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Critical temperature of the nonadiabatic superconducting state in mono- and bilayer systems
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1Ulica Gen. J. Rómmla 6/9, 42-100 Kłobuck, Poland
2Department of Theoretical Physics, Jan Długosz University in Częstochowa, Avenue Armii Krajowej 13/15, 42-200 Częstochowa, Poland
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(Received 6 April 2023; revised 28 June 2023; accepted 3 August 2023; published 15 August 2023)

The electron-phonon interaction can induce the superconducting state in the low-dimensional mono- and
bilayer systems. However, the calculated value of the temperature of the transition from the metallic to the
superconducting state is greatly affected by the accuracy of the applied model. If taken into account, the vertex
corrections to the electron-phonon interaction are usually of significant value due to the low Fermi level of such
materials and were found to contribute to the reduction of the calculated value of the critical temperature of the
transition. This fact weakens the prospects for the possibility of induction of the nonadiabatic superconducting
state at the relatively high critical temperature since an increase either in the electron-phonon coupling constant
or in the Debye frequency leads to the simultaneous increase in the corrected Migdal ratio, while influencing the
critical temperature to a greater degree.
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I. INTRODUCTION

Two-dimensional (2D) materials have garnered significant
attention in current scientific research due to their excep-
tional physical properties, making them highly promising for
applications in modern technology [1,2]. Among the most
notable representatives of this category, we find graphene [3],
silicene [4–8], borophene [9–11], stanene [12], plumbene
[13–15], phosphorene [16–18], and others. Another class of
materials that is extensively investigated is the transition metal
dichalcogenides (TMDCs), such as molybdenum disulfide
(MoS2) [19–21]. In their monolayer form, TMDC materials
exhibit semiconductor behavior, making them suitable for ap-
plications in optoelectronics, spintronics, flexible electronics,
valleytronics, energy harvesting, and the biosensor field.

It is noteworthy that the exceptional properties of the
aforementioned materials are predominantly observed in their
low-dimensional forms [22,23]. A prime exemplar of such a
two-dimensional system is graphene, which was first mechan-
ically isolated from graphite in 2004 [3]. Graphene exhibits a
particularly intriguing characteristic of remarkably high elec-
tron mobility even at room temperature, owing to its massless
band structure. However, pure graphene lacks an energy gap at
the Fermi level, resulting in a low on/off ratio and restricting
its utility in the semiconductor industry [24].

Some other 2D materials gained particular attention owing
to their potentially good superconducting properties. Systems
of this type can be applied as elements of the nanodevices
such as quantum interferometers or transistors [25–27]. The
attention is focused especially on the materials which exhibit
high values of the critical temperature: graphene (8% p doped)
(TC = 108 K) [28,29], hCN monolayer (TC = 105.6 K) [30],
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Li-graphene (TC = 36.7 K) [31], and Li-hBN bilayer (TC =
31.9 K) [32,33]. Naturally, there exists a much larger group
of 2D superconductors, but they exhibit lower values of the
critical temperature [34–50] (see Table I and II).

In all of the mentioned cases, the superconducting state is
induced by classic electron-phonon interaction [51–53]. This
observation is rather encouraging since it was demonstrated
on the basis of the density functional theory (DFT) method
[54,55] in which the coupling between the electronic and
the phononic subsystems can generate superconducting states
characterized by very high values of critical temperature, as
can be seen, e.g., for H3S (TC = 204 K) [56–58], ScH9 (TC =
233 K) [59], ThH10 (TC = 241 K) [60], LaH10 (TC = 288 K)
[61–63], and YH10 (TC = 326 K) [64]. It should be noticed
that the theoretical predictions for these materials were es-
sentially confirmed by the performed experiments: [TC]H2S =
150 K, [TC]H3S = 203 K [65,66], [TC]ThH10 = 161 K [67], and
[TC]LaH10 = 250-260 K [68,69].

