtain

rs

[
E−i�



eiφL

1

]
= te

[
1

0

]
+ rh

[
0

1

]
,

teeike
x L

[
1

0

]
+ rheikh

x L

[
0

1

]
= tse

ik+
s L

[
E+i�



eiφR

1

]
. (A8)

The ABS can be derived by solving the above quaternion
system of first-order equations as [64]

E = ±
 cos

[
1

2

(
ke

xL − kh
x L − φ

)]

= ±
 cos

[
1

2
(δkxL − φ)

]
, (A9)

where δkx = ke
x − kh

x = 2E
h̄vF

and φ = φL − φR.
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