The above-stated facts potentially support the possibility of
the existence of the high-temperature superconducting state in
2D materials. Nevertheless, the 2D systems are characterized
by the abnormally high value of the corrected Migdal ratio
M ≡ λωD/εF [70–73] (see Table I), which is of the order of
10−4 for the conventional low-temperature superconductors
[74]. The symbol λ stands for the electron-phonon coupling
constant, εF represents the value of the Fermi level, and ωD

denotes the Debye frequency. The precise determination of
the Debye frequency in real materials poses challenges due to
the potential mixing of acoustic and optical modes at arbitrary
k points within the Brillouin zone. In this study, we define
the parameter ωD as the upper limit of frequency at which the
phonon density of states exhibits a nonzero value.

One can notice that the vertex corrections greatly influence
the properties of the superconducting state for large values of
M. This is evidenced by the results obtained for such bulk
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TABLE I. Values of the corrected Migdal ratio M and the Migdal ratio ωD/εF for selected low-dimensional mono- and bilayer materials.
Additionally, the values of the electron-phonon coupling constant λ, the Debye frequency ωD, and the Fermi level εF are given.

Lp Compounds M ωD/εF λ ωD (meV) εF (meV)

1 Li-hBN bilayer [32] 0.464 0.396 1.17 166 418
2 Black phosphorene (4% tensile biaxial strain) [34] 0.412 0.258 1.6 47 183
3 Graphane (8% p doped) [28] 0.259 0.180 1.44 174 969
4 β0-hPC monolayer [35] 0.212 0.144 1.48 157 1097
5 Li-MoS2 bilayer [36] 0.169 0.18 0.94 52 290

hCN monolayer [30]
6 (40% p doped, 15.6% tensile biaxial strain) 0.137 0.041 3.35 133 3251
7 Ca-hBN monolayer [37] 0.118 0.08 1.45 181 2260
8 Li-blue phosphorene bilayer [38] 0.105 0.088 1.2 52 717
9 Li-graphene bilayer [39] 0.099 0.115 0.86 182 1577
10 Silicene (5% tensile biaxial strain) [40] 0.099 0.095 1.04 63 667
11 Li-graphene (on a hBN substrate) [41] 0.09 0.134 0.67 182 1353
12 Li-graphene (10% tensile biaxial strain) [31] 0.089 0.122 0.73 132 1804
13 Li-graphene monolayer [42] 0.088 0.145 0.61 193 1333
14 Na-blue phosphorene bilayer [38] 0.082 0.075 1.1 51 686
15 Sr-hBN monolayer [37] 0.062 0.088 0.71 177 2017
16 Black phosphorene 1 electron/cell doped [43] 0.059 0.055 1.08 62 1128
17 Ba-hBN monolayer [37] 0.054 0.095 0.57 178 1876
18 Li-black phosphorene bilayer [44] 0.048 0.041 1.16 58 1410
19 Mg-blue phosphorene bilayer [38] 0.032 0.04 0.8 51 1284
20 Borophene β12 [45] 0.027 0.03 0.89 151 5013
21 Borophene χ3 [45] 0.027 0.028 0.95 158 5656

systems as cuprates [75–77], fullerene compounds [78,79],
and heavy fermion systems [80], and for the 3D materials
under high magnetic fields [81].

The presented work proves that calculations including the
vertex corrections give lower values of the critical temperature
of the transition into the superconducting state than those
resulting from the “classic” solution, as far as the 2D materials
specified in Table I are concerned. The value of TC can be
correctly calculated by means of the system of equations de-
rived by Freericks et al. [82] (the vertex corrections (VC)
model). This system is mathematically more complicated than
the classic Migdal-Eliashberg (ME) equations [70,83,84]. It
means that the self-consistent calculations made to find the
critical temperature are much more difficult and time con-
suming. Therefore, after performing calculations for several
representative systems, we found a regression formula, which

gives a good approximation of the actual value of the critical
temperature if its value, calculated while neglecting the nona-
diabatic effects (i.e., according to either the ME model or the
Allen-Dynes formula [85]), is known.

II. ISOTROPIC FREERICKS EQUATIONS INCLUDING
THE VERTEX CORRECTIONS

The equations describing the superconducting state which
take into account the vertex corrections with accuracy up to
the fourth order with respect to the electron-phonon coupling
function g were derived by Freericks et al. and published in
their report [82]. Originally, these equations were applied for
the analysis of the influence of vertex corrections on the ther-
modynamic properties of the superconducting state induced in
lead. The equations have the form

ϕn = πkBT
N∑

m=−N
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m + ϕ2
m
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TABLE II. Values of the critical temperature for selected materials calculated according to various methods: critical temperature T ME
C

obtained for the Migdal-Eliashberg model (either directly from the Eliashberg equations or by means of the Allen-Dynes formula) (the first
data column); critical temperature calculated numerically including the influence of vertex corrections (the second data column); critical
temperature calculated from the formula (4) including the influence of vertex corrections (the third data column).

T VC
C (K) T VC

C (K)
Lp Compounds T ME

C (K) numerically acc. to formula (4)

1 Li-hBN bilayer 31.9a [33] 19.1 [33] 19
Black phosphorene

2 (4% tensile biaxial strain) 19.7a 11.9 12.6
3 Graphene (8% p doped) 108a [29] 78.4 83.6
4 β0-hPC monolayer 17.1a 14.1 13.9
5 Li-MoS2 bilayer 10.5a 9.3 9

hCN monolayer
6 (40% p doped, 15.6% tensile biaxial strain) 105.6a 79.6 [87] 93
7 Ca-hBN monolayer 12.8b 11.2 10.9
8 Li-blue phosphorene bilayer 23.5a 19.5 21.4
9 Li-graphene bilayer 14.7a [48] 13.7 13.4
10 Silicene (5% tensile biaxial strain) 18.7a [47] 16.3 17.1
11 Li-graphene (on a hBN substrate) 13b 12.4 12
12 Li-graphene (10% tensile biaxial strain) 36.7a 34.6 33.8
13 Li-graphene monolayer 6.2a [50] 5.8 [50] 5.7
14 Na-blue phosphorene bilayer 20.1b 19.1 18.7
15 Sr-hBN monolayer 5.8b 5.7 5.5

Black phosphorene
16 1 electron/cell doped 10.8a 10.2 10.2
17 Ba-hBN monolayer 1.5b 1.48 1.5
18 Li-black phosphorene bilayer 16.5b 15.7 15.8
19 Mg-blue phosphorene bilayer 14.4b 14 14
20 Borophene β12 18.7b 18.5 18.3
21 Borophene χ3 24.7b 24.2 24.1

aMigdal-Eliashberg
b Allen-Dynes

The symbol ϕn = ϕ(iωn) denotes the function of the order
parameter, and Zn = Z (iωn) is the wave-function renormal-
ization factor. The fermionic Matsubara frequency is given by
the formula ωn = πkBT (2n + 1), N stands for the number of
the Matsubara frequencies, and kB is the Boltzmann constant.
The order parameter is defined by the ratio 
n = ϕn/Zn. The
isotropic pairing kernel for the electron-phonon interaction
has the form

λn,m = 2
∫ ωD

0
dω

ω

ω2 + 4π2(kBT )2(n − m)2 α2F (ω), (3)

where α2F (ω) is the spectral function of the electron-phonon
interaction (the so-called Eliashberg function). The depairing
electronic correlations are modeled by means of the expres-
sion μ	

n = μ	θ (ωc − |ωn|), where θ represents the Heaviside
function and ωc is the cutoff frequency (ωc = 3ωD).

The equations proposed by Freericks et al. allow one to
determine the values of both the order parameter and the
wave-function renormalization factor in the self-consistent
manner. Therefore, the results obtained by means of them can
be sensibly compared with results calculated with use of the
classic Migdal-Eliashberg model (A = 0).

The equations proposed by Freericks et al. were solved for
the purpose of the present work for a large number of Matsub-
ara frequencies (N = 4000), which allowed one to obtain the

stable solutions for ϕn and Zn within the temperature range
T0 ∼ 2–3 K to the critical temperature. Numerical methods
described in another publication [86] of ours were applied to
solve the equations presented above.

III. THE INFLUENCE OF VERTEX CORRECTIONS
ON THE VALUE OF CRITICAL TEMPERATURE

Twenty-one representative 2D systems were selected in
such a way that the range of the corrected Migdal ratio val-
ues would be as wide as possible. They were fully analyzed
according both to the Migdal-Eliashberg equations and the
equation proposed by Freericks et al. It should be mentioned
here that the full results with respect to the thermodynamic
properties of the Li-graphene monolayer, as well as of the
Li-hBN bilayer, were already published by members of our
team elsewhere [33,50].

The obtained results prove that considerations that take into
account the vertex corrections lead to the decreased values of
the critical temperature. The values of TC calculated within
both the ME and the VC models are juxtaposed in Table II.
Considering these sets of data, we noticed that the decrease
of critical temperature was larger the greater was the value of
the corrected Migdal ratio. This tendency is shown in Fig. 1,
in which the dependence between the relative change of the
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FIG. 1. The dependence of the relative difference between the
values of critical temperatures T ME

C and T VC
C on the corrected Migdal

ratio M. The value of μ	 = 0.1 was assumed for all systems, ex-
cluding LiC6. The value of μ	 = 0.114 for LiC6 was found from
the available experimental data [50]. The blue line corresponds to
Eq. (4).

value of critical temperature, (T ME
C − T VC

C )/T ME
C , and the ra-

tio M is presented. This system of coordinates allows one to
find an equation of linear regression (represented by the blue
line in the diagram),

T ME
C − T VC

C

T ME
C

= 0.931M. (4)

The corrected coefficient of determination for formula (4) is
equal to 0.942 and the standard error of estimate is 0.05.

Formula (4) is rather important from a practical point
of view because it allows for easy and relatively accurate
estimation of the value of critical temperature T VC

C , if the
values of T ME

C and M are known. If the value of the Coulomb
pseudopotential is low (μ	 ∼ 0.1), the temperature T ME

C can
be calculated from the Allen-Dynes formula [85]. It should
be remembered, however, that this formula cannot be applied
for higher values of the Coulomb pseudopotential (μ	 ∼ 0.2)
since it significantly underestimates the value of the critical
temperature in comparison to the value calculated by means
of the isotropic Migdal-Eliashberg equations [88].

Formula (4) was used to calculate the realistic values of
the critical temperature, i.e., the values taking into account
(however indirectly) the influence of vertex corrections, for all
systems presented in Table I. The results are presented both in
Fig. 2 and in Table II. The magnitude of the drop in the values
of the critical temperature due to the nonadiabatic effects falls
within the range from 0.5% T ME

C to over 40% T ME
C . It is

worth paying particular attention to the materials character-
ized by high values of the critical temperature, i.e., graphane
(8% p doped), hCN monolayer, Li-hBN, and phosphorene
(strain 8%). For all the mentioned cases, high values of T ME

C
result from the high values of the electron-phonon coupling
constants (exceeding 1 in every case). Therefore, even the
not-so-large value of the ωD/εF ratio does not significantly
restrict the high value of the corrected Migdal ratio (λωD/εF ).
As a consequence, one should expect a relevant decrease in
the value of the critical temperature after taking into account

FIG. 2. The dependence of the critical temperature on the cor-
rected Migdal ratio M for materials characterized in Tables I and II.

the vertex corrections in the model. Actually, this fact can be
easily noticed in Fig. 2.

One more mechanism which could potentially yield the
high value of the critical temperature is worth discussing. Let
us introduce the formula based on the BCS theory [89,90]:
kBTC = 1.13ωD exp(−1/λ). The formula states that the crit-
ical temperature will rise with an increase in the Debye
frequency. Unfortunately, the ωD/εF ratio grows in this case
as well. Even if the intermediate value of the electron-phonon
coupling constant is assumed (e.g., ∼0.6), which is the most
optimistic option, one still cannot expect the desirable reduc-
tion of the corrected Migdal ratio. The situation described
above occurs, for example, in the case of a LiC6 superconduc-
tor, for which ωD = 193 meV and λ = 0.61 [42]. All things
considered, a conclusion can be drawn that the 2D systems
in which the superconducting state can be induced exhibit
such small values of the Fermi level that one cannot neglect
the influence of the vertex corrections to the electron-phonon
interaction, and this effect contributes to the decrease in the
calculated value of the critical temperature. As a consequence,
the possible increase in the critical temperature due to the in-
creased λ or ωD will be strongly restricted by the simultaneous
increase in the corrected Migdal ratio.

It is worth noting the limitations of Eq. (4) and its potential
application for analyzing 3D systems. In the first step, let us
observe that the first constraint on the value of parameter M is
related to the linear form of the discussed expression and the
condition that both T ME

C and T VC
C are greater than or equal to

zero. A straightforward analysis allows us to obtain a possible
value for parameter M, which ranges from 0 to 1.074.

In our opinion, there is an additional constraint asso-
ciated with the perturbative nature of the Freericks et al.
equations, which suggests caution when applying Eq. (4) to
superconductors characterized by an electron-phonon cou-
pling constant greater than one and very high values of T ME

C ,
around 100 K. This conclusion is supported by the results
gathered in Table II, where it can be observed that for the
graphane systems (8% p doped) and hCN monolayer, the
differences between the T VC

C and [TC]Eq. (4) values are approx-
imately 6.6% and 14.4%, respectively.

Furthermore, let us note that the analysis presented in
this section is based on the Migdal-Eliashberg equations and
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the equation proposed by Freericks et al., which have iden-
tical forms for both 2D and 3D systems (the dimensional
information of the studied system is only contained in the
Eliashberg function). Therefore, Eq. (4) can also be applied
to three-dimensional systems. For example, in the case of
lead, we have T ME

C = 7.23 K [82] and T VC
C = 7.175 K [91],

resulting in (T ME
C − T VC

C )/T ME
C = 0.0076. On the other hand,

for M = 7.8 × 10−3 [92], we obtain 0.931M = 0.0073. The
agreement between the results is therefore very good. How-
ever, for the superconductor K3C60 ([T ME

C ]μ	=0.1 = 59.1 K
and T VC

C = 19.5 K [93]), due to the excessively high value
of the parameter M = 1.473 [71,93], we expect our model
to break down, as confirmed by the following estimation:
(T ME

C − T VC
C )/T ME

C = 0.67 and 0.931M = 1.371.

IV. ANISOTROPY OF THE PAIRING KERNEL
VERSUS THE VALUE OF THE CRITICAL

TEMPERATURE: A CASE OF LiC6

The results discussed in the previous section were obtained
for the isotropic approximation (solutions of the thermody-
namic equations did not explicitly depend on the wave vector
k). Now the question was if including the dependence on k in
the model would significantly change the previously obtained
results. Please notice that to answer it, one should solve the
thermodynamical equations that are dependent both on the
Matsubara frequency and on the wave vector in the self-
consistent manner. Unfortunately, the numerical complexity
of such an approach was too high. Nevertheless, a partial in-
sight into the considered problem was achieved by analyzing
the values of the anisotropic kernel of the electron-phonon
interaction (K (4)

kqq1q2
). The negative values of the kernel would

indicate the weakened electron-phonon pairing, also pointing
to an even further drop of the critical temperature for this
model. Similarly, the positive values of the K (4)

kqq1q2
would be

responsible for an increase in the TC values.
Derivation of the formula for the anisotropic pairing ker-

nel consisted in putting the Migdal-Eliashberg approximation
aside and calculating the required thermodynamic Green
functions via successive iterations of the equations of motion
[94–96]. The procedure began with the definition of a matrix
function,

Gk(iωn) = 〈〈
k|
†
k〉〉iωn

=
(

〈〈ck↑|c†
k↑〉〉iωn 〈〈ck↑|c−k↓〉〉iωn

〈〈c†
−k↓|c†

k↑〉〉iωn 〈〈c†
−k↓|c−k↓〉〉iωn

)
,

(5)

where 
k = (c†
k↑, c−k↓) denotes the Nambu spinor, and 


†
k

stands for its Hermitian coupling. The symbol ckσ (c†
kσ )

is the operator of annihilation (creation) of the electronic
state of momentum k and spin σ ∈ {↑,↓}. Please notice that
above the critical temperature, the diagonal elements Gk(iωn)
describe properties of the metallic state, while below the
TC , all elements of the matrix express the thermodynamics
of the superconducting condensate, whereas the antidiago-
nal elements are related to the average number of Cooper
pairs.

The formalism was based on the Fröchlih Hamiltonian
[53], which models the linear coupling between the electronic
and the phononic systems,

H =
∑
kσ

εk

†
kτ3
k +

∑
q

ωqb†
qbq

+ 1√
N

∑
kqσ

gq

†
k+qτ3
kφq, (6)

where εk = εk − μ, εk is the band energy of electrons, and μ

stands for the chemical potential. Function ωq represents the
phonon dispersion relation. The symbol bq (b†

q) denotes the
annihilation/creation operator for the phononic state of mo-
mentum q. Furthermore, φq = b†

−q + bq, and the τ3 quantity
is a diagonal Pauli matrix.

The algorithm applied to calculate K (4)
kqq1q2

is presented
in Fig. 3, complemented with the algorithm for deriving the
classic Migdal-Eliashberg equations for the purpose of com-
parison. After doing the required calculations, we arrived at

K (4)
kqq1q2

= −gqg−q−q1−q2 gq1 gq2

tanh
εk−q−q1
2kBTC

εk−q−q1

× (πkBTC )2 + εk−qεk−q−q1−q2[
(πkBTC )2 + ε2

k−q

][
(πkBTC )2 + ε2

k−q−q1−q2

]

×
ctgh

(
ωq

2kBTC

)
δq,−q2

+ ctgh
(

ωq1
2kBTC

)
δq1,−q2

(ωq + ωq1 )
. (7)

While analyzing the formula (7), one can notice that the
phonon dispersion relation cannot change the value of the
kernel K (4)

kqq1q2
from a negative to positive one because the ωq

function never is negative.
We assumed that the electron-phonon matrix elements have

the structure predicted by Bloch [97,98]: gq = g0|q|/√ωq.
However, close to the Fermi level, it is also possible to
apply the model proposed by Perali et al. [99], gq =√

γ (qc)/q2
c + ω2

q, where qc denotes the momentum cutoff.
The gq function cannot change the sign of the pairing kernel
value in either case. The sign of the kernel value can be
changed only if the following inequality is true: (πkBTC )2 +
εk−qεk−q−q1−q2 < 0. Due to the momentum conservation
principle, only two momentum channels are open: q1 = −q2

and q = −q2. The first channel does not lead to the change of
sign of the negative kernel value because εk−qεk−q−q1−q2 →
ε2

k−q > 0. The sign of the K (4)
kqq1q2

function can be changed
only in the q = −q2 channel. Hence, one can conclude that
the K (4)

kqq1q2
kernel is depairing as long as the following

condition is fulfilled:

ν ≡ (πkBTC )2 + εk+q2
εk−q1

> 0. (8)

A further thorough discussion of this condition was pos-
sible only for an actual example of a physical system. We
selected the LiC6 compound (TC ∼ 5.9 K [100]), which is
well worth consideration due to the significant value of the
corrected Migdal ratio (M ∼ 0.09) and the availability of both
experimental and theoretical results of its examination.

The scheme of an LiC6 crystal structure is presented in
Fig. 4. Gray lines represent the hexagonal lattice with carbon
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FIG. 3. Block diagram of the derivation of the thermodynamic equations of the second (g2) and the fourth (g4) order. The straightforward
and full presentation of classic Migdal-Eliashberg equations can be found in [84].

atoms located at the nodes. Green lines mark the effective
triangular lattice determined by the lithium atoms (s-type
dopant).

Results of the calculations with respect to the electronic
and the phononic dispersion relations for the LiC6 compound
obtained according to the DFT method are available in the
professional literature [42]. We came to the respective results
by means of the effective triangular lattice (ETL) model. In
this model, the electronic dispersion relation takes the form

εk = −2t

[
cos(kx ) + 2 cos

(
kx

2

)
cos

(√
3

2
ky

)]
− μ, (9)

FIG. 4. Effective triangular lattice of the LiC6 compound. Large
green dots denote lithium atoms; small green-gray dots are carbon
atoms. A unit cell of the triangular lattice is marked in red, its central
atom is denoted as “0,” and the nearest neighbors are numbered con-
secutively. The a1 and a2 black arrows represent the lattice translation
vectors, a1 = [

√
3

2 , 1
2 ], a2 = [

√
3

2 , − 1
2 ]. The blue arrow schematically

marks the hopping of the electron characterized by the hopping
integral t .

where the lattice constant is taken as unity. The phononic
dispersion relation can be expressed by the formula

ωq = ω0

√√√√3 − cos (qx ) − 2 cos
(qx

2

)
cos

(√
3

2
qy

)
. (10)

We obtained the following estimation of the initial parameters
of the model: t = 355 meV and ω0 = 13.3 meV, which in
the units of the hopping integral gives ω0 = 0.0375 t . The
effective value of the g0 amplitude of the electron-phonon
interaction is equal to 0.00543t . A graphic representation of
the results obtained either by means of the DFT method or
from the ETL model can be found in Fig. 5. Further details
regarding the ETL model can be found in the Appendix A.

Then we proceeded to a detailed analysis of the condi-
tion (8) for the considered compound. To do this, we first took
into account 107 randomly selected vectors k, q1, and q2 be-
longing to the first Brillouin zone and found the corresponding
values of the ν parameter. Figure 6 presents the character (the
sign) of the resulting values of ν as a function of the length
of both the q1 and q2 vectors. It can instantly be seen that
the condition (8) is not fulfilled for many sets of k, q1, and
q2 vectors. This means that the kernel K (4)

kqq1q2
can also be the

pairing one in the momentum channel q = −q2. Nevertheless,
the decisive factor is the magnitude of the K (4)

kqq1q2
function

values for both the pairing and the depairing cases. So the sec-
ond step consisted in performing further calculations, which
eventually proved that the average kernel value for the totally
depairing channel q1 = −q2 was equal to −0.00603t2, while
for the q = −q2 channel, it was equal to −3.24467 × 10−6t2

(so it also indicated depairing). Similarly, the result was found
to be −0.11455t2 for both momentum channels being active
(q = q1).

The presented analysis allows one to conclude that for
the case of the LiC6 superconductor, taking into account the
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FIG. 5. Data for LiC6 compound. (a) The electronic band near
the Fermi level. (b) Phononic dispersion relation. Blue dotted lines
correspond to the results obtained by the DFT method [42]. Red solid
lines illustrate the results obtained for the ETL model.

vertex corrections which explicitly include the momentum
transition does not lead to the increase in the critical tempera-
ture with respect to the T VC

C value.

FIG. 6. The dependence of sign of the ν parameter value on
the length of the q1 and q2 vectors. The blue areas correspond to
the negative values; the yellow areas indicate the positive ones.

FIG. 7. (a) The experimental Eliashberg function for the LiC6

superconductor, obtained through the use of the ARPES method
[100], provides valuable insight into the dominant contribution to
the electron-phonon coupling function, as expressed by the ratio
α2Fexp(ω)/ω. (b) The electron-phonon coupling function, determined
based on experimental data [100] and in the framework of the effec-
tive triangular lattice model.

Although the tedious calculations were performed only for
the LiC6 compound, it should be emphasized that the applied
procedure can be used in a similar way for any other physical
system of interest, but the final result will not necessarily be
the same.

V. CONCLUSION

The 2D compounds analyzed during the study are charac-
terized by significantly higher values of the corrected Migdal
ratio than the conventional low-temperature superconduc-
tors. Therefore, taking into account the vertex corrections to
the electron-phonon interaction while determining the ther-
modynamical properties of these compounds decreases the
calculated value of the critical temperature as compared to the
one found with the use of the classic Migdal-Eliashberg equa-
tions. The critical temperature of the phase transition from the
metallic to the superconducting state for the considered group
of materials always takes the value lower than 100 K.

It is worth emphasizing that there exists a simple de-
pendence between the values of the critical temperature
determined either with or without taking into account the
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vertex corrections. Namely, the relative change in the value
of the critical temperature due to the introduction of the ver-
tex corrections, (T ME

C − T VC
C )/T ME

C , is well approximated by
the product of the corrected Migdal ratio M and the factor
0.931. The dependence is quite useful since it allows for easy
estimation of the actual value of TC if the critical tempera-
ture determined by means of Migdal-Eliashberg equations is
known.

The predictions we presented above are based on the
calculations performed within the isotropic Eliashberg-type
formalism, taking into account the vertex corrections of the
order of g4 [82]. This approach has its limitations, consisting
in neglecting the dependence of the pairing kernel from either
the electronic or the phononic wave vector, as well as ignoring
the vertex corrections of the order higher than the fourth.
The significance of the omitted elements of the theory is very
difficult to assess in general. Nevertheless, we proved for the
LiC6 compound that taking into account anisotropy of the
pairing kernel does not lead to the increase in the value of
the critical temperature. It should also be mentioned that such
an increase is also not observed if the vertex correction of the
sixth order is included, what was proved elsewhere [33] for
the example of the Li-hBN superconductor.

APPENDIX: VALIDATION OF THE ETL MODEL
IN THE CONTEXT OF EXPERIMENTAL DATA

FOR THE LiC6 COMPOUND

From an experimental standpoint, the investigation of the
superconducting state in alkali-doped graphene presents sig-
nificant challenges. The preparation of samples is intricate
and their sensitivity to external conditions further complicates
the analysis. Consequently, reliable experimental data in the
literature is limited. In the case of the LiC6 compound, it is
advisable to refer to [100], where the use of angle-resolved

photoemission spectroscopy (ARPES) revealed the substan-
tial modification of the graphene phonon density of states
due to lithium doping, resulting in an enhanced electron-
phonon coupling. Moreover, the authors of [100] explicitly
highlighted that the charge transfer from Li electrons to the
graphene π	 bands is approximately 0.14 electrons per Li
atom. This specific charge transfer is crucial for the formation
of the Li band at the � point, which has been identified
as a key factor in the amplification of the electron-phonon
coupling [42,101,102].

The Eliashberg function, denoted as α2Fexp(ω) and ob-
tained in [100], is presented in Fig. 7(a). The complex electron
and phonon structure of the LiC6 compound is evident in the
intricate shape of α2Fexp(ω). However, by analyzing the fre-
quency dependence of the electron-phonon coupling function,
given by λexp(ω) = 2

∫ ω

0 dω′α2Fexp(ω′)/ω′, it can be deduced
that the ratio α2Fexp(ω)/ω plays a crucial role in determin-
ing the properties of the superconducting state. Based on the
analysis of the function α2Fexp(ω)/ω [see Fig. 7(a)], it is ev-
ident that the electron-phonon coupling function is primarily
influenced by frequencies in the range of 0 to 0.2t . In light of
this observation, the effective triangular lattice (ETL) model
incorporates only this dominant contribution, effectively cap-
turing the essential features. Consequently, a relatively good
agreement is achieved between the experimentally derived
electron-phonon coupling function, denoted as λexp(ω), and
its counterpart from the ETL model, denoted as λETL(ω) [see
Fig. 7(b)].

Furthermore, it is worth noting that the electron-phonon
coupling constant and the critical temperature obtained in
[100] yield the following values: [λ]exp = 0.644 and [TC]exp =
5.9 K, respectively. Remarkably, these experimental values
align favorably with the results obtained within the frame-
work of the effective triangular lattice model, [λ]ETL = 0.673
and [TC]ETL = 5.93 K, as determined using the Allen-Dynes
formula [85].
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[57] A. P. Durajski, R. Szczęśniak, and Y. Li, Non-BCS thermo-
dynamic properties of H2S superconductor, Physica C 515, 1
(2015).

[58] A. P. Durajski, R. Szczęśniak, and L. Pietronero, High-
temperature study of superconducting hydrogen and deu-
terium sulfide, Annal. Phys. 528, 358 (2016).

[59] X. Ye, N. Zarifi, E. Zurek, R. Hoffmann, and N. W. Ashcroft,
High hydrides of scandium under pressure: Potential super-
conductors, J. Phys. Chem. C 122, 6298 (2018).

[60] A. G. Kvashnin, D. V. Semenok, I. A. Kruglov, I. A. Wrona,
and A. R. Oganov, High-temperature superconductivity in a
Th-H system under pressure conditions, ACS Appl. Mater.
Interfaces 10, 43809 (2018).

[61] F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y.
Ma, Hydrogen Clathrate Structures in Rare Earth Hydrides at
High Pressures: Possible Route to Room-Temperature Super-
conductivity, Phys. Rev. Lett. 119, 107001 (2017).

[62] M. Kostrzewa, K. M. Szczęśniak, A. P. Durajski, and R.
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